
RESEARCH CONlRlWlIONS

Algorithms and
Data Structures Pairing Heaps:
G. Scott Graham
Editor Experiments and Analysis

JOHN T. STASKO and JEFFREY SCOTT VlllER

ABSTRACT: The pairing heap has recently been
introduced as a new data structure for priority queues.
Pairing heaps are extremely simple to implement and
seem to be very efficient in practice, but they are difficult
to analyze theoretically, and open problems remain. It
has been conjectured that they achieve the same
amortized time bounds as Fibonacci heaps, namely,
O(log n) time for delete and delete-min and O(1) for
all other operations, where n is the size of the priority
queue at the time of the operation. We provide empirical
evidence that supports this conjecture. The most
promising algorithm in our simulations is a new variant
of the twopass method, called auxiliary twopass. We
prove that, assuming no decrease-key operations are
performed, it achieves the same amortized time bounds as
Fibonacci heaps.

1. INTRODUCTION
A priority queue is an abstract data type for main-
taining and manipulating a set of items based on
priority [I]. Prio’rity queues derive great theoretical

Support was provided in part by NSF research grant DCR-84-03613, an NSF
Presidential Young Investigator Award, an IBM Faculty Development Award,
and a Guggenheim Fellowship.

Part of this research was performed at Mathematical Sciences Research Insti-
tute. Berkeley, Calif., and the Institut National de Recherche en Informatique
et en Automatique, Rocquencourt. France.

0 1987 ACM OOOl-0782/87/0300-0234 75a:

and practical importance from their use in solving a
wide range of combinatorial problems, including job
scheduling, minimal spanning tree, shortest path,
and graph traversal.

Priority queues support the operations insert,
find-min, and delete-min; additional operations often
include decrease-key and delete. The insert(t, v) opera-
tion adds item t with key value v to the priority
queue. The find-min operation returns the item
with minimum key value. The delete-min operation
returns the item with minimum key value and
removes it from the priority queue. The decrease-
key(t, d) operation reduces item t’s key value by d.
The delete(t) operation removes item t from the
priority queue. The decrease-key and delete opera-
tions require that a pointer to the location in the
priority queue of item t be supplied explicitly, since
priority queues do not support searching for arbi-
trary items by value. Some priority queues also sup-
port the merge operation, which combines two item-
disjoint priority queues.

We will concentrate on the insert, delete-min, and
decrease-key operations because they are the opera-
tions that primarily distinguish priority queues from
other set manipulation algorithms and because they
are the critical operations as far as the time bounds
are concerned.

Communications of the ACM March 1987 Volume 30 Number 3

Research Contributions

Several implementations of priority queues, such
as implicit heaps [lo], leftist heaps [3, 71, and bino-
mial heaps [2, 91 have been shown to exhibit an
O(log n) worst-case time bound for all operations,
where n is the size of the priority queue at the time
of the operation. Fibonacci heaps [4] provide a dra-
matic improvement on the general logarthmic bound
by achieving amortized time bounds of O(1) for
insert, decrease-key, and find-min and O(log n) for
delete-min and delete. This greatly improves the
best known theoretical bounds for the time required
to solve several combinatorial problems.* Follow-
ing the approach of [8], a sequence of operations
op,, opz,. . ., opk is said to have amortized time bounds
b,, bz, . . . , bk if

Esj ti 5 C bit for all 1 5 j I k,
lsisj

where ti is the actual time used by opi. Intuitively, if
operation opi uses less time than its allotted bi units,
then the leftover time may be held in reserve to be
used by later operations.

Fibonacci heaps achieve their time bounds by
complicated invariants with significant overhead, so
they are not the method of choice in practice. Re-
cently, a self-adjusting data structure called the pair-
ing heap was proposed [5]. Pairing heaps are much
simpler than Fibonacci heaps, both conceptually and
in implementation; and they have less overhead per
operation. The best amortized bound proved so far
for pairing heaps is O(log n) time per operation. It
is conjectured that pairing heaps achieve the same
amortized time bounds as Fibonacci heaps, namely,
O(1) per operation except O(log n) for delete-min and
delete.

To test whether the conjecture is true, we per-
formed several simulations of the pairing heap algo-
rithms. These simulations differed significantly from
the ones independently done in [6], since the latter
ones did not address the conjecture. In our simula-
tions, we tested several different pairing heaps and
used “greedy” heuristics and the appropriate se-

‘For example, a standard implementation of Dijkstra’s algorithm (which finds
the shortest path from a specified vertex x to all other vertices in a graph with
nonnegative edge lengths) uses a priority queue as follows: Let us denote the
number of vertices in the graph by V and the number of edges by E. The key
value of each item y in the priority queue represents the length of the shortest
path from vertex x to vertex y using only the edges in the graph already
processed. Initially, no edges are processed, and the priority queue contains V
items: the key value of item x is 0 and all other items have key value m. The
algorithm successively performs delete-mins until the priority queue is empty.
Each time a delehe-min is performed (say, the vertex y is deleted), the algo-
rithm outputs the shortest path between x and y, and each unprocessed edge
(y, z) incident toy in the graph is processed; this may require that a decrease-
key be performed in order to lower the key value of z in the priority queue.
Thus. there are at most V inserfs, V delete-mins, and E decrense-keys during the
ccwrse of the algorithm. If a Fibonacci heap is used to implemenithe priority
aueue. the resultine runnine time is OfE + V lee V1. which is a sienificant

- I - , .

improvement over O((E + V) log V) using the other heap representations.
Other examples of how Fibonacci heaps can improve worst-case running
times are given in 141.

quences of commands to make the pairing heaps
perform as poorly as we could. The results were
positive in that the pairing heaps always performed
extremely well. This does not prove that the desired
time bounds do hold, but it is reassuring and makes
us optimistic that the conjecture is true.

