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Introd~ct ion 

The well-known travelling salesman problem is the following: " A  salesman is 
required ~,o visit once and only once each of n different cities starting from a base 
city, and returning to this city. What  path minimizes the to ta l  distance travelled 
by the salesman?" 

The problem has been treated by a number  of different people using a var ie ty  
of techniques; el. Dantzig, Fulkerson, Johnson [1], where a combination of 
ingemtity and linear programming is used, and Miller, Tucker  and Zemlin [2], 
whose experiments using an all-integer program of Gomory  did not produce 
results i~ cases with ten cities although some success was achieved in eases of 
simply four cities. The purpose of this note is to show tha t  this problem can 
easily be formulated in dynamic programming terms [3], and resolved computa- 
tionally for up to 17 cities. For  larger numbers, the method presented below, 
combined with various simple manipulations, may  be used to obtain quick 
approximate solutions. Results of this nature  were independently obtained by  
M. Held and R. M. Karp,  who are in the process of publishing some extensions 
and computat ional  results. 

D y n a m i c  P r o g r a m m i n g  Formula t ion  

Consider the problem as a multistage decision problem. With no loss in gen- 
erality, since the tour is a round trip, fix the origin at some city, say 0. Suppose 
that  at a certain stage of an optimal tour  starting at 0 one has reached a city 
i and there remain k cities j l ,  j~, • • • , jk to be visited before returning to 0. 
Then it is clear that ,  the tour being optimal, the path from i through j l  , j2,  • • • ,jk 
in some order and then to 0 must  be of minimum length; for, if not  the entire 
tour  could not  be optimal, since its total length could be reduced by  choosing 
a shorter path  from i through j l ,  j2,  • • • , jk to 0. 

Therefore, let us define 

f ( i ;  j ~ ,  j 2 ,  " • • , j z )  =- length of a path of minimum length from i to 0 which 

passes once and only once through each of the re- (1) 

maining k unvisited cities j l ,  j2 ,  • • • , f l  • 

Thus, if we obtuin f (0 ;  j l ,  j..,, • • • , j~), and a path which has this length, the 

problem has been solved. 
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Let us also define d, i  to be the distance between the Rh and j th  cities. Then 
as a consequence of the above remarks, we have that 

/(i;Y~ ,J,,- , " , J ,O  = m i ~  { & j ~  + / ( i ; k  ,j,,_ , ' , j , ~ - ~  , j , , + ~ ,  ' , / , O f .  ( 2 )  

This is an application of the general principle of optimality in the theory of 
dynamic programming [3]. 

The iterative procedure given by (2) is initiated through the use of the known 
function 

/ ( i ; j )  = d~j q-  dio (3) 

from which we obtain f( i ;  j , ,  j2), which, in turn, through (2) yields f( i ;  j l ,  j2), 
and so on until f ( O ;  j ~ ,  j., . ,  . . .  , j ~ )  is obtained. The sequence of values of rn 
which minimize the expression in the braces on the right-hand side of (2) gives 
a desired minimal path. 

C o m p u t a t i o n a l  F e a s i b i l i t y  

The only problem to be faced in using the foregoing algorithm to obtain a 
solution to the travelling salesman problem for an arbitrarily large number of 
cities is the storage problem. We shall constantly talk in terms of "rapid access." 
Were a solution to particular problem urgently required, and if we were willing 
to spend enough time, we could greatly increase the size of the problem that 
can be solved with the foregoing method, by using auxiliary storage techniques. 

To tabulate the function defined in (1), it is necessary only to take account 
of the totality of values j~, 3"2, • • • , j~, not of the order in which the cities are 
to be visited. Consequently, in storing the function f ( i ;  j ~ ,  j 2 ,  • • • , j~o), we face 
the task of tabulating all ways of choosing ]c quantities from among n--1 quan- 
tities. This quantity is largest when/c is the nearest integer to ( n - 1  ) / 2 .  Take 
the case where n - 1  is even. Since, by Stirling's formula, 

( 2 ~ )  2mI 2 2~ 
- ~ ( 5 )  

( m  !)~ - ~ m '  

we have the following approximate values: 

210 
11 cities (2m = 10): - -  < 300, 

2 26 
17 cities (2m = 16): - -  < 12,000, (6) 

220 
21 cities (2m = 20): _ < 200,000. 

It follows that the case of 11 cities can be treated routinely, that 17 cities re- 
quires the largest of current fast memory computers, but that  problems involv- 
ing 21 cities are for a few years at least beyond our reach. One can improve upon 
these numbers by taking advantage of the fact that the distances will be inte- 
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gc'rs and that we need not use all the digits of one word to specify a distance, 
but this requires some fancy programming. 

Furthermore, in any particular case, one can easily reduce the number of 
(:ides by grouping sub tours as one new "distance." In this way, one can quite 
quickly obtain approximations to the solutions of large scale problems. 

One advantage of the dynamic programming approach is that one can readily 
h~corporate tall types of realistic constraints involving the order in which cities 
can be visited. For example, it simplifies the minimization process of (2) if 
the restriction m c ~q(i) is imposed, where S is a set of cities determined by i, 
e.g., the ten nearest neighbors of i. 

Finally, note the following points concerning the time and memory aspects of 
this problem. A straightforward enumerative comparison of paths would require 

of n 2 , with about the same n! comparisons. We reduce this figure to the order ~ "-~ " 
numbers of additions required. The memory requirements for the function being 
computed, the function stored, and the optimal policy being determined triple 
the estimates given above in (6). On the other hand, all types of constraints can 
be treated in a very simple fashion. 
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