Working Paper Series

HEARIN CENTER
FOR
ENTERPRISE SCIENCE

HCES-06-03

The Satellite List and New Data Structures for Symmetric
Traveling Salesman Problems
By
Colin Osterman
César Rego

The University of Mississippi

Director, Keith Womer
School of Business Administration
The University of Mississippi
Post Office Box 1848

University,MS 38677-1848
(662) 915-5820
http:/ /hces.bus.olemiss.edu

The Satellite List and New Data Structures for
Symmetric Traveling Salesman Problemst

Colin Osterman ¢ and César Rego #

a Hearin Center for Enterprise Science, School of Business Administration, University of
Mississippi, University, MS 38677, USA. {costerman, crego} @bus.olemiss.edu

Latest Revision: March, 2003.

Abstract — The problem of data representation is fundamental to the efficiency of
search algorithms for the traveling salesman problem (TSP). The computational effort
required to perform such tour operations as traversal and subpath reversal
considerably influence algorithm design and performance. We propose new data
structures—the satellite list and k-level satellite tree—for representing a TSP tour with a
discussion of properties in the framework of general tour operations. Theory suggests
that the satellite list data structure is superior in representation to its widely used
counterpart, the doubly-linked list, as well as useful in improving and extending the
specialized 2-level tree structure for symmetric graph-based optimization problems.
The k-level satellite tree representation is shown to be far more efficient than its
predecessors.

Keywords: Metaheuristics, data structures, combinatorial optimization, graph-based
problems, traveling salesman problems.

T This research has been supported in part by the Office of Naval Research (ONR) grant NO0OO-14-01-1-0917.

mailto:costerman, crego}@bus.olemiss.edu

1. Introduction

Possibly the most basic and important building block of a lean search algorithm for the
traveling salesman problem (TSP) and possibly the least studied is the primary data
structure. To find good solutions for the largest TSP instances, a cleverly designed
computer code must be employed, and the quality of the code depends greatly on the
solid foundation an appropriate data structure can provide. The problem at hand is no
longer the TSP but instead the computerized TSP, which brings with it the additional
consideration that the solution and the procedure be represented effectively in memory.
The use of an inappropriate data structure can greatly increase the time complexity of
the search algorithm even if the theoretical complexity appears acceptable. Therefore
this paper is specifically concerned with the computer modeling of paths and cycles and
the efficiency to be gained by appropriate tour representation.

The TSP is solved by finding the least cost Hamiltonian cycle visiting 7z cities or nodes
in a graph. In graph theory, the TSP is defined as a graph G =(V,A) with n vertices

(or nodes) V' ={v,,---,v,} and a set of edges (or arcs) 4={(v;,v,)|v,,v, €V,i# j} with
a non-negative cost (or distance) matrix C =(c;) associated with 4. The problem’s

resolution consists of determining the minimum cost Hamiltonian cycle on G. In this
paper, we consider the symmetric version of the problem (cij =c ﬂ.), which satisfies the

triangular inequality (cij +cy > ¢,). The term node has slightly different uses in the

realm of graph theory than it does in the realm of computer science; since the scope of
this paper spans both, the term is used alone only when referring to a city or node in
the graph. When referring to data constructs, the term is accompanied by specific
names to avoid confusion.

An ideal primary data structure for the TSP should be versitile enough to handle a wide
range of structures (neighborhood reference structures and infeasible tours other than
Hamiltonian cycles). More importantly, an ideal data structure should allow the
procedure to perform all needed operations on the tour very quickly. If one structure
cannot achieve these goals simultaneously, then it becomes important to study the
tradeoffs among the strengths and weaknesses of different data structures, which will
vary with different algorithms. To this end, Fredman, Johnson, McGeoch, and
Ostheimer [3] provide a good comparison of the array (linked list) representation to the
splay tree, 2-level tree, and segment tree representations. We, however, show that there
exists a structure that is exceptionally well suited for the symmetric TSP.

This paper is organized to familiarize the reader with issues surrounding TSP data
structures and to present our newly discovered structures. Section 2 recognizes prior
research and significant contributions in TSP data structures. It also includes brief
descriptions of the generic linked list structure and the specialized 2-level tree
structure, as well as an overview of the theoretical issues related to the use of these
structures in TSP algorithms. Sections 3 and 4 describe two new data structure
designs, the satellite list and the k-level satellite tree, the latter of which incorporates
the former. The new structures are counterparts of the linked list and the 2-level tree
and may be thought of as the result of improvements on these structures that resolve
the issues presented in Section 2. Section 5 provides a summary and conclusions.
Supplementary information on the data structures is given in the appendix.

2. Prior Work In TSP Data Structures

Prior work on data structures for the traveling salesman problem has been limited but
productive. A generic structure initially used was the doubly-linked list, also known as
the array representation. This is the structure by which more recent structures are
benchmarked.

Sleator and Tarjan [11] introduced the splay tree; its representation of a TSP tour is a
natural idea and has been independently proposed by several groups of researchers.
The splay tree represents a tour as a binary search tree with a city at each vertex. A
special reversal bit indicates whether the subtree rooted at a vertex should be traversed
in order or in reverse. The splay tree, chosen for its ability to compute a subpath
reversal, performs the operation in O(logn) time, albeit at a high overhead cost

associated with accessing adjacent nodes. This reflects the lowest complexity for the
subpath reversal operation of any data structure discovered to date. While academically
interesting, the splay tree representation has not thus far proved competitive in practice
due to its high traversal-related overhead costs. Fredman et al. [3] report that the
constant factor is too high to make the structure competitive for n as high as 106,
yielding asymptotic arguments irrelevant. Therefore, we refer the reader to this
reference for a more thorough description of this structure and its properties.

The 2-level tree, proposed by Chrobak, Szymacha and Krawczyk [2], divides the tour

into approximately \/; segments, each containing as many nodes and grouped under a
parent node. This structure improves significantly on the linked list in path traversal
and, consequently, speeds up the subpath reversal operation as well. Its effectiveness
has been demonstrated by independent implementations due to Fredman et al. [3],
Gamboa, Rego, and Glover [4], and numerous participants of the 2001 DIMACS TSP
Challenge (Johnson, McGeogh, Glover and Rego [8]). The theory behind the 2-level tree
contributes much to our final structure and is examined in detail in Section 2.3.