In this article we study the “twopass” and “multi-
pass” versions of pairing heaps; the names arise from
the method used to do the delete-min in each version
[5]. We also introduce new variants called “auxiliary
twopass” and “auxiliary multipass.” All versions are
described in the next section. In Section 3, we dis-
cuss our simulations and the empirical data. Auxil-
iary twopass performed best in the simulations,
based on our measure of performance. In Section 4,
we provide a partial theoretical analysis of pairing
heaps by introducing the concept of “batched poten-
tial.” We show, for example, that auxiliary twopass
uses O(1) amortized time per insert and find-min and
O(log n) amortized time for the other operations.
Conjectures and open problems follow in Section 5.

2. PAIRING HEAP ALGORITHMS
A comprehensive description of pairing heaps ap-
pears in [5]. A summary is given below. Our studies
involve the twopass algorithm, which was the sub-
ject of most of the analysis in [5], and the multipass
algorithm.

Pairing heaps are represented by heap-ordered
trees and forests. The key value of each node in the
heap is less than or equal to those of its children.
Consequently, the node with minimum value (for
simplicity, we will stop referring to a key value, and
just associate the value directly with the heap node)
is the root of its tree. Groups of siblings, such as tree
roots in a forest, have no intrinsic ordering.

In the general sense, pairing heaps are represented
by multiway trees with no restriction on the number
of children that a node may have. Because this mul-
tiple child representation is difficult to implement
directly, the child-sibling binary tree representation
of a multiway tree is used, as illustrated in Figure 1

(p. 236). In this representation, the left pointer of a
node accesses its first child, and the right pointer of
a node accesses its next sibling. In terms of the bi-
nary tree representation, it then follows that the
value of a node is less than or equal to all the values
of nodes in its left subtree. A third pointer, to the
previous sibling, is also included in each node in
order to facilitate the decrease-key and delete opera-
tions. The number of pointers can be reduced from
three to two, as explained in [5] at the expense of a
constant factor increase in running time. Unless
stated otherwise, the terms “child,” “parent,” and
“subtree” will be used in the multiway tree sense;

March 1987 Volume 30 Number 3 Communications of the ACM 235

Research Contributions

03

FIGURE 1. An Example of a Heap Ordered Tree (a) Multiway tree
heap representation. (b) Corresponding binary tree representation.

their corresponding meaning in the binary tree rep-
resentation should be clear.

The primary action performed in pairing heap op-
erations is a comparison-link, in which the values of
two nodes are compared. The node with larger value
is demoted in the sense that it becomes the first
child of the smaller-valued node. The previous first
child of the smaller node becomes the second child,
the previous second child becomes the third child,
and so on. Ties can be brolken arbitrarily. The binary
tree representation of the comparison-link is given
in Figure 2. This comparison-link action is per-
formed repeatedly during the delete-min operation of
a priority queue. It is the primary action that we
seek to minimize to reduce execution times.

The twopass algorithm that we examined was the
variant that yielded the O(log n)-time amoritized
bounds for inser,t, decrease-key, and delete-min in [5].

Only one tree is maintained. Hence, in the binary

tree representation, the root node always has a null
right pointer. The insert(t, V) operation performs a
comparison-link between t and the tree root; the
node with smaller value becomes the root of the
resulting tree. The decrease-key(t, d) operation begins
by reducing t’s value by d. This means that t may
now have a value smaller than its parent. Conse-
quently, it must be removed from the tree (with its
own subtree intact) and comparison-linked with the
tree root. Again, the node with smaller value be-
comes the root of the resulting tree.

The delete-min operation gives the twopass algo-
rithm its name. First, the tree root node is deleted
and its value returned. This leaves a forest of former
children and their subtrees. Next, two comparison-
linking passes are made over the roots of this forest.
Pass 1 is a left-to-right pass, in which a comparison-
link is performed on successive pairs of root nodes.
Pass z then proceeds from right-to-left, In each step,
the two rightmost trees are replaced by the tree re-
sulting from a comparison-link; the “cumulative”
rightmost tree is continually updated in this manner
until it is the only remaining tree. The root of this
final tree is the minimum of all the nodes in the
tree. Figure 3 illustrates the delete-min procedure in
terms of the binary tree representation,

The delete(t) operation works as follows: If the
node t to be deleted is the root of the main tree, then
a delete-min operation is performed. Otherwise, t is
deleted from the tree. The former subtrees oft are
recombined into a single tree via the twopass linking
procedure. This tree is then comparison-linked to
the root of the main tree.

The multipass algorithm that we studied was also
presented in [5]. Both the insert(t, d) and decrease-
key(t, d) operations function exactly as those in the
twopass algorithm. The delete-min operation, how-
ever, distinguishes multipass from twopass. The first
operation in the multipass delete-min is the deletion
of the root node; its value is returned. This leaves
the heap with some number of trees, say r. Next, we
repeatedly perform pairwise linking passes on the
roots of these trees until the heap is left with only one
tree. Each comparison-link reduces the number of
trees by one, and each pass cuts the number of trees
roughly in half. For r trees, a total of Ilog rl' passes
are made. A simpler heuristic is to comparison-link
the first two tree roots and place the “winning” root
(smaller value) at the tail of the forest list. Alterna-
tively, a circular list could be used to store the sib-
lings. Both ways, a round robin effect emerges, and
we see that for r tree roots, exactly r - 1 link opera-
tions are performed. Following the linking phase,
the heap is again left with a single tree; its root is the

‘All logarithms in this article are base 2.

