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ABSTRACT: The pairing heap has recently been 
introduced as a new data structure for priority queues. 
Pairing heaps are extremely simple to implement and 
seem to be very efficient in practice, but they are difficult 
to analyze theoretically, and open problems remain. It 
has been conjectured that they achieve the same 
amortized time bounds as Fibonacci heaps, namely, 
O(log n) time for delete and delete-min and O(1) for 
all other operations, where n is the size of the priority 
queue at the time of the operation. We provide empirical 
evidence that supports this conjecture. The most 
promising algorithm in our simulations is a new variant 
of the twopass method, called auxiliary twopass. We 
prove that, assuming no decrease-key operations are 
performed, it achieves the same amortized time bounds as 
Fibonacci heaps. 

1. INTRODUCTION 
A priority queue is an abstract data type for main- 
taining and manipulating a set of items based on 
priority [I]. Prio’rity queues derive great theoretical 
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and practical importance from their use in solving a 
wide range of combinatorial problems, including job 
scheduling, minimal spanning tree, shortest path, 
and graph traversal. 

Priority queues support the operations insert, 
find-min, and delete-min; additional operations often 
include decrease-key and delete. The insert(t, v) opera- 
tion adds item t with key value v to the priority 
queue. The find-min operation returns the item 
with minimum key value. The delete-min operation 
returns the item with minimum key value and 
removes it from the priority queue. The decrease- 
key(t, d) operation reduces item t’s key value by d. 
The delete(t) operation removes item t from the 
priority queue. The decrease-key and delete opera- 
tions require that a pointer to the location in the 
priority queue of item t be supplied explicitly, since 
priority queues do not support searching for arbi- 
trary items by value. Some priority queues also sup- 
port the merge operation, which combines two item- 
disjoint priority queues. 

We will concentrate on the insert, delete-min, and 
decrease-key operations because they are the opera- 
tions that primarily distinguish priority queues from 
other set manipulation algorithms and because they 
are the critical operations as far as the time bounds 
are concerned. 
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Several implementations of priority queues, such 
as implicit heaps [lo], leftist heaps [3, 71, and bino- 
mial heaps [2, 91 have been shown to exhibit an 
O(log n) worst-case time bound for all operations, 
where n is the size of the priority queue at the time 
of the operation. Fibonacci heaps [4] provide a dra- 
matic improvement on the general logarthmic bound 
by achieving amortized time bounds of O(1) for 
insert, decrease-key, and find-min and O(log n) for 
delete-min and delete. This greatly improves the 
best known theoretical bounds for the time required 
to solve several combinatorial problems.* Follow- 
ing the approach of [8], a sequence of operations 
op,, opz,. . ., opk is said to have amortized time bounds 
b,, bz, . . . , bk if 

Esj ti 5 C bit for all 1 5 j I k, 
lsisj 

where ti is the actual time used by opi. Intuitively, if 
operation opi uses less time than its allotted bi units, 
then the leftover time may be held in reserve to be 
used by later operations. 

Fibonacci heaps achieve their time bounds by 
complicated invariants with significant overhead, so 
they are not the method of choice in practice. Re- 
cently, a self-adjusting data structure called the pair- 
ing heap was proposed [5]. Pairing heaps are much 
simpler than Fibonacci heaps, both conceptually and 
in implementation; and they have less overhead per 
operation. The best amortized bound proved so far 
for pairing heaps is O(log n) time per operation. It 
is conjectured that pairing heaps achieve the same 
amortized time bounds as Fibonacci heaps, namely, 
O(1) per operation except O(log n) for delete-min and 
delete. 

To test whether the conjecture is true, we per- 
formed several simulations of the pairing heap algo- 
rithms. These simulations differed significantly from 
the ones independently done in [6], since the latter 
ones did not address the conjecture. In our simula- 
tions, we tested several different pairing heaps and 
used “greedy” heuristics and the appropriate se- 

‘For example, a standard implementation of Dijkstra’s algorithm (which finds 
the shortest path from a specified vertex x to all other vertices in a graph with 
nonnegative edge lengths) uses a priority queue as follows: Let us denote the 
number of vertices in the graph by V and the number of edges by E. The key 
value of each item y in the priority queue represents the length of the shortest 
path from vertex x to vertex y using only the edges in the graph already 
processed. Initially, no edges are processed, and the priority queue contains V 
items: the key value of item x is 0 and all other items have key value m. The 
algorithm successively performs delete-mins until the priority queue is empty. 
Each time a delehe-min is performed (say, the vertex y is deleted), the algo- 
rithm outputs the shortest path between x and y, and each unprocessed edge 
(y, z) incident toy in the graph is processed; this may require that a decrease- 
key be performed in order to lower the key value of z in the priority queue. 
Thus. there are at most V inserfs, V delete-mins, and E decrense-keys during the 
ccwrse of the algorithm. If a Fibonacci heap is used to implemenithe priority 
aueue. the resultine runnine time is OfE + V lee V1. which is a sienificant 