Fredman et al. [3] present the so-called segment tree representation, crediting the idea
to private correspondence from Applegate and Cook. We found that the segment tree
was actually an algorithm-specific scheme for doing more efficient look-aheads in the
search process rather than a true basic structure. The underlying structure in this
case was admitted to be the array representation, although it may be possible to use
the scheme in combination with other structures.

2.1 The Generic Linked List structure

The most natural generic list structure for representing a TSP tour, the circularly
doubly-linked list, requires little discussion. Each city is stored as a client of a list node
structure, which contains references to the nodes of the cities that precede and follow it
in the tour in addition to the client. Often, rather than store a value for the client in the
structure, the cities are associated with the node structures’ indices, so that each list
node only contains references to adjacent nodes. The list is considered circularly linked
because the tour is a cycle rather than a path, although a doubly-linked list can
certainly be used to represent acyclic reference structures.

2.2 Traversal and Subpath Reversal

The set of needed operations for a TSP algorithm generally includes two important
classes: traversal and subpath reversal.

Traversal operations are those that require a procedure to follow a pointer or sequence
of pointers in order to alter or obtain information about one or more related nodes in
the same path. These operations may include finding the next/previous node relative to
the current node, determining a path between two nodes, attaching labels to all nodes
in a subpath, and others. With a doubly linked list, for example, a Next/ Previous query
can easily be performed in constant time—a matter of accessing the “Next”/“Previous”
pointer. The cost of traversing a path is clearly proportional to its size.

Subpath reversal is the alteration of a graph such that some subpath in the induced
graph is reversed relative to the path that contains it. In the context of a TSP tour, the
subpath reversal is often equated to the removal of two arcs (a,b) and (c,d) and the
addition of two others (a,c) and (b,d) in the path (a,b,...,c,d). This is the well-known 2-
opt move (Lin [9]). A problem that arises when coding a subpath reversal motivates the
first new data structure proposed in this paper. The difficulty is that current data
structures make the task of performing a subpath reversal while maintaining a feasible
tour representation too computationally taxing.

A simple example can best describe how the problem occurs. Suppose a local search
(maintaining a feasible TSP tour while considering changes to improve it) is performed
on a graph using 2-opt moves. The search chooses two arcs (a,b) and (c,d) to be deleted
in favor of another two arcs (a,c) and (b,d). If the resulting cycle is traversed from any
point in either direction, exactly one of the subpaths between the new arcs (e.g. the b-c
path) must be traversed in reverse order—a subpath reversal. Let us assume a linked
list representation is used (an example of the C code for this operation is provided in the
appendix). The obvious part of the move is updating the arcs among a,b,c, and d by
assigning c to follow a, a to precede c, d to follow b, and b to precede d. Now, however,
the “Next” and “Previous” pointers of a node chosen from the path between b and ¢ no
longer reference the correct nodes. For example, ¢ now follows a, but the node that now
follows c is the node that previously preceded c; so the pointer must be updated.
Completing the move and maintaining a readable tour involves swapping the “Next” and
“Previous” pointers in each node of the reversed subpath.

With a linked list structure, the expense of the subpath reversal grows embarrassingly
with problem size (O(n)) and contributes significantly to the time complexity of the

search, since the operation is clearly material in the total running time of the 2-opt
procedure. It turns out that this operation is also common and material to today’s most
advanced algorithms: the Lin-Kernighan algorithm and the Stem-and-Cycle Ejection
Chain algorithm. Hence the challenge is to find a data structure that allows a given
algorithm to make the move and restore a readable structure efficiently.

Indeed, the desire to perform both traversal and subpath reversal operations efficiently
motivate the design of the second new structure; it is a result of the separate but
simultaneous resolution of these two issues.

2.3 The 2-Level Tree

To date, the most acclaimed data structure adopted for use in TSP algorithms is the 2-
level tree, originally proposed by Chrobak, Szymacha and Krawczyk [2]. Lin-Kernighan
algorithms with effective implementations of the 2-level tree data structure have shown
dramatic gains in efficiency over linked list implementations. Some of these are
Fredman et al. [3], Johnson and McGeoch [7], Neto [10], Appelgate and Cook [1], and
Helsgaun [6]. Gamboa, Rego, and Glover [4] demonstrate the striking computational
outcomes obtained from implementing the Stem-and-Cycle Ejection Chain method with
this structure.

The key to the 2-level tree’s practical effectiveness is its ability to provide a framework
for quickly traversing a path between two nodes. The structure is also useful for storing
information that is likely to be duplicated among nodes in a series. It manifests these
properties by dividing a given path organized as a doubly-linked list into segments and
assigning a shepherding “parent node” to each segment. The parents are all linked with
a doubly linked list, so that a path among them can be traversed in O(\/;) time. A

diagram of a 2-level tree structure is shown in Figure 2.1.

Parent Structure

Reverse
Previous Parent +—boovdt—u@ Size *——F————» Next Parent
. 1D [N
Beginning of End of the
the Segment Segment

Segment Element Structure

Parent

I

[y
Previous
Client — = 1.D. —] = Next Client

Client

Two-Level Tree

=Y ¢ o)
slil= rl2]= SAENE Y
YR @ % ir/r—;'k
Slép—fe|alédle—te|5]|e] 2 3|lop—telale]l [el1]ol—Te]2]"
‘L& | 7 | ‘L‘_k 4 21})i) | 6 | 3

Figure 2.1. The 2-Level Tree Structure

Each element of a segment contains a pointer to the associated parent node, the index
of the client it represents (“Client”), and a sequence number (“I.D.”), in addition to the
“Next” and “Previous” pointers. The “Client” data member represents the index of the
city represented by the element. The “I.D.” data member identifies the relative position
of a client node within a segment. Although we find that the structure may operate
without this data member, it facilitates the Between operation (as defined by Fredman
et al. [3]) and can be used to quickly calculate sizes of potential segments if such
information is beneficial for maintaining tree balance and computational efficiency.