236 Communications of the ACM March 1987 Volume 30 Number 3

Research Contributions

FIGURE 2. Two Binary Tree Heap Configurations and the Resulting Structures From a Comparison-Link Between Nodes X and Y

(a)

(W

March 1987 Volume 30 Number 3

(4

FIGURE 3. Twopass Delete Min Procedure, Using the Binary Tree
Representation. (a) Beginning heap configuration. (b) Root

(minimum) deletion. (c) Pass one. (d) Pass two.

Communications of the ACM 237

Research Contributions

node with minimum key value. Figure 4 illustrates and auxilia y multipass. Auxiliary twopass works as
the multipass delete-min in terms of the binary tree follows: In addition to the main tree in the heap, we
representation. The delete(t) operation is the same as maintain an auxiliary area that consists of an or-
in twopass except that multipass comparison-linking dered list of other trees. It is convenient in the im-
is used on the children of the deleted node t. plementation to store the auxiliary area as the right

While working with these algorithms, we designed subtree (in the binary tree sense) of the root.
two new variations, that we call auxiliary twopass The insert(t, V) and decrease-key(t, d) operations

(W

(4

FIGURE 4. Multipass Delete Min Procedure, Using the Binary Tree Representation. (a) Beginning heap configuration. (b) Root
(minimum) deletion. (c) Pass one. (d) Pass two. (e) Pass three.

238 Communications of ,the ACM March 1987 Volume 30 Number 3

Research Contributions

function as in the regular twopass algorithm except
for one major difference. Rather than comparison-
linking node t with the tree root, the node is added
to the end of the list of auxiliary trees. (As usual, in
the case of a decrease-key operation, the subtree
rooted at t remains intact.) If the find-min operation
is to be implemented, a separate minimum pointer

A insert

main tree auxiliary forest

(4

must be maintained; each insert or decrease-key node
must be checked against the minimum pointer so
that the pointer can be updated if necessary.

The delete-min operation, which is illustrated in
Figure 5, begins by “batching” the auxiliary area,
that is, by running the multipass pairing procedure
on the auxiliary area. (Note that although the

(4

(e)

FIGURE 5. Auxiliary Twopass Delete Min Procedure, Using the Binary Tree Representation. (a) Initial heap configuration.
(b) Multipass on auxiliary forest. (c) Link auxiliary root to main root. (d) Root (minimum) deletion. (e) Twopass back to one root.

March 1987 Volume 30 Number 3 Communications of the ACM 239

Research Contributions

method described is called auxiliary twopass, the
auxiliary area is linked together using the multipass
method.) When this linking is complete, the auxil-
iary area consists of a single tree. If the auxiliary
area originally consists of 2k singleton trees, for some
k 2 0, the resulti.ng tree is a binomial tree [2, 91. The
next action is a comparison-link between the main
tree root and the new auxiliary root. After this
comparison-link, the heap again contains only one
root node, that of minimurn key value. From this
point on, the delete-min opleration proceeds exactly
as in the twopass algorithm. The root node is re-
moved, and we link the remaining forest of trees via
the twopass proc.edure.

The rationale :for maintaining the auxiliary area is
that it prevents many comparisons between single
nodes from an insert and large trees already in the
forest. We shall prove in Section 4 that if there are
no decrease-key operations, auxiliary twopass
achieves the amortized time bounds of O(1) for insert
and O(log n) for <delete-min.

The delete(f) operation works as in twopass. If
node t is the current minimum, then a delete-min is
performed. Otherwise, the children oft are recom-
bined into a single tree, which is then comparison-
linked to the ma:in tree.

Auxiliary multipass is identical except that the
multipass algorithm is used on the regular tree.
The auxiliary area is still batched using multipass.
Section 4 derives slightly weaker amortized time
bounds than for auxiliary twopass, under the as-
sumption that no decrease-key operations are per-
formed: O(1) per insert and O((log n log log n)/log log
log n) per delete-min.

Lazy variants of these algorithms are also possible,
in which the heap consists of a forest of trees rather
than a single tree. One possible implementation is
described in [5]. However, extra comparisons other
than in comparison-link actions are required to im-
plement find-min, since the heap no longer has a
single root. As a result, the find-min operation in the
lazy variants often does some restructuring of the
tree. The find-min operation for the auxiliary var-
iants can be done in constant time, since a pointer to
the current niinimum node can easily be maintained
during inserts and decrease-keys; the extra compari-
son to do this is balanced b,y the fact that inserts and
decrease-keys do not perform any comparison-links.
To make our simulation results of insert, decrease-
key, and delete-min fair, we have excluded lazy
variants from our study. Their performances are
similar.

Although the twopass algorithm has provided the
fastest general amortized time bounds so far, our
intuition suggested that the multipass variants

should run faster. Although all make roughly the
same number of comparison-link actions on a simi-
lar heap configuration, the multipass variants tend
to build a more “structured” forest configuration
over time. All the uppermost nodes that are directly
involved in link actions will be formed into a binomia
like tree, which helps limit the number of links
during subsequent delete-min operations. The sim-
ulation results described in the next section are
somewhat surprising; auxiliary twopass consistently
outperforms the multipass versions.