-  I  -  , .  

improvement over O((E + V) log V) using the other heap representations. 
Other examples of how Fibonacci heaps can improve worst-case running 
times are given in 141. 

quences of commands to make the pairing heaps 
perform as poorly as we could. The results were 
positive in that the pairing heaps always performed 
extremely well. This does not prove that the desired 
time bounds do hold, but it is reassuring and makes 
us optimistic that the conjecture is true. 

In this article we study the “twopass” and “multi- 
pass” versions of pairing heaps; the names arise from 
the method used to do the delete-min in each version 
[5]. We also introduce new variants called “auxiliary 
twopass” and “auxiliary multipass.” All versions are 
described in the next section. In Section 3, we dis- 
cuss our simulations and the empirical data. Auxil- 
iary twopass performed best in the simulations, 
based on our measure of performance. In Section 4, 
we provide a partial theoretical analysis of pairing 
heaps by introducing the concept of “batched poten- 
tial.” We show, for example, that auxiliary twopass 
uses O(1) amortized time per insert and find-min and 
O(log n) amortized time for the other operations. 
Conjectures and open problems follow in Section 5. 

2. PAIRING HEAP ALGORITHMS 
A comprehensive description of pairing heaps ap- 
pears in [5]. A summary is given below. Our studies 
involve the twopass algorithm, which was the sub- 
ject of most of the analysis in [5], and the multipass 
algorithm. 

Pairing heaps are represented by heap-ordered 
trees and forests. The key value of each node in the 
heap is less than or equal to those of its children. 
Consequently, the node with minimum value (for 
simplicity, we will stop referring to a key value, and 
just associate the value directly with the heap node) 
is the root of its tree. Groups of siblings, such as tree 
roots in a forest, have no intrinsic ordering. 

In the general sense, pairing heaps are represented 
by multiway trees with no restriction on the number 
of children that a node may have. Because this mul- 
tiple child representation is difficult to implement 
directly, the child-sibling binary tree representation 
of a multiway tree is used, as illustrated in Figure 1 

(p. 236). In this representation, the left pointer of a 
node accesses its first child, and the right pointer of 
a node accesses its next sibling. In terms of the bi- 
nary tree representation, it then follows that the 
value of a node is less than or equal to all the values 
of nodes in its left subtree. A third pointer, to the 
previous sibling, is also included in each node in 
order to facilitate the decrease-key and delete opera- 
tions. The number of pointers can be reduced from 
three to two, as explained in [5] at the expense of a 
constant factor increase in running time. Unless 
stated otherwise, the terms “child,” “parent,” and 
“subtree” will be used in the multiway tree sense; 
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FIGURE 1. An Example of a Heap Ordered Tree (a) Multiway tree 
heap representation. (b) Corresponding binary tree representation. 

their corresponding meaning in the binary tree rep- 
resentation should be clear. 

The primary action performed in pairing heap op- 
erations is a comparison-link, in which the values of 
two nodes are compared. The node with larger value 
is demoted in the sense that it becomes the first 
child of the smaller-valued node. The previous first 
child of the smaller node becomes the second child, 
the previous second child becomes the third child, 
and so on. Ties can be brolken arbitrarily. The binary 
tree representation of the comparison-link is given 
in Figure 2. This comparison-link action is per- 
formed repeatedly during the delete-min operation of 
a priority queue. It is the primary action that we 
seek to minimize to reduce execution times. 

The twopass algorithm that we examined was the 
variant that yielded the O(log n)-time amoritized 
bounds for inser,t, decrease-key, and delete-min in [5]. 

Only one tree is maintained. Hence, in the binary 

tree representation, the root node always has a null 
right pointer. The insert(t, V) operation performs a 
comparison-link between t and the tree root; the 
node with smaller value becomes the root of the 
resulting tree. The decrease-key(t, d) operation begins 
by reducing t’s value by d. This means that t may 
now have a value smaller than its parent. Conse- 
quently, it must be removed from the tree (with its 
own subtree intact) and comparison-linked with the 
tree root. Again, the node with smaller value be- 
comes the root of the resulting tree. 