Each parent contains pointers to the next and previous parents as well as to the clients
that begin and end the segment. The “Reverse” data member switches the meaning of
the “Next” and “Previous” pointers in the client nodes within the segment. “Size” gives

the number of elements in the segment, and “I.D.” is a sequence number. Again, we
find certain data members to be possibly useful for balancing but not essential to the
core structure; in the case of the parent structure, these data members are the pointers
to the beginning and end of the segment, “Size,” and “I.D.” Although not essential,
“Size,” the segment endpoint pointers, and the associated tree balancing techniques are
required to guarantee the worst-case time boundaries shown for various operations in
Fredman et al. [3]. “I.D.” serves a similar role in the parent structure as it does in the
client structure in facilitating the Between operation.

If the “Reverse” switch is on, the meaning of the “Next” and “Previous” pointers in the
segment elements is reversed, and the segment is meant to be traversed in reverse
order. However, the meaning of the “Next” and “Previous” pointers in the parent nodes
is not reversed. In the 2-level tree in Figure 2.1, the middle segment is switched on,
indicating that “Next” clients be found by following “Previous” pointers of nodes in this
segment. Notice that in order to reverse the subpath (5,2,4), it is necessary only to
reconstruct the pointers among nodes 1, 4, 5, and 6, and flip the reverse bit in the
parent node, while the pointers among the intermediate nodes in the segment remain
unchanged.

Since the 2-level tree groups client nodes together into segments under parent nodes,
information that is common to a number of clients in a series can be stored solely in the
parent node, instead of duplicated in every client node. This is not only true for the
“Reverse” bit, but can be applied in general, as exemplified by the “presence bit”
proposed by Gamboa, Rego and Glover [4].

For large problems the 2-level tree greatly reduces the effort required to reverse a
subpath (compared to the linked list), but it is not the best. To find the reasons, let us
examine more closely what happens when a subpath is reversed with a 2-level tree.

We employ the previous conventions and notation regarding subpath reversal, except
that the tour is represented with a 2-level tree. Suppose the subpath that we intend to
reverse (b,...,c) contains many segments and that the end-segments are whole (since we
can insure this with cut and merge operations if necessary). The obvious necessity is to
update the arcs at the fractures, replacing arcs (a,b) and (c,d) with (a,c) and (b,d). The
mechanics of these updates are slightly more interesting with the 2-level tree. First, the
pointers in both the parent list and the client list must be updated. Second, instead of
assigning a to precede b, as is done with the linked list, a is assigned to follow ¢, while ¢
is still assigned to follow a. Similarly, d is assigned to precede b. This is so that the
pointers in b and c¢ remain consistent with their respective segments. Since (b,...,c)
contains multiple segments, the pointers between parents are updated as usual, with
Parent(i) taking the place of node i. To restore a readable structure, the parent nodes
between Parent{b) and Parent(c) are traversed, and 1) the reverse bit is flipped to switch
the meaning of the “Next” and “Previous” pointers within the segment, and 2) the
parent’s “Next” and “Previous” pointers are swapped to reflect the appropriate

orientation. Since there are \/; parent nodes, the worst case time complexity is limited

to O(n).

The reversal operation must visit and alter the parent nodes rather than the client
nodes themselves, effectively shortening the reversal operation. On the other hand, the
subpath must still be traversed and altered in order to regain a feasible structure.
Although its efficiency at reversing a subpath has been touted, clearly the strength of
the 2-level tree lies in its enhanced traversal abilities, and not in any property specific
to subpath reversal. These abilities could be further improved if the tree could be
augmented to further reduce the relative size of a parent traversal efficiently and

effectively. Additionally, the subpath reversal operation could be significantly simplified
if it was not necessary to perform the traversal step at all. In Section 4, we show that
our data structure extends and generalizes the 2-level tree data structure to solve both
the traversal and the subpath reversal problems.

Making changes to the structure often requires that segments be regrouped.
Regrouping is accomplished with cut/merge operations, which consist of splitting a
segment between two elements and combining two segments under one parent,
respectively. The important thing to note about these operations is their necessity and
contribution to time complexity. Most moves that add and delete arcs between clients
that are not segment endpoints require that a cut/merge operation be performed. The
operation boils down to reassigning the “Parent” pointer of each segment element; thus

the worst case cost turns out to be O(\/;) when tree balance is maintained. Therefore,

these operations make at least as significant a contribution to the total computational
cost of a move as subpath reversal.

Finally, the advantages of the 2-level tree over the linked list do not come without cost.
Traversal operations with this structure require knowledge of the correct orientation;
thus, the structure cannot be read without accessing the parent nodes. Before using
the “Next” or “Previous” pointers of a client node, the parent node must be accessed and
the “Reverse” bit checked. This additional computation increases the cost of traversing
client nodes by a constant factor. In addition, the memory requirement is higher than it
is for the linked list, though acceptable. Even supposing that the balancing
components are omitted, there is still an additional pointer to the parent for each client
node, and also some requirement for the parent nodes, though the proportion of this
requirement grows small as the problem size grows large.

3. New Data Structures for the TSP: The Satellite List

There are two fundamental differences between the data structures we propose and
their predecessors. The first difference stems from a contradiction in beliefs regarding
what is known about tour representation. The second difference involves extending and
leveraging the theoretical advantage of the 2-level and is discussed in Section 4.

It is a commonplace observation that imposing additional constraints on a problem can
only reduce its feasible region. We find that this principle applies meaningfully to the
problem faced in seeking an ideal data structure, where requiring that the tour be
oriented unnecessarily constrains our design choices. Fredman et al. [3] observe that,
“tour representation can be simplified by requiring that the tour be oriented.” However,
we respectfully disagree with the assumption that “simpler is better” and present an
analysis of the alternative. The new data structure designs we propose are symmetric
and overcome the inherent weakness present in the doubly-linked list. A notorious
consequence of this structure’s asymmetric nature is its inability to efficiently reverse
the order of the nodes in a given subpath. We show that our new list design achieves
the desired flexibility without giving up any time or memory efficiency relative to the
doubly-linked list.

Since the 2-level tree is defined as having linked lists as components (as discussed), it
inherits a similar fixed orientation problem. However, we show that the 2-level tree may
adopt our new list design in place of its linked list components. We also show that the
new list design facilitates the generalization of the 2-level tree to additional levels and
increases their potential benefit.