3. SIMULATIONS
Our test simulations of the pairing heap algorithms
consisted of structured sets of insert, decrease-key,
and delete-min operations. No key values were ever
assigned to nodes. Instead, we used a “greedy” heu-
ristic to determine the winners of comparisons, in
hopes of causing a worst-case scenario. Every time a
comparison-link operation was performed, the node
with more children won the comparison; that is, it
was judged to have the smaller key value. This node
gained one child in the link operation. Our greedy
approach allowed us to keep the nodes with many
children at the uppermost levels in the heap. Since
the number of children at the root level determines
how much work a delete-min performs, this greedy
approach forced the priority queue to do signifi-
cantly more work than would have been the case if
the key values were assigned randomly. Two meth-
ods were used for determining which nodes to use
for decrease-key operations: In a random decrease-key,
we chose a nonroot node at random. In a greedy
decrease-key, we used the greedy heuristic and chose
the node with the most children, subject to the con-
straint that the node could not be the root or a child
of the root.

The binary tree representation of a multiway tree
was used to implement the pairing heaps. Heap
nodes were implemented as record structures with
left (first child) and right (next sibling) pointer fields.

In this section, we report on nine simulations of
twopass and multipass pairing heap algorithms. Each
simulation consisted of several phases. A phase con-
sisted of some set of inserts and decrease-keys fol-
lowed by a delete-min. In the descriptions that fol-
low, n refers to the size of the priority queue at the
beginning of the phase. The phases of the nine simu-
lations consisted of, respectively:

(1) log n inserts, followed by one delete-min.
(2) 0.5 log n (insert, random decrease-key) pairs, fol-

lowed by one delete-min.
(3) 0.5 log n (insert, greedy decrease-key) pairs, fol-

lowed by one delete-min.

l-

240 Communications of the ACM March 1987 Volume 30 Number 3

Research Contributions

(4) one insert, then x(log n) - 1 greedy decrease-keys,
followed by one delete-min, for x = 0.25, with an
initial binomial tree of size 2”.

(5) same for x = 1.0.
(6) same for x = 4.0.
(7) one insert then x(log n) - 1 greedy decrease-keys,

followed by one delete-min, for x = 0.22, with an
initial binomial tree of size z’~.

(8) same for x = 1.0.
(9) same for x = 4.0.

Our measure of performance compared the actual
work done by each algorithm with an allowance for
the operations processed. The actuaI work done was
considered to be one unit for an insert, one unit for
a decrease-key, and one unit for the delete plus one
unit for each comparison-link that occurred during
a delete-min. Allowances for the operations corre-
sponded to the amortized time bounds sought for
them: the insert and decrease-key allowances were
each one unit, and the delete-min allowance was
log n, where n was the heap size at the time of the
delete-min.

Phases were grouped into a smaller number of
increments to facilitate graphical display of the re-
sults; in the first three simulations the size of the
heap grew by a fixed amount in each increment, and
in Simulations 4-9 (Figures 9-14.) increments con-
sisted of a fixed number of phases. For each incre-
ment in a simulation, we calculated its work ratio.
The work ratio is defined as actual work performed
divided by the operations’ allowances. By seeing
how the work ratio changed over time across these
increments, we were able to judge the performances
of the algorithms. If the work ratio increased over
time, the O(l)-time insert and decrease-key allow-
ances and the O(log n)-time delete-min allowance
would not be bounding the actual work growth. If
instead the work ratio stayed constant or decreased,
then the experiments would provide encouragement
that the sought for amortized time bounds are
possible.

In our simulations, we chose the particular order
and frequency of operations so that if any of the
conjectured amortized time bounds of O(1) for insert
and decrease-key and O(log n) for delete-min did not
hold, we would detect a discrepancy in the results.
The simulations of pairing heaps in [6], on the other
hand, were limited for several reasons: First, no
decrease-key operations were performed. We will see
in Section 4 that if no decrease-keys are done, we can
prove the conjectured bounds analytically for auxil-
iary twopass. More importantly, however, the simu-
lations performed the same number of inserts as
delete-mins. It is already known from [5] that each

operation can be done in O(log n) amortized time.
Therefore, it was impossible in Jones’s [6] simula-
tions to distinguish between O(1) time and O(log n)

time per insert. Our simulations, on the other hand,
tested the time bound conjectured more effectively
by performing O(log n) insert and decrease-key opera-
tions for each delete-min.

Simulation 1 allowed us to examine how the
heaps performed when no decrease-key operations
were used. Work ratios were calculated over incre-
ments of 12,000 nodes of heap growth, with the heap
size eventually reaching 1,200,OOO nodes. Four ini-
tial inserts were used to “start-up” the simulation.
The results are graphed in Figure 6 (p. 242). Only
multipass showed a steady increase in work ratio;
however, there was a marked decrease near the sim-
ulation’s end. Both twopass and auxiliary twopass
remained mostly steady, and auxiliary multipass ex-
hibited a clear decrease. Auxiliary twopass was the
fastest algorithm, a fact that would continue through
most of the following simulations. It is interesting to
note that the auxiliary algorithms were not subject
to wide fluctuations in work ratio as were the regu-
lar algorithms.