The delete-min operation gives the twopass algo- 
rithm its name. First, the tree root node is deleted 
and its value returned. This leaves a forest of former 
children and their subtrees. Next, two comparison- 
linking passes are made over the roots of this forest. 
Pass 1 is a left-to-right pass, in which a comparison- 
link is performed on successive pairs of root nodes. 
Pass z then proceeds from right-to-left, In each step, 
the two rightmost trees are replaced by the tree re- 
sulting from a comparison-link; the “cumulative” 
rightmost tree is continually updated in this manner 
until it is the only remaining tree. The root of this 
final tree is the minimum of all the nodes in the 
tree. Figure 3 illustrates the delete-min procedure in 
terms of the binary tree representation, 

The delete(t) operation works as follows: If the 
node t to be deleted is the root of the main tree, then 
a delete-min operation is performed. Otherwise, t is 
deleted from the tree. The former subtrees oft are 
recombined into a single tree via the twopass linking 
procedure. This tree is then comparison-linked to 
the root of the main tree. 

The multipass algorithm that we studied was also 
presented in [5]. Both the insert(t, d) and decrease- 
key(t, d) operations function exactly as those in the 
twopass algorithm. The delete-min operation, how- 
ever, distinguishes multipass from twopass. The first 
operation in the multipass delete-min is the deletion 
of the root node; its value is returned. This leaves 
the heap with some number of trees, say r. Next, we 
repeatedly perform pairwise linking passes on the 
roots of these trees until the heap is left with only one 
tree. Each comparison-link reduces the number of 
trees by one, and each pass cuts the number of trees 
roughly in half. For r trees, a total of Ilog rl' passes 
are made. A simpler heuristic is to comparison-link 
the first two tree roots and place the “winning” root 
(smaller value) at the tail of the forest list. Alterna- 
tively, a circular list could be used to store the sib- 
lings. Both ways, a round robin effect emerges, and 
we see that for r tree roots, exactly r - 1 link opera- 
tions are performed. Following the linking phase, 
the heap is again left with a single tree; its root is the 

‘All logarithms in this article are base 2. 

236 Communications of the ACM March 1987 Volume 30 Number 3 



Research Contributions 

FIGURE 2. Two Binary Tree Heap Configurations and the Resulting Structures From a Comparison-Link Between Nodes X and Y 

(a) 

(W 
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FIGURE 3. Twopass Delete Min Procedure, Using the Binary Tree 
Representation. (a) Beginning heap configuration. (b) Root 

(minimum) deletion. (c) Pass one. (d) Pass two. 
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node with minimum key value. Figure 4 illustrates and auxilia y multipass. Auxiliary twopass works as 
the multipass delete-min in terms of the binary tree follows: In addition to the main tree in the heap, we 
representation. The delete(t) operation is the same as maintain an auxiliary area that consists of an or- 
in twopass except that multipass comparison-linking dered list of other trees. It is convenient in the im- 
is used on the children of the deleted node t. plementation to store the auxiliary area as the right 

While working with these algorithms, we designed subtree (in the binary tree sense) of the root. 
two new variations, that we call auxiliary twopass The insert(t, V) and decrease-key(t, d) operations 

(W 

(4 

FIGURE 4. Multipass Delete Min Procedure, Using the Binary Tree Representation. (a) Beginning heap configuration. (b) Root 
(minimum) deletion. (c) Pass one. (d) Pass two. (e) Pass three. 
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function as in the regular twopass algorithm except 
for one major difference. Rather than comparison- 
linking node t with the tree root, the node is added 
to the end of the list of auxiliary trees. (As usual, in 
the case of a decrease-key operation, the subtree 
rooted at t remains intact.) If the find-min operation 
is to be implemented, a separate minimum pointer 

A insert 

main tree auxiliary forest 

(4 

must be maintained; each insert or decrease-key node 
must be checked against the minimum pointer so 
that the pointer can be updated if necessary. 

The delete-min operation, which is illustrated in 
Figure 5, begins by “batching” the auxiliary area, 
that is, by running the multipass pairing procedure 
on the auxiliary area. (Note that although the 

(4 

(e) 

FIGURE 5. Auxiliary Twopass Delete Min Procedure, Using the Binary Tree Representation. (a) Initial heap configuration. 
(b) Multipass on auxiliary forest. (c) Link auxiliary root to main root. (d) Root (minimum) deletion. (e) Twopass back to one root. 
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method described is called auxiliary twopass, the 
auxiliary area is linked together using the multipass 
method.) When this linking is complete, the auxil- 
iary area consists of a single tree. If the auxiliary 
area originally consists of 2k singleton trees, for some 
k 2 0, the resulti.ng tree is a binomial tree [2, 91. The 
next action is a comparison-link between the main 
tree root and the new auxiliary root. After this 
comparison-link, the heap again contains only one 
root node, that of minimurn key value. From this 
point on, the delete-min opleration proceeds exactly 
as in the twopass algorithm. The root node is re- 
moved, and we link the remaining forest of trees via 
the twopass proc.edure. 