3.1 The Satellite List

Our new data structure, the satellite list, provides a basis for representing any
symmetric path or cycle that may have been previously encoded using a doubly-linked
list. The satellite list can operate in the same capacity as a doubly-linked list with the
following key difference: the satellite list represents a tour without implying a fixed
orientation of the path, which is why we qualify our claim for symmetric tours. The
“next” node in the path depends on the current orientation, information that is
naturally preserved in traversing the satellite list but otherwise neglected by the doubly-
linked list. A primary consequence of avoiding a fixed orientation is that the subpath
reversal operation is performed easily and in constant time. In addition, the satellite
list retains the same efficiency as the doubly-linked list in terms of the memory it
occupies and the commands it requires to access adjacent nodes.

To obtain a suitable structure that lacks the structural weakness of the linked list but
retains its simplicity, its strict representation is disassembled. A linked list node
contains two data members: a pointer to the previous client node and a pointer to the
next client node. Pointers should operate in a symmetric fashion, suggesting that they
point toward “adjacent” nodes, rather than “next” or “previous” ones. To accomplish
this, the pointers are first removed from the structure and given their own structures,
called satellites, whose sole purpose is handling the links among clients in the list.
Each satellite points not to an adjacent list node, as in the linked list representation,
but rather to the list node’s satellite. To read the tour starting from a client, one of its
satellites is chosen to begin the traversal. It is arbitrary which satellite is chosen, just
as it should be, since it makes no difference in which direction a symmetric tour is
traversed. The traversal operation then follows the satellite’s pointer to the next
satellite, the client is noted, and the process continues. Therefore, reading the tour
involves traversing one of two distinct singularly linked lists of satellites and noting the
associated cities.

3.2 Logical Representation

Figure 3.1 depicts a city represented first as a doubly-linked list node and then as a
satellite list node. The distinguishing characteristic of the satellite list node is its
avoidance of direct links with adjacent structures. Instead, its satellites link the cities
indirectly. The dashed lines in the figure emphasize the parts of the structure that
indicate relationships among components of the list node. From a satellite, there exists
some means to immediately access the complement satellite. A similar relationship
associates a satellite with its city. It is possible for these relationships to be
constructed (e.g. storing a pointer or an index value of the desired component), but it is
more efficient to take advantage of the implementation in which these relationships are
implied, as is illustrated in more detail in the next section and the C code in the
appendix.

Doubly Linked List Node

< <:|

City Data Members
-

Satellite List Node

Satellite Nodes

Figure 3.1. The Doubly-Linked List vs. the Satellite List

Figure 3.1 discloses the functional differences between the two types of nodes. The city
represented by the doubly-linked list node is constructed in memory in such a way that
its data members (typically “Next” and “Previous”) cannot be referenced directlyt. The
data members are accessed by name, and are thus not interchangeable and necessitate
an orientation. Also, since the data members store references to entire list nodes, the
node from which a reference was obtained is not remembered. For instance, it is not
correct to assume that a node has been obtained from the “Next” pointer of the
preceding node because it is equally likely to have been obtained from the “Previous”
pointer of the following node, and storing the information explicitly costs time and
memory. On the other hand, this information remains evident when using the satellite
list because each satellite is reached from a distinct source. Furthermore, two satellites
sharing a list node operate as independent nodes in separate singly-linked lists, lending
directional independence to the list node as a whole. Its unique symmetry allows the
“direction” of the node to depend on how the node was obtained without incorporating
any costly, explicit decision making into the code.

3.3 Efficient Physical Representation

A satellite list may be constructed and used without specifically declaring each
satellite’s links (pointers or indices) to its associated complement satellite or its client
(city). This property reduces the number of pointers needed to represent a list node
from four to two, cutting the memory requirement by half.

The tour is maintained in a single one-dimensional array of length twice n (where n is
the number of cities). Each element in the array is a satellite node and contains the
value of (or pointer to) its adjacent satellite. For each city, there exists two physical
array positions (satellites), which, together, are considered a logical position
representing the client. The city itself needs no physical position since it can be
uniquely identified by the indices of its satellites. Figure 3.2 diagrams an example
satellite list stored in an integer array representing the circuit (0,1,2,3,4,0).

f In pointer-supporting languages, it is, in fact, possible to obtain a direct reference for these members, but
the reference can only be used to indirectly retrieve values that can also be stored directly, and so the
reference is not meaningful.

Position 0 1 2 3 4 5 6 7 8 9

ARRAY

Integer value containing the index of the adjacent satellite

In General Bitwise Ops in C
Index of the Satellite: l I
ID number of the node (city): i/2 i>>1
Index of the complement satellite: i+1-2(i%2) il

(the dashed line indicates that the boundary is logical)

Figure 3.2. Example of Efficient Satellite List Implementation

A key factor that makes the use of the efficient implementation desirable is the ease
with which the implied relationships mentioned in the previous section can be found.
Given some satellite, the queries are to determine its complement satellite and its client
(city). The general formulas to compute these queries are given in the figure along with
the equivalent bitwise operations in the C language. A satellite’s client (city) can be
computed by integer-dividing the index by 2 (no remainder). An identical result is
achieved with the bitwise shift operator, “>>”. To find a satellite’s complement, the
index should be incremented if it is even and decremented if it is odd. The “%” gives the
remainder of division. A bitwise operator is also available for computing a satellite’s
complement satellite—the exclusive or, “”. These and other bitwise operators are
extremely fast because they don’t request any arithmetical or logical computation from
the processor; thus, the measure of overhead they contribute to routine operations such
as Previous() is insignificant. For languages that do not support bitwise operations,
using the general formulas may be too costly. In this case, the computational overhead
can be avoided by storing “client” and “complement” explicitly, although doing so
doubles the memory requirement for the structure. Example C code for both full and
efficient implementations and for queries using the bitwise operators is provided in the
appendix.

Although Figure 3.2 shows all odd satellites pointing to odd satellites, the list is
perfectly functional when some odd satellites point to even satellites, or vice versa.
Indeed, this becomes the case for the endpoints of a reversed subpath. Interestingly,
when a satellite list is organized so that the entire list can be read from just the even or

10

odd satellites, the satellite list array can be unioned with a doubly-linked list structure,
and the tour can be read correctly from either.