Simulation 2 utilized random decrease-key opera-
tions primarily to see how random disruptions in the
heap structure would affect overall algorithm perfor-
mances. Again work ratios were calculated in 12,000
node increments, and the total heap size grew to
~,ZOO,OOO nodes. Sixteen inserts were used to initial-
ize the simulation, This simulation’s results, which
are shown in Figure 7 (p. 242), were quite similar to
those of Simulation 1. No steady work ratio in-
creases were evident, nor was there an appreciable
gain in work ratio values from Simulation 1. Both
multipass algorithms exhibited work ratio decreases,
with regular multipass remaining slightly superior.
Auxiliary twopass was again the fastest algorithm,
and twopass was the slowest. Curiously, the total
work ratio for auxiliary twopass over the entire
simulation was slightly less than its total in Simu-
lation 1. In essence, the random decrease-keys helped
the algorithm run faster.

Simulation 3 utilized greedy decrease-key opera-
tions in which the node with the most children was
chosen for the operation. Nodes such as the root and
children of the root, whose choice would have no
effect on the heap structure, were excluded from
being candidates. This simulation’s decrease-key op-
eration was intended to move nodes with many chil-
dren from the central heap up to the top root level,
thereby forcing the delete-min operations to do even
more work. Because of the extra storage required,
work ratios were calculated in increments of 6,000
nodes. The final heap size was 546,000 nodes. A

March 1987 Volume 30 Number 3 Communications of the ACM 241

Research Contributions

SIMULATION 1

2.3

2.2

2.1

work
ratio

2.0

1.9

1 .a

twopass
2.254

multipass
2.122

2.27

2.17

2.12

work 2.07
ratio

2.02

1.97

1.92

1 .a7

1.82

30 40 50 60 70 80 90 100
heap size (in 12,000 nodes)

FIGURE 6. log n inserts, 1 delete min per phase

SIMULATION 2

-+---im-u- w-- ~~~4yP=
8

0 10 20 30 40 50 60 70 80 90 100
heap size (in 12,000 nodes)

FIGURE 7. 0.5 log 12 (insert, random decrease key) pairs, 1 delete min per phase

242 Communications of thle ACM March 1987 Volume 30 Number 3

start-up set of sixteen insert operations was used.
After showing small jumps in the work ratios, all

four algorithms maintained steady levels at the sim-
ulation’s end. The results are graphed in Figure 8.
Clearly, the greedy decrease-key operations did have
an effect, as work ratio values were higher than
those in the first two simulations. Auxiliary twopass
was again the fastest algorithm, twopass was the
slowest, and the multipass algorithms were quite
similar. The general multipass algorithm had a defi-
nite superiority at smaller heap sizes, however.

Simulations 4-9 primarily examined how the
decrease-key operation affected algorithm perfor-
mances. An initial binomial tree of some size was
built. This provided all four algorithms with the
same starting point, so no initial bias was intro-
duced. Each phase contained only one insert opera-
tion; hence, a constant heap size was maintained,
that of the initial binomial tree. By varying the num-
ber of decrease-key operations between the insert and
the delete-min in a phase, we could see exactly how
this number affected the work ratio.

100 increments. The respective results are shown in
Figures 9-11 [pp. 244-245). All three tests showed
very steady work ratio rates, which is encouraging.
The actual values were quite different, however.
The twopass variants had lower work ratios when
there were a smaller number of decrease-key opera-
tions per phase, whereas the multipass variants ex-
hibited an opposite behavior; they performed better
as the number of decrease-keys per phase increased.
Auxiliary twopass was overall the best algorithm,
but regular twopass exhibited a curious variation on
its usual slowest behavior. In the two simulations
with more decrease-key operations, twopass was
clearly slowest. In fact, in Simulation 6 with
48 decrease-key operations per phase, twopass was
blatantly behind the other three algorithms perfor-
mances. But in Simulation 4 with the fewest (three)
decrease-keys per phase, twopass was the fastest algo-
rithm! It appears that twopass performs best when
there are relatively few insert and decrease-key
operations compared to the number of delete-min
operations.

In Simulations 4-6, we used an initial binomial In Simulations 7-9, we used a much larger initial
tree size of n = 2” = 4096 nodes. Simulations 4, 5, binomial tree size of n = 2” = 262,144 nodes. Simu-
and 6 used 0.25 log n = 3, log n = 12, and 4 log n = lations 7-9 used 0.22 log n = 4, log n = 18, and 4 log
48 decrease-key operations per phase, respectively. n = 72 decrease-key operations per phase, respec-
We grouped 100 phases into an increment for work tively. We grouped 1000 phases into an increment
ratio calculations, then we ran the simulation for for work ratio calculations, then we ran the simula-

Research Contributions

SIMULATION 3

work
ratio

2.55

2.50

2.45

2.40

2.35

2.30

2.25

2.15

I

30 40 50 60 70 80 90

heap size (in 6,000 nodes)

FIGURE 8. 0.5 log n (insert, greedy decrease key) pairs, 1 delete min per phase

March 1987 Volume 30 Number 3 Communications of the ACM 243

Research Contributions

ratio

1.8

1.6

1.5

work
ratio

SIMULATION 4

.:, : j, :,
.5 I i .. :

.Y.. _ ..,..... i .j -; ‘.., ..’ ..,.,,.. ...: .,/.. , ..,...,. ~.. .,,.. ../,..Y.;: .:: “’ I,. ..<. . . i .,,. i ,.., ? ;.+; t
_I aux multipass