The rationale :for maintaining the auxiliary area is 
that it prevents many comparisons between single 
nodes from an insert and large trees already in the 
forest. We shall prove in Section 4 that if there are 
no decrease-key operations, auxiliary twopass 
achieves the amortized time bounds of O(1) for insert 
and O(log n) for <delete-min. 

The delete(f) operation works as in twopass. If 
node t is the current minimum, then a delete-min is 
performed. Otherwise, the children oft are recom- 
bined into a single tree, which is then comparison- 
linked to the ma:in tree. 

Auxiliary multipass is identical except that the 
multipass algorithm is used on the regular tree. 
The auxiliary area is still batched using multipass. 
Section 4 derives slightly weaker amortized time 
bounds than for auxiliary twopass, under the as- 
sumption that no decrease-key operations are per- 
formed: O(1) per insert and O((log n log log n)/log log 
log n) per delete-min. 

Lazy variants of these algorithms are also possible, 
in which the heap consists of a forest of trees rather 
than a single tree. One possible implementation is 
described in [5]. However, extra comparisons other 
than in comparison-link actions are required to im- 
plement find-min, since the heap no longer has a 
single root. As a result, the find-min operation in the 
lazy variants often does some restructuring of the 
tree. The find-min operation for the auxiliary var- 
iants can be done in constant time, since a pointer to 
the current niinimum node can easily be maintained 
during inserts and decrease-keys; the extra compari- 
son to do this is balanced b,y the fact that inserts and 
decrease-keys do not perform any comparison-links. 
To make our simulation results of insert, decrease- 
key, and delete-min fair, we have excluded lazy 
variants from our study. Their performances are 
similar. 

Although the twopass algorithm has provided the 
fastest general amortized time bounds so far, our 
intuition suggested that the multipass variants 

should run faster. Although all make roughly the 
same number of comparison-link actions on a simi- 
lar heap configuration, the multipass variants tend 
to build a more “structured” forest configuration 
over time. All the uppermost nodes that are directly 
involved in link actions will be formed into a binomia 
like tree, which helps limit the number of links 
during subsequent delete-min operations. The sim- 
ulation results described in the next section are 
somewhat surprising; auxiliary twopass consistently 
outperforms the multipass versions. 

3. SIMULATIONS 
Our test simulations of the pairing heap algorithms 
consisted of structured sets of insert, decrease-key, 
and delete-min operations. No key values were ever 
assigned to nodes. Instead, we used a “greedy” heu- 
ristic to determine the winners of comparisons, in 
hopes of causing a worst-case scenario. Every time a 
comparison-link operation was performed, the node 
with more children won the comparison; that is, it 
was judged to have the smaller key value. This node 
gained one child in the link operation. Our greedy 
approach allowed us to keep the nodes with many 
children at the uppermost levels in the heap. Since 
the number of children at the root level determines 
how much work a delete-min performs, this greedy 
approach forced the priority queue to do signifi- 
cantly more work than would have been the case if 
the key values were assigned randomly. Two meth- 
ods were used for determining which nodes to use 
for decrease-key operations: In a random decrease-key, 
we chose a nonroot node at random. In a greedy 
decrease-key, we used the greedy heuristic and chose 
the node with the most children, subject to the con- 
straint that the node could not be the root or a child 
of the root. 

The binary tree representation of a multiway tree 
was used to implement the pairing heaps. Heap 
nodes were implemented as record structures with 
left (first child) and right (next sibling) pointer fields. 

In this section, we report on nine simulations of 
twopass and multipass pairing heap algorithms. Each 
simulation consisted of several phases. A phase con- 
sisted of some set of inserts and decrease-keys fol- 
lowed by a delete-min. In the descriptions that fol- 
low, n refers to the size of the priority queue at the 
beginning of the phase. The phases of the nine simu- 
lations consisted of, respectively: 

(1) log n inserts, followed by one delete-min. 
(2) 0.5 log n (insert, random decrease-key) pairs, fol- 

lowed by one delete-min. 
(3) 0.5 log n (insert, greedy decrease-key) pairs, fol- 

lowed by one delete-min. 

l- 
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(4) one insert, then x(log n) - 1 greedy decrease-keys, 
followed by one delete-min, for x = 0.25, with an 
initial binomial tree of size 2”. 