3.4 Memory and Time Efficiency

Unlike other data structures proposed for the TSP, the satellite list does not impose
additional memory requirements for representing the tour. The memory required to
store a tour represented by the satellite list is exactly equal to that required by the
doubly-linked list—two pointer slots per city. This is not to say that additional fields
cannot be added to a list node for use with specialized algorithms.

Also, the satellite list does not impose additional computational effort for the traversal
procedures. Enumerating across several nodes is simply a matter of following a singly-
linked list of satellite nodes; thus, the computational cost is the same as for the array
representation. There is no need to check a “Reverse” bit (2-level tree) or to splay to the
root of a tree (splay tree).

3.5 Subpath Reversal

We return to the subpath reversal issue, discussed in Section 2.2. This problem has
been of great interest to scholars studying TSP data structures due to its occurrence in
both classic k-opt and state-of-the-art search methods. In fact, this issue motivates the
satellite list design.

The tree-based data structures mentioned in Section 2 were proposed with the aim of
lowering the computational complexity of the subpath reversal operation. The splay
tree claims to handle the operation in O(logn) time, while the 2-level tree claims
O(\/;) time, with better results for problems as large as n = 106 due to lower overhead

costs. Clearly, however, because of the satellite list’s symmetric design, the subpath
reversal operation is a natural one and is performed easily in constant time, O(1). The

ease of the operation is illustrated in Figure 3.3.

Subpath Reversal with a Linked List (Before Rearranging Pointers)

Not Feasible

e =

Subpath Reversal with a Satellite List

Feasible

Figure 3.3. Subpath Reversal with a Linked List vs. a Satellite List

11

Figure 3.3 depicts isolated subpaths for a doubly-linked list (top) and a satellite list
(bottom), where straight arcs point to the following nodes in the list, and the curved
arcs point to preceding nodes (only applicable to the doubly-linked list). An analogy
would be to view the linked list as a one-way street and the satellite list as a two-lane
road. As is easily seen, the subpath in the satellite list reforms the original structure
when rotated 180 degrees—only pointers associated with nodes in the broken edges
need to be changed. The subpath in the doubly-linked list, however, does not match
correctly when rotated—every pointer associated with nodes in the subpath must be
changed. The “street” analogy would have traffic flowing smoothly only on the two-lane
road if a section of the road were reversed. In the linked list, additional computational
time must be taken to correct the intermediate arcs in the reversed subpath. Although
the 2-level tree reduces the time complexity of this correction, the satellite data
structure eliminates the problem.

The data structure currently thought to be the state-of-the-art, the 2-level tree,
maintains for each level a doubly-linked list. Therefore, it is a natural idea to use the
satellite list to improve the 2-level tree for any algorithm that is thought to be most
efficiently implemented with this structure (i.e. k-opt procedures, their generalization
the Lin-Kernighan procedure, and the Stem-and-Cycle Ejection Chain method).

4. New Data Structures for the TSP: The k-Level Satellite Tree

The k-level satellite tree makes use of both “satellite” and “2-level tree” design concepts
to achieve superior performance. Each component of the tree is structured as a
satellite list rather than a linked list. Also, the idea behind the 2-level tree has been
extended to increase its leverage on traversal speed. The leverage that the 2-level tree
allows over the linked list is derived from its ability to be traversed more quickly. The
linked list structure still exists within the 2-level tree, but for traversal activity, we may
traverse parent nodes rather than client nodes, reducing the complexity of the cost of

traversal from O(n) to O(\/;). So, to further perfect the design of our structure, we
have expanded on this idea by allowing k levels to the tree instead of just two. This
enables the tree to be traversed with a complexity O(Inn) rather than O(\/;).

4.1 The k-Level Satellite Tree

The k-level satellite tree is plainly stated as follows. The lowest and largest level (level 1)
consists of a satellite list, containing all client nodes or cities in the traveling salesman
problem. Level k is also a satellite list containing approximately n'’* parent nodes,
analogous to the second level in the 2-level tree. Levels 2 through k — 1 contain
intermediate parent nodes whose function is to vertically link sub-segments into larger
segments, ultimately grouping a large number of client nodes under a few parent nodes.
Each satellite list is symmetric, and therefore it might be expected that the orientation
of each is independent. However, for the k-level satellite tree, directional consistency is
maintained throughout all levels by following a consistent practice in the assignment of
vertical pointers. Vertical pointers are those from client nodes to intermediate parent
nodes, intermediate parent nodes to higher intermediate parent nodes, and pointers
from intermediate parent nodes in level k — 1 to parent nodes. Figure 4.1 gives an
illustration of a 3-level satellite tree that holds the TSP tour represented in Figure 2.1.

12

Parent Structure

Adjacent Info Adjacent
Parent 4—'—. Size .—I—o Parent
Satellite Satellite

Intermediate Parent Structure

Parent or Intermediate Parent Satellite

l

Adjacent s Adjacent
Intermediate Parent «—————» Size o——» Intermediate Parent
Satellite Satellite

Segment Element Structure

Parent or Intermediate Parent Satellite

l

Adjacent : Adjacent
Client —e———f—e Client —] Client
Satellite Satellite
A Three-Level Satellite Tree
i Wt |
[&]1
(17) :
Y EIK) =l CI N A e =X F: T

A
=la)

o| [el2le] [elslt] [elele] [el3

ey
~
nd
o |
=
fed

,_..
_C
E
=

C

Figure 4.1. The k-Level Tree

In comparing the diagrams in Figure 4.1 to those in Figure 2.1, it is important to recall
that the pointers shown in a satellite tree point to satellites, not whole clients or
parents. The lowest and highest levels consist of complete satellite lists containing
client nodes and parent nodes, respectively. Each level [of the (k — 2) intermediate

(k—1+1)/k

levels has approximately n intermediate parents grouped into approximately

13

nk=/k segments, each containing approximately n'* elementst. Each segment in the

intermediate level(s) is maintained in a separate satellite list rather than linked with
other segments in the same level. There appears to be a cost (but no benefit) to linking
intermediate parent segments; thus, end-nodes of these segments are neatly
terminatedt (denoted “T” in Figure 4.1). The great benefit, of course, to linking all the
parent nodes in the kth level is the creation of a much shorter path between client

nodes in different parent segments (size = cn'* +2(k—2)) as opposed to the obvious
path given by the satellite list in the first level (size = ¢yn), where ¢ and ¢, are

constants.