,~,.... ... ‘. 2.173

twopass
1.776

2.10

2.05

1.85

1.80

heap size = 4096
,rrrr,rrlrl,r,,,,,l,.,,,,,,,,,,,,,,,,,,,,,,~,,,,,.,,,,,~,,,,~~,.,,,,,,~~~~.~~,~.~~~~~.,,,,.,,,,

0 10 20 30 40 50 60 70 80 90 100
phases (in hundreds)

FIGUHE 9. 1 insert, (0.25 log n) - 1 greedy decrease keys, 1 delete min par phase

SIMULATION 5

2.032

IO 20 30 40 50 60
phases (in hundreds)

70 80 90 100

FIGURE 10. 1 insert, (log n) - 1 greedy decrease keys, 1 delete min per phase

244 Communications of the ACM March 1987 Volume 30 Number 3

Research Contributions

SIMULATION 6

2.6

2.5

2.4

2.3

2.0

1.9

1.8

hvopass
J 2.568

aux multipass
1.986

= ,,,, i .,.....,,........ ,.’ ,..I,... i
2 ,./ l< aux twopass

-.--ye...-

-k- -=

--~~“+&“.“- 1.9 17

multipass

heap size = 4096 i ,908

m,,,,,~~~~~~~~~~,~~,,,,,,-,,,,,,,ll~ll,l,,,llrrrIllrlrrlll,,,,,,,,,,,,,1,,1111IIIIII~-

0 10 20 30 40 50 60 70 a0 90 100
phases (in hundreds)

FIGURE 11. 1 insert, (4.0 log n) - 1 greedy decrease keys, 1 delete min per phase

tion for 100 increments. The results are shown in
Figures 12-14 (pp. 246-247). The relative perfor-
mances of the four algorithms were quite similar to
those of Simulations 4-6. The curious behavior of
the twopass algorithm was again evident, as it per-
formed poorly with many decrease-key operations per
phase, but improved dramatically with few. With
the larger initial heap size, however, it never over-
took auxiliary twopass as the fastest algorithm, as it
did in Simulation 4.

In the last six simulations with constant heap size,
the work ratio during the formation of the initial
binomial tree was just under 2.0; we performed n
insert operations, followed by n - 1 comparison-
links. Therefore, actual work was 2n - 1 units, and
the insert allowance was n units, giving a work ratio
of 2 - l/n. This amount was included in the total
work ratio for the simulation.

Aside from Simulations 1-9, we also performed
two randomized simulations to verify that our data
were not dependent on the fixed structure of each
phase. In the first, we kept the heap size constant as
in Simulations 4-9, but the number of decrease-keys
per phase was uniformly distributed between 0 and
2 log n. The second began by performing 64 initial
inserts which were followed by a random sequence
of insert, greedy decrease-key, and delete-min opera-
tions, all having the same probability of occurrence.

Both results were consistent with those above; work
ratio values stayed steady or showed a small de-
crease, and auxiliary twopass again exhibited the
lowest overall work ratios. In the random sequence
simulations, however, twopass and auxiliary two-
pass performed almost identically.

The data from these simulations allowed us to
make the following conclusions: First, the O(l)-time
bounds for insert and decrease-key and the O(log n)-
time bound for delete-min appear to hold in the am-
ortized sense. Our data provided no evidence to the
contrary. In fact, they provide some clue as to the
actual coefficients implicit in the big-oh terms. Let
us make the simplifying assumption that the amor-
tized running time for each insert and decrease-key
operation in the simulations is c time units and that
the amortized time per delete-min is d log n units.
Solving a set of linear equations obtained from Sim-
ulations 4-9 gives c = 2.9 and d = 1.5 for twopass,
c = 1.8 and d = 2.2 for multipass, c = 2.0 and d = 1.7
for auxiliary twopass, and c = 1.9 and d = 2.3 for
auxiliary multipass. Second, the auxiliary twopass
algorithm was clearly the best overall. It typically
exhibited lower work ratios than the other three
algorithms. Third, adding the auxiliary area to
multipass caused no great improvements to the algo-
rithm. In our tests, the multipass algorithm was al-
most always superior to its auxiliary variant. Finally,

March 1987 Volume 30 Number 3 Communications of the ACM 24s

Research Contributions

SIMULATION 7

..... aux multipass

2.3 -
.I,__.wi 2.272

Y”

;s

multipass
2.147

ratio ,,9

1.6

hvopass
- 1.759

1.702

40 50 60
phases (in thousands)

heap size = 262,144

70 80 90 100

FIGURE 12. 1 insert, (0.22 log n) - 1 greedy decrease keys, 1 delete min per phase

SIMULATION 8

2.16 ,
twopass
2.114

e--+b-+-..,-rle, multipass
2.004

---------- __c_* --- I___L_^ aux 1.795 twopass

1.66 Tl#i..i III,,,, rrlrrrrlrrl,,,,,,,,,, Mrlrri.,, heap size = 262,144
-,,,,,,I-rn-l

0 10 20 30 40 50 60 70 80 90 100
phases (in thousands)

FIGURE 13. 1 insert, (log n) - 1 greedy decrease keys, 1 delete min per phase

246 Communications of the ACM March 1987 Volume 30 Number 3

Research Contributions

the regular twopass algorithm’s performance was
quite variable. It was often the worst, especially
when many insert and decrease-key operations were
processed. As the number of these operations de-
clined, however, its performance improved to rival
that of auxiliary twopass.