(5) same for x = 1.0. 
(6) same for x = 4.0. 
(7) one insert then x(log n) - 1 greedy decrease-keys, 

followed by one delete-min, for x = 0.22, with an 
initial binomial tree of size z’~. 

(8) same for x = 1.0. 
(9) same for x = 4.0. 

Our measure of performance compared the actual 
work done by each algorithm with an allowance for 
the operations processed. The actuaI work done was 
considered to be one unit for an insert, one unit for 
a decrease-key, and one unit for the delete plus one 
unit for each comparison-link that occurred during 
a delete-min. Allowances for the operations corre- 
sponded to the amortized time bounds sought for 
them: the insert and decrease-key allowances were 
each one unit, and the delete-min allowance was 
log n, where n was the heap size at the time of the 
delete-min. 

Phases were grouped into a smaller number of 
increments to facilitate graphical display of the re- 
sults; in the first three simulations the size of the 
heap grew by a fixed amount in each increment, and 
in Simulations 4-9 (Figures 9-14.) increments con- 
sisted of a fixed number of phases. For each incre- 
ment in a simulation, we calculated its work ratio. 
The work ratio is defined as actual work performed 
divided by the operations’ allowances. By seeing 
how the work ratio changed over time across these 
increments, we were able to judge the performances 
of the algorithms. If the work ratio increased over 
time, the O(l)-time insert and decrease-key allow- 
ances and the O(log n)-time delete-min allowance 
would not be bounding the actual work growth. If 
instead the work ratio stayed constant or decreased, 
then the experiments would provide encouragement 
that the sought for amortized time bounds are 
possible. 

In our simulations, we chose the particular order 
and frequency of operations so that if any of the 
conjectured amortized time bounds of O(1) for insert 
and decrease-key and O(log n) for delete-min did not 
hold, we would detect a discrepancy in the results. 
The simulations of pairing heaps in [6], on the other 
hand, were limited for several reasons: First, no 
decrease-key operations were performed. We will see 
in Section 4 that if no decrease-keys are done, we can 
prove the conjectured bounds analytically for auxil- 
iary twopass. More importantly, however, the simu- 
lations performed the same number of inserts as 
delete-mins. It is already known from [5] that each 

operation can be done in O(log n) amortized time. 
Therefore, it was impossible in Jones’s [6] simula- 
tions to distinguish between O(1) time and O(log n) 

time per insert. Our simulations, on the other hand, 
tested the time bound conjectured more effectively 
by performing O(log n) insert and decrease-key opera- 
tions for each delete-min. 

Simulation 1 allowed us to examine how the 
heaps performed when no decrease-key operations 
were used. Work ratios were calculated over incre- 
ments of 12,000 nodes of heap growth, with the heap 
size eventually reaching 1,200,OOO nodes. Four ini- 
tial inserts were used to “start-up” the simulation. 
The results are graphed in Figure 6 (p. 242). Only 
multipass showed a steady increase in work ratio; 
however, there was a marked decrease near the sim- 
ulation’s end. Both twopass and auxiliary twopass 
remained mostly steady, and auxiliary multipass ex- 
hibited a clear decrease. Auxiliary twopass was the 
fastest algorithm, a fact that would continue through 
most of the following simulations. It is interesting to 
note that the auxiliary algorithms were not subject 
to wide fluctuations in work ratio as were the regu- 
lar algorithms. 

Simulation 2 utilized random decrease-key opera- 
tions primarily to see how random disruptions in the 
heap structure would affect overall algorithm perfor- 
mances. Again work ratios were calculated in 12,000 
node increments, and the total heap size grew to 
~,ZOO,OOO nodes. Sixteen inserts were used to initial- 
ize the simulation, This simulation’s results, which 
are shown in Figure 7 (p. 242), were quite similar to 
those of Simulation 1. No steady work ratio in- 
creases were evident, nor was there an appreciable 
gain in work ratio values from Simulation 1. Both 
multipass algorithms exhibited work ratio decreases, 
with regular multipass remaining slightly superior. 
Auxiliary twopass was again the fastest algorithm, 
and twopass was the slowest. Curiously, the total 
work ratio for auxiliary twopass over the entire 
simulation was slightly less than its total in Simu- 
lation 1. In essence, the random decrease-keys helped 
the algorithm run faster. 