Parents can also serve to contain information common to all client nodes in the entire
segment (denoted “Info” in Figure 4.1). The “Info” data member is for general use and,
in contrast to the “Reverse” bit in the 2-level tree, is not necessary to read the structure!
The tour can be read from the satellite list in the first level. Storing information in the
top level of the tree when possible as opposed to the bottom level can achieve
tremendous efficiency gains if that information is updated periodically for entire
segments. “Info” is thus specified generally, and the type of information it contains is
algorithm specific.

The “Size” data member plays the same role here as it does in the 2-level tree, as
discussed thoroughly in Fredman et al. [3]. The worst case guarantees (to be discussed)
for cuts, merges and traversals can be met as long as the segment sizes are kept

between %nl/ ¥ and 2n"%. As with the 2-level tree, we find that this extra data member

and the associated tree balancing techniques are unnecessary in practice.

Not included in our structure is the sequence number (“I.D.” in Figure 2.1), which is
included in the parent nodes of the 2-level tree primarily to facilitate an efficient
implementation of the Between(a,b,c)] operation, as defined in Fredman et al. [3].
Traversing a path between the parent nodes of a and ¢ can be avoided by comparing
sequence numbers to determine if b lies in the path from a to c¢. In the case of the 2-

level tree, the result is a decrease in the worst-case time bound from O(\/;) to O(l).

Although it is possible to include a sequence number in parents of the k-level tree, it is
not theoretically relevant, since (as we will show) the cost of traversing the parent nodes
becomes constant when k is chosen optimally.

In the spirit and fashion of the satellite list, vertical pointers point not to whole parent
nodes but to satellites of those nodes. A traversal can rely on the vertical pointers to
jump to higher levels of the tree and continue in the same direction. For example,
suppose we arrive at a satellite of a client node (1st level) during some traversal. Then
we are “moving” in some current direction, and that information is reflected by the
satellite on which we arrive. In order to access the client’s intermediate parent node, we
follow the intermediate parent pointer to a satellite of the intermediate parent,
recognizing that we would follow the same pointer if we were to arrive at the client on
the complement satellite (i.e. from the opposite direction). To obtain the satellite of the
intermediate parent that is consistent with our current direction, we compute a bitwise
operation involving the satellite of the client and the satellite of the intermediate parent
obtained from the pointer. This arrangement helps to keep our memory requirement
low, since we need only one vertical pointer per list node (rather than one per satellite)

 The tree in the diagram is not balanced in exactly this way in order to retain similarity with its counterpart
in Figure 2.1.
 Termination may be accomplished by pointing to NULL or -1.

14

to interconnect the levels. The same principal applies throughout the tree so that
directional consistency is maintained regardless of the level negotiated.

4.2 Choosing the Optimal k and Consequences Thereof

The best value of k depends not only on n, but also the nature of the algorithm. Factors
unique to a particular implementation, such as the size of the average traversal and the
expected number of traversals required relative to merging and cutting activities,
determine trade-offs between the costs of managing additional levels and the benefits
they provide. Thus, we must recommend some experimentation in determining the best
k. However, some guidelines given by theory simplify and otherwise reduce necessary
experiments to a matter of estimating the relevant constants associated with different
types of operations.

Whether the algorithm is a k-opt, LK, or S&C, the commands associated with operating
on the k-level tree belong to one of three types:
1) those that execute for each of several nodes in a segment at each level but one
(e.g. cut/merge operations),
2) those that execute for each of several nodes in a single segment (e.g. parent
traversal operations), and
3) those that execute once for each level but one (e.g. parent access operations).
Given these types, the worst-case cost of operating the structure can be written:

C(n,k,c,,c,,c3) =c,(k=D)n" +c,n"* +c,(k-1). (1)
Clearly, this expression implies the time complexity of operating the structure is at most
O(n"'*) if k is assumed to be fixed for all n. Here, it is assumed that the tree-balancing

techniques are employed to guarantee a size of %nl/ F<s<2n" for any segment s,
justifying the assertion that the cost of operating on several nodes in a segment is

proportional to n'*.

The optimal number of levels for the tree minimizes its operating cost. Since constants
do not affect the optimization, Cis normalized to obtain one fewer parameter:

MIN, C'(n,k,c},c}) = (k—D)n"* + "+l (k-1), (2)
where c; =c¢,/c, and cg =c, /¢, are the relative costs of type 2 and 3 operations to type
1 operations, respectively.

Unfortunately, there exists no closed form solution for the general problem of choosing
k to minimize cost given the other parameters. This being so, suppose that a
simplifying assumption can be made:

¢ =c, (3)
It may not be unreasonable that these two parameters are approximately equal; in our

experience, a given move often has the same number and type of commands in each of
operation types 1 and 2. Then the cost expression in equation (1) becomes

C(n,k,c,,c;) = chn’* + (k1) (4)
The problem of choosing k& to minimize C becomes equivalent to
MIN , C'(n,k,c}) = kn"* + ik (5)

the first order condition of which gives

oz . n"lnn
l+n1/k o an

=cC
3 *
k

e _ 0,
ok

15

. Inn

= (6)
1+ PL(c;/e)
where PL(z) is the product log of z, which gives the principal solution for y in z = ye’,
satisfying the differential equation @& __ y . Equation (6) provides the theoretical
oz z(1+y)

basis for O(k”) = O(Inn), since ¢} is a constant.

A quick check of the second order condition,
0’z n'"(Inn)’
82k k*3

confirms that the point does indeed represent a minimum for all 7, kK >0.

>0, (7)

Since the average segment size is n''* , the optimal average size of a segment s*is:
nl/k* _ n(1+PL(cg/e))/1nn

— €1+PL(0§/6) (8)

So, the optimal average size of a segment does not depend on n! Instead, it depends on
the constant term, c;. For example, if 63' =0 (there are no type 3 operations), the

optimal segment size is just e; for larger values of c3' , s¥is larger.