4. BATCHED POTENTIAL
The best known,amortized time bounds of the insert,
decrease-key, and delete-min operations for the two-
pass pairing heap are all O(log n), due to [?I]. To
equal the time bounds for Fibonacci heaps, the insert
and decrease-key time bounds must be shown to be
O(1). In an effort to prove the constant time bounds
for pairing heaps, we will use the auxiliary twopass
algorithm and introduce batched potential. But before
that, let us briefly review the concept of potential as
it applies to amortized algorithmic analysis.

The potential technique for amortized analysis is
discussed in [a]. Each configuration of the pairing
heap is assigned some real value a, known as the
“potential” of that configuration. For example, one
could define the potential of a pairing heap configu-
ration to be the number of trees it contains. For any
sequence of n operations, the amortized time of the
ith operation is defined to be the actual running Each insert places a new node into

SIMULATION 9

2.6

2.5

2.4

-dh
heap size = 262,144

,,.,.,,,,,,,,,,,,,I,....l~rlllrII.~~II.IIII,,,-,,.,,,~

20 30 40 50 60 70 80 90 100
phases (in thousands)

time of the operation plus the change in potential,
namely, ti + a(i) - @(i - I), where ti is the actual
time of the ith operation, @a(i) is the potential after
the ith operation, and @(i - 1) is the potential before
the ith operation. If we start with potential 0 and
end up with positive potential, then the total run-
ning time is bounded by the total amortized time,
via the telescoping effect of the potential changes.

THEOREM 1.

The auxilia y twopass pairing heap algorithm achieves
amortized time bounds of O(1) for insert and find-min
and O(log n) for delete-min and delete if no decrease-key
operations are allowed.

PROOF.

Without loss of generality, we can restrict ourselves
to insert and delete-min operations exclusively. Let
us define the rank of a node to be the binary loga-
rithm of the number of nodes in the subtree rooted
there (in the binary tree sense). We use a variant of
the potential function used to analyze twopass in [5].
We define the potential + of a heap configuration to
be the sum of the ranks of all nodes in the main tree
(that is, not counting the auxiliary area) plus 5 times
the number of roots in the auxiliary area.

the auxiliary

twopass
2.593

aux multipass
2.016

multipass
1.976

aux hvopass
1.914

FIGURE 14. 1 insert, (4.0 log n) - 1 greedy decrease keys, 1 delete min per phase

March 1987 Volume 30 Number 3 Communications of the ACM 247

area and increases the potential by 5; its amortized
time is thus 6. There is no large single change in
potential until a delete-min is performed, when the
nodes in the auxiliary area are added to the main
tree. We refer to this as “batched potential” because
in effect changes in potential are not considered
until a delete-min is performed.

Let us consider the case in which the auxiliary
area is nonempty when a delete-min takes place. We
let i > 0 denote the number of (root) nodes in the
auxiliary area. The multipass linking spends i - 1

units of work building these i nodes into a single
tree, reducing the potential by 5i - 5. We can show
that the sum of the ranks of the nodes in the result-
ing auxiliary tree is bounded by 4i - 4, as follows: If
i is a power of 2, then the auxiliary tree in the
binary sense has a complete left subtree of size i - 1

and no right subtree. Since the number of nodes on
descending levels of the binary tree doubles as sub-
tree sizes are roughly halved, the sum of the ranks is

log i + z
Osjjdogi

240g + - 1 .
(’ 1

Now let m = log i and simphfy. The sum is bounded

by

m + m C 2j -. 1 j2j
Osjam Osj3n

= m + m(2”‘+l - 1) - wz2m+2 + (m + 1)2m+’ - 2

= 2 m+l -2

=2i-2

If i is not a power of 2, then we can append I i - 2
extra dummy root nodes to the auxiliary area so that
there are 2”Ogi’ root nodes. It is straightforward to
show by induction that the tree resulting from the
multipass linking of the auxiliary area without the
dummy nodes can be “embedded” in the tree result-
ing from the multipass linking of the auxiliary area
with the dummy nodes. By the analysis given above
for the case when i is a power of 2, the sum of the
ranks is bounded by 2(2i - 2) - 2 + 2&l = 4i - 6 +
26iz1 5 4i - 4. (The Kronecker delta 6i=1 denotes 1
if i = 1 and 0 otherwise.) We can get a better bound
by considering the contribution of the dummy
nodes, but for our purposes this bound is adequate,
since we are ignoring cOIlsti3nt factors.

When the auxiliary tree is linked with the main
tree (so that all the nodes are in the main tree and
the auxiliary area is empty), one unit of work is
expended, and the change in potential is bounded by
log n + 4i - 4 - 5, where n is the number of nodes
in the priority queue. Next, the root is deleted via

one unit of work, reducing the potential by log n,
and the resulting subtrees are recombined via the
twopass scheme. If there are k subtrees, a total of
k - 1 units of work are used to recombine; the re-
sulting potential increase is shown in [5] to be
bounded by 2 log n - k + 3. The total amount
of work spent during the delete-min and the net
change in potential can thus be bounded by i + k
and 2 log n - i - k - 1, respectively, which bounds
the amortized time by 2 log n - 1.

The other case to consider is when the auxiliary
area is empty at the time of a delete-min, that is,
when i = 0. In that case, the reasoning in the last
paragraph shows that the total amount of work and
the net change in potential are bounded by k and log
n - k + 3, respectively. This completes the proof. Cl

The same approach combined with the analysis in
[5] proves the following:

THEOREM 2.