Simulation 3 utilized greedy decrease-key opera- 
tions in which the node with the most children was 
chosen for the operation. Nodes such as the root and 
children of the root, whose choice would have no 
effect on the heap structure, were excluded from 
being candidates. This simulation’s decrease-key op- 
eration was intended to move nodes with many chil- 
dren from the central heap up to the top root level, 
thereby forcing the delete-min operations to do even 
more work. Because of the extra storage required, 
work ratios were calculated in increments of 6,000 
nodes. The final heap size was 546,000 nodes. A 
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SIMULATION 1 
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FIGURE 6. log n inserts, 1 delete min per phase 
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FIGURE 7. 0.5 log 12 (insert, random decrease key) pairs, 1 delete min per phase 
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start-up set of sixteen insert operations was used. 
After showing small jumps in the work ratios, all 

four algorithms maintained steady levels at the sim- 
ulation’s end. The results are graphed in Figure 8. 
Clearly, the greedy decrease-key operations did have 
an effect, as work ratio values were higher than 
those in the first two simulations. Auxiliary twopass 
was again the fastest algorithm, twopass was the 
slowest, and the multipass algorithms were quite 
similar. The general multipass algorithm had a defi- 
nite superiority at smaller heap sizes, however. 

Simulations 4-9 primarily examined how the 
decrease-key operation affected algorithm perfor- 
mances. An initial binomial tree of some size was 
built. This provided all four algorithms with the 
same starting point, so no initial bias was intro- 
duced. Each phase contained only one insert opera- 
tion; hence, a constant heap size was maintained, 
that of the initial binomial tree. By varying the num- 
ber of decrease-key operations between the insert and 
the delete-min in a phase, we could see exactly how 
this number affected the work ratio. 

100 increments. The respective results are shown in 
Figures 9-11 [pp. 244-245). All three tests showed 
very steady work ratio rates, which is encouraging. 
The actual values were quite different, however. 
The twopass variants had lower work ratios when 
there were a smaller number of decrease-key opera- 
tions per phase, whereas the multipass variants ex- 
hibited an opposite behavior; they performed better 
as the number of decrease-keys per phase increased. 
Auxiliary twopass was overall the best algorithm, 
but regular twopass exhibited a curious variation on 
its usual slowest behavior. In the two simulations 
with more decrease-key operations, twopass was 
clearly slowest. In fact, in Simulation 6 with 
48 decrease-key operations per phase, twopass was 
blatantly behind the other three algorithms perfor- 
mances. But in Simulation 4 with the fewest (three) 
decrease-keys per phase, twopass was the fastest algo- 
rithm! It appears that twopass performs best when 
there are relatively few insert and decrease-key 
operations compared to the number of delete-min 
operations. 

In Simulations 4-6, we used an initial binomial In Simulations 7-9, we used a much larger initial 
tree size of n = 2” = 4096 nodes. Simulations 4, 5, binomial tree size of n = 2” = 262,144 nodes. Simu- 
and 6 used 0.25 log n = 3, log n = 12, and 4 log n = lations 7-9 used 0.22 log n = 4, log n = 18, and 4 log 
48 decrease-key operations per phase, respectively. n = 72 decrease-key operations per phase, respec- 
We grouped 100 phases into an increment for work tively. We grouped 1000 phases into an increment 
ratio calculations, then we ran the simulation for for work ratio calculations, then we ran the simula- 
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SIMULATION 6 
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FIGURE 11. 1 insert, (4.0 log n) - 1 greedy decrease keys, 1 delete min per phase 

tion for 100 increments. The results are shown in 
Figures 12-14 (pp. 246-247). The relative perfor- 
mances of the four algorithms were quite similar to 
those of Simulations 4-6. The curious behavior of 
the twopass algorithm was again evident, as it per- 
formed poorly with many decrease-key operations per 
phase, but improved dramatically with few. With 
the larger initial heap size, however, it never over- 
took auxiliary twopass as the fastest algorithm, as it 
did in Simulation 4. 

In the last six simulations with constant heap size, 
the work ratio during the formation of the initial 
binomial tree was just under 2.0; we performed n 
insert operations, followed by n - 1 comparison- 
links. Therefore, actual work was 2n - 1 units, and 
the insert allowance was n units, giving a work ratio 
of 2 - l/n. This amount was included in the total 
work ratio for the simulation. 

Aside from Simulations 1-9, we also performed 
two randomized simulations to verify that our data 
were not dependent on the fixed structure of each 
phase. In the first, we kept the heap size constant as 
in Simulations 4-9, but the number of decrease-keys 
per phase was uniformly distributed between 0 and 
2 log n. The second began by performing 64 initial 
inserts which were followed by a random sequence 
of insert, greedy decrease-key, and delete-min opera- 
tions, all having the same probability of occurrence. 

Both results were consistent with those above; work 
ratio values stayed steady or showed a small de- 
crease, and auxiliary twopass again exhibited the 
lowest overall work ratios. In the random sequence 
simulations, however, twopass and auxiliary two- 
pass performed almost identically. 