Substituting the optimal segment size s* for n"* and k*for k simplifies the modified cost
given in equation (4) dramatically:
C(n,k",c,c}) =ck’e™™) 1eci(k”—1)

I ,, I
_¢, LeH—PL(Q/E) +CIC§ (L -1)
1+ PL(c} /e) 1+ PL(c}/e)
where :# el+PL(c3'/e) +C3’)
1+ PL(c} Je)

Hence the time complexity of operating the k-level satellite tree is O(Inn)when k is

chosen optimally as opposed to O(n'"") when k is fixed.

If the assumption in (3) does not hold, then the optimal segment size can still be
considered constant for practical purposes. As a consequence, k* can still be
considered proportional to the natural logarithm of n. As previously noted, k* cannot
be written as a function of n in the general situation, and neither can the segment size,

1/k"
s*=n

. However, the relationship
(5 =1)s" (In(s"))*
n=e c+s —s"Ins” (10)
follows from the first order condition, and a numerical examination of this equation
reveals that n=f{s*) has a singularity for some value of s* dependent on the constants.

16

6
8x10"7 3.5x10°F
3x10°F
6x10"° 2.5x10°}
2x10°F
12
4%10
. 1.5x10°F
6L
2x102 1x10
500000 f
1 2 3 4 5 2 4 6 8 10 12 14
/ ! ! ’
A. ¢, =101 ¢; =10 B. ¢, =0.10 ¢; =10.0
10
5x10
2.5x10°}
4x10*'°
2x10°}
3x10"° .
1.5x10° 1
10
2x10 1x10°F
1x10'° 500000 |
25 30 35 40 45 50 S 10 15 20 25
’ ! ’ ’
C. ¢, =1.01 ¢; =100.0 D. ¢, =10.0 ¢; =10.0

Figure 4.2. n as a Function of s

Figure 4.2 displays plots for equation (10) for varied values of c; and Cé , with n on the

vertical axis and s* on the horizontal. The plots provide confirmation that s* can be
considered constant for values of n of any significant size. Even in the extreme cases

depicted in panels B and D, the variation in s* that exists when c; is much different

from 1 is small. As n grows large, s*is bounded asymptotically by the value for s* when
’

c=1.

The plots also confirm the intuition regarding ¢, and c¢;. If the relative cost of

managing a segment is low, then it is better to have larger segments and thus fewer
levels (panels B and D). A similar result applies if the relative cost of managing levels is
high (panel C). The values for the constants in Figure 4.2 are chosen to span a

reasonable range. Likely values for ¢; are quite a bit higher than for ¢, or ¢,. This is

because one of the type 3 operations, accessing a parent node, is usually required in
the evaluation of possible moves, a task that is performed more often than the actual
moves.

In general, increasing k decreases the cost of traversing a segment but increases the
number of levels to manage. Since type 1 operations involve traversing k- 1 segments,
one cost component increases while the other decreases for this type. These
components are separate in types 2 and 3. It is clear from the theory that as n
increases, it is typically best to increase k, but keep the segment size the same. In
other words, to manage additional clients, it is less costly to add levels to the tree than
to inflate the segments. Therefore, a segment size that is sufficiently close to the
optimal can be computed merely by determining good estimates for the relative values
of the constants.

17

5. Summary and Conclusions

The satellite list representation allows a TSP tour to be represented without the
encumbrance of orientation. Desirable properties that result include the performance
of the subpath reversal operation in constant time, memory and time efficiency
comparable to the linked list in general, and simpler, shorter code.

Situations may exist where abandoning the notion of direction in a TSP tour may not be
helpful. First, as previously noted, the solution to an asymmetric problem cannot be
represented without a defined orientation; thus, a satellite design doesn't make sense
for the tour representation. Second, if it is simply more efficient for a particular search
method to maintain a fixed orientation within the data structure, a satellite design will
be of little use. No present TSP algorithms we know of gain efficiency with a fixed
orientation, but if one were to be devised our data structure would offer fewer
advantages than it provides for the types of algorithms currently employed. In any
event, the satellite list can do no worse than the linked list, because orientation can
always be enforced in a satellite list by imposing a restriction on the satellites. The
need to impose such a restriction does not exist in general, and the satellite structure
simplifies and shortens the code for symmetric TSP algorithms even in situations where
efficiency gain is not as appreciable as in the algorithmic designs favored at present.

The k-level satellite tree structure expands on the 2-level tree by distributing the
workload of traversals and cut/merges to several levels. As a result, the complexity of

operating on the structure is reduced from O(\/;) to O(Inn) when k is chosen

optimally. A satellite design is utilized rather than the standard linked list design used
in the 2-level tree, and the “Reverse” bit is discarded. In addition to its desirable
properties for subpath reversal, the improved design allows the tour to be read from the
structure without the need to access parent nodes, which reduces the cost of operations
and shortens and simplifies the coding.

Due to the cut-and-merge requirements of modifying the k-level satellite tree, this
structure can only perform a subpath reversal in constant time if the subpath is
composed of whole segments. Otherwise the subpath reversal must incorporate a
cut/merge operation, which is O(Inn) when k is chosen optimally. In this sense, the

satellite list, which performs subpath reversals in O(1) time, outperforms the tree, but
it cannot be competitive overall due to its time complexity of O(n) for traversals,
whereas the k-level satellite tree boasts O(lnn) for traversals as well. A similar

apparent discrepancy in complexity exists in comparing the k-level satellite tree to the
2-level tree. Accessing parent nodes, a routine operation, is O(1) for the 2-level tree but

O(Inn) for the k-level tree. This is because the number of levels is fixed at 2 in the

former, whereas k varies with n in the latter. However, arguments to the effect that a
structure fixed with just one level (satellite list) or two levels (2-level tree) can
outperform a k-level tree are doomed to be fallacious. If true, such an argument would
imply that choosing values for k greater than 1 or 2 is not optimal, contradicting our
findings that k* always increases with n. For this reason, and for reasons of theoretical
complexity already indicated, we anticipate that the k-level satellite tree representation
will prove useful for enhancing the computational performance of a broad range of TSP
methods, including those based on algorithmic designs yet to be investigated?.

T The more advanced reference structures introduced in Glover [5] are an example of methods in this category.

18

References

(1]

(2]

3]

[4]

[S]

(6]

[7]

[8]

[9]

[10]

[11]

D. Applegate and W. Cook, “Chained Lin-Kernighan for Large Traveling Salesman
Problems,” Technical report, Rice University, 2000,
http:/ /www.isye.gatech.edu/~wcook/papers/chained_lk.ps.