The auxilia y multipass algorithm achieves amortized
time bounds of O(2) for insert and find-min and O((log n
log log n)/log log log n) for delete-min and delete if no
decrease-key operations are allowed.

Unfortunately, we cannot as yet extend either al-
gorithm’s analysis to include decrease-key nodes in
the auxiliary area. The problem lies in the subtrees
attached to nodes whose values are decreased. We
are hopeful that some variant of this batching tech-
nique will prove that the O(l)-time amortized
bounds for insert and decrease-key and the O(log n)-
time amortized bound for delete-min do hold. Note
that we can get a weaker result by a slight modifica-
tion of our algorithms. If the auxiliary area is
batched whenever a decrease-key or delete-min is per-
formed, then get the desired bounds, except that
decrease-key and delete-min use O(log n) time for aux-
iliary twopass and O((log n log log n)/log log log n)
time for auxiliary multipass.

5. CONCLUSIONS AND OPEN PROBLEMS
The experimental data gathered from our simula-
tions provide empirical evidence that the O(l)-time
bounds for insert, decrease-key, and find-min and the
O(log n)-time bounds for delete-min and delete do
hold in the amortized sense, where n is the size of
the priority queue at the time of the operation. All
the pairing heap methods performed well in our
simulations. The auxiliary twopass variant clearly
did the best. This result is satisfying because we
have shown that the auxiliary twopass algorithm
achieves the above mentioned bounds, assuming
that no decrease-key operations occur. Or if the auxil-
iary area is batched and merged with the main tree

248 Communications of the ACM March 1987 Volume 30 Number 3

Research Contributions

whenever a decrease-key or delete-min operation is
done, then insert and find-min have O(l)-time
bounds and all other operations have O(log n)-time
bounds in the amortized sense.

Proving amortized time bounds of O(1) for insert
and decrease-key and O(log n) for delete-min for some
pairing heap implementation remains the major
open problem. [5] has shown that an O(log n)-time
amortized bound can be proven for all operations of
the twopass variant. No multipass variant has been
proven to achieve the same O(log n)-time amortized
bound for all operations; delete-min remains the pri-
mary stumbling block. Demonstrating this logarith-
mic time bound for all multipass operations is an-
other interesting open problem.

6.

7.

8.

9.

10.

Jones, D.W. An empirical comparison of priority queue and event set
implementations. Commun. ACM 29, 4 (Apr. 1986), 300-311.
Knuth, D.E. The Art of Computer Programming, Vol. 3: Sorting and
Searching. Addison-Wesley, Reading, Mass., 1973.
Tarjan. R.E. Amortized computational complexity. SIAM J Algorithm
Disc. Mefh. 6 (Apr. 1985). 306-316.
Vuillemin, J. A data structure for manipulating priority queues.
Commun. ACM 21,4 (Apr. 19781, 309-314.
Williams, J.W.J. Algorithm 232: Heapsort. Commun. ACM 7, 6 (June
1964),347-348.

CR Categories and Subject Descriptors: D.l [Programming Tech-
niques]; E.l [Data Structures]--trees; F.2.2 [Analysis of Algorithms and
Problem Complexity]: Nonnumerical Algorithms and Problems-sorting
and searching; G.2.2 [Discrete Mathematics]: Graph Theory--trees

General Terms: Algorithms, Design, Experimentation, Performance,
Theory

Additional Key Words and Phrases: Amortized analysis, heap, pair-
ing heap, priority queue

REFERENCES Received 4/86; revised 11/86; accepted 1 l/86

1.

2.

3.

4.

5.

Aho, A.V.. Hopcroft. J.E., and Ullman, J.D. The Design and Analysis of
Compufer Algorithms. Addison-Wesley, Reading, M&s., 1974. -
Brown. M.R. Implementation and analysis of binomial queue algo-
rithms. SIAM J. Comput. 7 (Aug. 1978), 298-319.
Crane, C.A. Linear lists and priority queues as balanced binary
trees. Tech. Rep. STAN-CS-72259, Dept. of Computer Science,
Stanford University, Feb. 1972.
Fredman, M.L., and Tarjan. R.E. Fibonacci heaps and their uses in
improved network optimization algorithms. In Proceedings of the 25th
Annual Symposium on Foundations of Computer Science, (West Palm
Beach, Fla.. Oct. 1984), 338-344.
Fredman. M.L., Sedgewick, R., Sleator, D.D., and Tarjan, R.E. The
pairing heap: A new form of self-adjusting heap. Algorithmica I (Mar.
1986), 111429.

Author’s Present Address: John T. Stasko and Jeffrey Scott Vitter.
Department of Computer Science, Box 1910, Brown University,
Providence, R.I. 02912.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish. requires a fee and/or specific permission.

Q: I-800-342-6626
tit’s Fast, Convenient,

ACM’s “Order Express u
Servicefor ACM Publications.

Your credit card and our toll free number provide
quick fulfillment of your orders.

l Journals
l Conference Proceedings
l SIG Newsletters
l SIGGRAPH VIDEO REVIEW
l “Computers in your Life” (An Introductory

Film from ACM)

For Inquiries and other Customer Service
call: (301) 528-4261

acm ASSOCIATION FOR
COMPUTING MACHINERY

March 1987 Volume 30 Number 3 Communications of the ACM 249