The data from these simulations allowed us to 
make the following conclusions: First, the O(l)-time 
bounds for insert and decrease-key and the O(log n)- 
time bound for delete-min appear to hold in the am- 
ortized sense. Our data provided no evidence to the 
contrary. In fact, they provide some clue as to the 
actual coefficients implicit in the big-oh terms. Let 
us make the simplifying assumption that the amor- 
tized running time for each insert and decrease-key 
operation in the simulations is c time units and that 
the amortized time per delete-min is d log n units. 
Solving a set of linear equations obtained from Sim- 
ulations 4-9 gives c = 2.9 and d = 1.5 for twopass, 
c = 1.8 and d = 2.2 for multipass, c = 2.0 and d = 1.7 
for auxiliary twopass, and c = 1.9 and d = 2.3 for 
auxiliary multipass. Second, the auxiliary twopass 
algorithm was clearly the best overall. It typically 
exhibited lower work ratios than the other three 
algorithms. Third, adding the auxiliary area to 
multipass caused no great improvements to the algo- 
rithm. In our tests, the multipass algorithm was al- 
most always superior to its auxiliary variant. Finally, 
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the regular twopass algorithm’s performance was 
quite variable. It was often the worst, especially 
when many insert and decrease-key operations were 
processed. As the number of these operations de- 
clined, however, its performance improved to rival 
that of auxiliary twopass. 

4. BATCHED POTENTIAL 
The best known,amortized time bounds of the insert, 
decrease-key, and delete-min operations for the two- 
pass pairing heap are all O(log n), due to [?I]. To 
equal the time bounds for Fibonacci heaps, the insert 
and decrease-key time bounds must be shown to be 
O(1). In an effort to prove the constant time bounds 
for pairing heaps, we will use the auxiliary twopass 
algorithm and introduce batched potential. But before 
that, let us briefly review the concept of potential as 
it applies to amortized algorithmic analysis. 

The potential technique for amortized analysis is 
discussed in [a]. Each configuration of the pairing 
heap is assigned some real value a, known as the 
“potential” of that configuration. For example, one 
could define the potential of a pairing heap configu- 
ration to be the number of trees it contains. For any 
sequence of n operations, the amortized time of the 
ith operation is defined to be the actual running Each insert places a new node into 

SIMULATION 9 
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time of the operation plus the change in potential, 
namely, ti + a(i) - @(i - I), where ti is the actual 
time of the ith operation, @a(i) is the potential after 
the ith operation, and @(i - 1) is the potential before 
the ith operation. If we start with potential 0 and 
end up with positive potential, then the total run- 
ning time is bounded by the total amortized time, 
via the telescoping effect of the potential changes. 

THEOREM 1. 

The auxilia y twopass pairing heap algorithm achieves 
amortized time bounds of O(1) for insert and find-min 
and O(log n) for delete-min and delete if no decrease-key 
operations are allowed. 

PROOF. 

Without loss of generality, we can restrict ourselves 
to insert and delete-min operations exclusively. Let 
us define the rank of a node to be the binary loga- 
rithm of the number of nodes in the subtree rooted 
there (in the binary tree sense). We use a variant of 
the potential function used to analyze twopass in [5]. 
We define the potential + of a heap configuration to 
be the sum of the ranks of all nodes in the main tree 
(that is, not counting the auxiliary area) plus 5 times 
the number of roots in the auxiliary area. 

the auxiliary 

twopass 
2.593 

aux multipass 
2.016 

multipass 
1.976 

aux hvopass 
1.914 

FIGURE 14. 1 insert, (4.0 log n) - 1 greedy decrease keys, 1 delete min per phase 
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area and increases the potential by 5; its amortized 
time is thus 6. There is no large single change in 
potential until a delete-min is performed, when the 
nodes in the auxiliary area are added to the main 
tree. We refer to this as “batched potential” because 
in effect changes in potential are not considered 
until a delete-min is performed. 