M. Chrobak, T. Szymacha, and A. Krawczyk, “A Data Structure Useful for Finding
Hamiltonian Cycles,” Theoretical Computer Science, 71 (1990), 419-424.

M. Fredman, D. Johnson, L. McGeoch, and G. Ostheimer, “Data Structures for
Traveling Salesmen,” Journal of Algorithms 18 (1995), 423-479.

D. Gamboa, C. Rego, and F. Glover, “Data Structures and Ejection Chains for
Solving Large-Scale Traveling Salesman Problems,” Hearin Center for Enterprise
Science, Research Report HCES-05-02, University of Mississippi, 2002.

F. Glover, “New Ejection Chain and Alternating Path Methods for Traveling
Salesman Problems,” Computer Science and Operations Research (1992), 449-5009.

K. Helsgaun, “An Effective Implementation of the Lin-Kernighan Traveling
Salesman Heuristic,” European Journal of Operational Research 1 (2000), 106-130.

D. Johnson and L. McGeoch, “Local Search in Combinatorial Optimization,”
chapter, The Traveling Salesman Problem: A Case Study in Local Optimization,
pages 215-310, John Wiley and Sons, Ltd., 1997.

D. Johnson, L. McGeogh, F. Glover and C. Rego, “8th DIMACS Implementation
Challenge: The Traveling Salesman Problem,” Technical report, AT&T Labs, 2000,
http:/ /www.research.att.com/~dsj/chtsp/.

S. Lin, “Computer Solutions of the Traveling Salesman Problem,” Bell System
Computer Journal 44 (1965), 2245-2269.

D. Neto, “Efficient Cluster Compensation for Lin-Kernighan Heuristics,”
Department of Computer Science, University of Toronto, 1999.

D. Sleator and R. Tarjan, “Self-adjusting Binary Search Trees,” J. Assoc. Comput.
Mach. 32 (1985), 652-686.

19

Appendix—Implementation Details

Given here is C code for linked list and satellite list implementations.

demonstrate some of their key differences.

1. Full linked list node structure
struct LinkedListNode
struct LinkedListNode*

struct LinkedListNode*
long

}

2. Full satellite list node structure
struct SatelliteNode
struct SatelliteNodex*
struct SatelliteNodex*
long

struct SatellitelListNode

next;
previous;
client;

next;
complement ;
client;

struct SatelliteNode satellite O0;
struct SatelliteNode satellite 1;

}

3. Efficient linked list implementation

The purpose is to

/* Eliminate “long client” declaration from LinkedListNode structure by
assuming the index “i” of the CLIENT array identifies the city. */

struct LinkedListNode

long next;
long previous;

struct LinkedListNode* CLIENTS;

void init ()

long N = NUMBER OF CITIES;
CLIENTS = (struct LinkedListNode*)malloc (N*sizeof (struct

LinkedListNode)) ;

CLIENTS[0] .previous = N-1;

for(long i = 0; 1 < N;

i++)

if (i!=N-1) CLIENTS[i] .next = 1i+41;
if (i1!=0) CLIENTS[i] .previous = 1i-1;

CLIENTS[N-1] .next = 0;

/* Returns the “next” city in the tour. */

long next (long city index)

return CLIENTS [city index] .next;

/* Returns the “previous” city. */

long previous(long city index)

return CLIENTS [city index] .previous;

20

/* Returns the city indexed (in this case,
long city(long city index)

return

return city index;

/* Replaces arcs ab and cd with arcs ac and bd.
reversed. */

void Reverse Subpath (long
long
long

long

city index a,
city index b,
city index c,
city index d)

long k
while

{

CLIENTS [city index b] .next;
(k !'= city index c)

temp 1 = CLIENTS [k].previous;
CLIENTS [k] .previous CLIENTS [k
temp 2 = CLIENTS [k].next;

CLIENTS [k] .next = temp 1;
k = temp_2;
CLIENTS [city index b] .previous =
CLIENTS [city index c].next =

CLIENTS [city index d

.previous city

*/

parameter) .

Implies the bc-path is

] .next;

CLIENTS [city index b] .next;
CLIENTS [city index c].previous;

index b;

index a;

_ _dl _
CLIENTS [city index b].next = city index d;
CLIENTS [city index c].previous = city
CLIENTS [city index a] .next = city index c;

}

4. Efficient satellite list implementation

/* Eliminate structure;

assume each city gets two satellites,

satellite “0” and satellite “1”. */
void init ()

{

for example

const long DN NUMBER OF CITIES<<1;

replace with long array twice the size of N;

city “0” is assigned

7

SATELLITES = (long*)malloc (DN*sizeof (long)) ;
SATELLITES[1] = DN-1;
for(long i = 0; i < DN; i+=2)

if (i!=DN-2) SATELLITES[i] = i+2;

if (i!=0) SATELLITES [i+1] = i-1;
SATELLITES [DN-2] = O;

}

Returns
long next (long satellite index)

return SATELLITES[satellite index];

/* */

Returns
long

{
}

Returns
long

satellite of the “previous” city.
previous (long satellite index)

return SATELLITES [satellite index *

/*

the city indexed (in this case,
city(long satellite index)

return

return satellite index >> 1;

N/A to LL implementation. */
long complement (long satellite index)

/*

21

satellite of the “next” city in the tour.

1]

*/

A

1;

*/

I= parameter) .

return satellite index * 1;

/* Replaces arcs ab and cd with arcs ac and bd. Implies the bc-path is
reversed. */
void Reverse Subpath(long satellite index a,
long satellite index b,
long satellite index c,
long satellite index d)

SATELLITES [satellite index a] = satellite index c’1;
SATELLITES [satellite index c] = satellite index a®™1;

SATELLITES [satellite index d”1] satellite index b;
SATELLITES [satellite index b*1] = satellite index d;

// There are no intermediate pointers to flip

22

	Introduction
	Prior Work In TSP Data Structures
	New Data Structures for the TSP: The Satellite List
	New Data Structures for the TSP: The k-Level Satellite Tree
	Summary and Conclusions
	References
	Appendix—Implementation Details