Let us consider the case in which the auxiliary 
area is nonempty when a delete-min takes place. We 
let i > 0 denote the number of (root) nodes in the 
auxiliary area. The multipass linking spends i - 1 

units of work building these i nodes into a single 
tree, reducing the potential by 5i - 5. We can show 
that the sum of the ranks of the nodes in the result- 
ing auxiliary tree is bounded by 4i - 4, as follows: If 
i is a power of 2, then the auxiliary tree in the 
binary sense has a complete left subtree of size i - 1 

and no right subtree. Since the number of nodes on 
descending levels of the binary tree doubles as sub- 
tree sizes are roughly halved, the sum of the ranks is 

log i + z 
Osjjdogi 

240g + - 1 . 
(’ 1 

Now let m = log i and simphfy. The sum is bounded 

by 

m + m C 2j -. 1 j2j 
Osjam Osj3n 

= m + m(2”‘+l - 1) - wz2m+2 + (m + 1)2m+’ - 2 

= 2 m+l -2 

=2i-2 

If i is not a power of 2, then we can append I i - 2 
extra dummy root nodes to the auxiliary area so that 
there are 2”Ogi’ root nodes. It is straightforward to 
show by induction that the tree resulting from the 
multipass linking of the auxiliary area without the 
dummy nodes can be “embedded” in the tree result- 
ing from the multipass linking of the auxiliary area 
with the dummy nodes. By the analysis given above 
for the case when i is a power of 2, the sum of the 
ranks is bounded by 2(2i - 2) - 2 + 2&l = 4i - 6 + 
26iz1 5 4i - 4. (The Kronecker delta 6i=1 denotes 1 
if i = 1 and 0 otherwise.) We can get a better bound 
by considering the contribution of the dummy 
nodes, but for our purposes this bound is adequate, 
since we are ignoring cOIlsti3nt factors. 

When the auxiliary tree is linked with the main 
tree (so that all the nodes are in the main tree and 
the auxiliary area is empty), one unit of work is 
expended, and the change in potential is bounded by 
log n + 4i - 4 - 5, where n is the number of nodes 
in the priority queue. Next, the root is deleted via 

one unit of work, reducing the potential by log n, 
and the resulting subtrees are recombined via the 
twopass scheme. If there are k subtrees, a total of 
k - 1 units of work are used to recombine; the re- 
sulting potential increase is shown in [5] to be 
bounded by 2 log n - k + 3. The total amount 
of work spent during the delete-min and the net 
change in potential can thus be bounded by i + k 
and 2 log n - i - k - 1, respectively, which bounds 
the amortized time by 2 log n - 1. 

The other case to consider is when the auxiliary 
area is empty at the time of a delete-min, that is, 
when i = 0. In that case, the reasoning in the last 
paragraph shows that the total amount of work and 
the net change in potential are bounded by k and log 
n - k + 3, respectively. This completes the proof. Cl 

The same approach combined with the analysis in 
[5] proves the following: 

THEOREM 2. 

The auxilia y multipass algorithm achieves amortized 
time bounds of O(2) for insert and find-min and O((log n 
log log n)/log log log n) for delete-min and delete if no 
decrease-key operations are allowed. 

Unfortunately, we cannot as yet extend either al- 
gorithm’s analysis to include decrease-key nodes in 
the auxiliary area. The problem lies in the subtrees 
attached to nodes whose values are decreased. We 
are hopeful that some variant of this batching tech- 
nique will prove that the O(l)-time amortized 
bounds for insert and decrease-key and the O(log n)- 
time amortized bound for delete-min do hold. Note 
that we can get a weaker result by a slight modifica- 
tion of our algorithms. If the auxiliary area is 
batched whenever a decrease-key or delete-min is per- 
formed, then get the desired bounds, except that 
decrease-key and delete-min use O(log n) time for aux- 
iliary twopass and O((log n log log n)/log log log n) 
time for auxiliary multipass. 

5. CONCLUSIONS AND OPEN PROBLEMS 
The experimental data gathered from our simula- 
tions provide empirical evidence that the O(l)-time 
bounds for insert, decrease-key, and find-min and the 
O(log n)-time bounds for delete-min and delete do 
hold in the amortized sense, where n is the size of 
the priority queue at the time of the operation. All 
the pairing heap methods performed well in our 
simulations. The auxiliary twopass variant clearly 
did the best. This result is satisfying because we 
have shown that the auxiliary twopass algorithm 
achieves the above mentioned bounds, assuming 
that no decrease-key operations occur. Or if the auxil- 
iary area is batched and merged with the main tree 
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whenever a decrease-key or delete-min operation is 
done, then insert and find-min have O(l)-time 
bounds and all other operations have O(log n)-time 
bounds in the amortized sense. 

Proving amortized time bounds of O(1) for insert 
and decrease-key and O(log n) for delete-min for some 
pairing heap implementation remains the major 
open problem. [5] has shown that an O(log n)-time 
amortized bound can be proven for all operations of 
the twopass variant. No multipass variant has been 
proven to achieve the same O(log n)-time amortized 
bound for all operations; delete-min remains the pri- 
mary stumbling block. Demonstrating this logarith- 
mic time bound for all multipass operations is an- 
other interesting open problem. 
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