
THANKS, HEAPS 

This column is about “heaps,” a data structure that 
we’ll use to solve two problems. 

Sorting. Heapsort sorts an N-element array in 
O(N log N) time and uses just a few words of extra 
space. 
Priority Queues. Heaps maintain a set of elements un- 
der the operations of inserting new elements and ex- 
tracting the smallest element in the set; each opera- 
tion requires O(log N) time. 

For both problems, heaps are simple to code and com- 
putationally efficient. 

Now that the advertising is out of the way, I can tell 
you the real reason that I’m writing this column: heaps 
have bothered me for a dozen years. The basic idea is 
elegant, and the data structure is eminently practical. 
I’ve implemented heaps several times in application 
programs. But I never felt satisfied with my code: it was 
lengthy and clumsy, fraught with special cases and 
bugs. Although I didn’t know what to do about it, I was 
deeply upset that a beautiful idea ended up as an ugly 
program. 

Several weeks ago I taught a three-day course on 
“The Science of Programming,” using David Gries’s ex- 
cellent text of that title. As the last exercise in the 
course, we used the techniques of program verification 
to write code for heaps. Imagine my delight when the 
result was a short, clean, elegant program! This column 
is my attempt to communicate three things: the funda- 
mental idea of heaps, a sweet program that implements 
the idea, and the powerful programming techniques 
that lead from the former to the latter. 

This column has a “bottom-up” organization: we’ll 
start at the details and work up to the big picture. The 
next two sections describe the heap data structure and 
two routines to operate on it. The two subsequent sec- 
tions use those tools to solve the problems mentioned 
above. 

The Data Structure 
A heap is a data structure for representing a collection 
of items.’ Our examples will represent numbers, but 
the elements in a heap may be of any ordered type. 

’ In other computing contexts. the word “heap” refers to a large segment of 
memory from which variable-size nodes are allocated: we’ll ignore that inter- 
pretation in this column. 
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Here’s a heap of 12 integers: 

A21 
,20\ A 

7, 2'\ :' 
22 

35 40 26 51 19 

That binary tree is a heap by virtue of two properties. 
We’ll call the first property Order: the value at any 
node is less than or equal to the values of the node’s 
children. This implies that the least element of the set 
is at the root of the tree (12 in the example), but it 
doesn’t say anything about the relative order of left and 
right children. The second heap property is Shape; the 
idea is captured by the picture 

In words, a binary tree with the Shape property has its 
terminal nodes on at most two levels, with those on the 
bottom level as far left as possible. There are no “holes” 
in the tree; if it contains N nodes, no node is of distance 
more than log,N from the root. We’ll soon see how the 
two properties together are restrictive enough to allow 
us to find the minimum element in a set, but lax 
enough so that we can efficiently reorganize the struc- 
ture after inserting or deleting an element. 

Let’s turn now from the abstract properties of heaps 
to their implementation. There are, of course, many 
possible representations of binary trees, such as records 
and pointers. We’ll use an implementation that is suita- 
ble only for binary trees with the Shape property, but is 
quite effective for that special case. A IZ-element tree 
with Shape is implemented in the l&element array X as 
follows: 

,L 
X(5 

,L 
x13 

x141 XI51 X 161 x171 

x,4 >[9] X(i]X~ll] X,A] 

In this implicit representation of a binary tree, the root 
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is in X[l], its two children are in X[Z] and X[3], and so 
on. Various functions on the tree are defined as follows. 

root = 1 
value(I) = X[I] 
leftchild = 2*1 
rightchild(1) = 2*L+l 
parent(I) =: I div 2 
null(I) = (I<l) or (I>N) 

An N-element implicit tree necessarily has the Shape 
property: there is no provision for missing elements. 

This picture shows a ‘12-element heap and its imple- 
mentation as an implicit tree in a 12-element array. 

A21 
/““\ A 

,/““, /“: :’ 22 

35 40 26 51 19 

I12 20 15 29 23 17 22 35 40 26 51 19 1 
1 12 

Because the Shape property is guaranteed by the repre- 
sentation, from now on we’ll use the name Heap to 
mean that the value in any node is greater than or 
equal to the value in its parent. Phrased precisely, the 
array X[l . . N] has the Heap property if 

V*ri&J X[i div 21 5 X[i] 

In the next section we’ll want to talk about X[L..U] 
having the heap property: we’ll define Heap@, U) as 

V2LsisU X[i div 21 5 X[i] 

Two Critical Routines 
In this section we’ll study two routines for fixing an 
array whose Heap property has been broken at one end 
or the other. Both routines are efficient: they require 
roughly log N time to reorganize a heap of N elements. 
In the bottom-up spirit of this column, we’ll define the 
routines here and then use them in the next sections. 

Placing an arbitrary element in X[N] when X[l..N-I] 
is a heap will probably not yield Heap(1, N); establish- 
ing the property is the job of procedure SiftLIp. Its name 
describes its strategy: we sift the new element up the 
tree as far as it should go, swapping it with its parent 
along the way. (Take a second to contemplate which 
way is up: the root of the heap is at the top of the tree, 
and therefore X[N] is at the bottom of the array.) The 
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FIGURE 1. Element 13 is Sifted Up the Heap (left to right) 

process is illustrated in Figure 1, which shows the new 
element 13 being sifted up the heap until it is at its 
proper position as the right child of the root. The pro- 
cess continues until the circled node is greater than or 
equal to its parent (as in Figure 1) or it is at the root of 
the tree. If the process starts with Heap(1, N - 1) true, it 
leaves Heap(1, N) true. 

With that intuitive background, let’s write the code. 
The sifting process calls for a loop, so we’ll start with 
the loop invariant. In Figure 1, the heap property holds 
everywhere in the tree except between the circled 
node and its parent. If we let I be the index of the 
circled node, then we can use the invariant 

loop 
/* Inv: Heap(l,N) except (perhaps) 

between I and its parent */ 

Because we originally have Heap(1, N - l), we initialize 
the loop by the assignment I : =N . 

The job of the looi, is to check whether we have 
finished yet (either by the circled node being at the top 
of the heap or greater than or equal to its parent) and, if 
not, to make progress towards termination. The invar- 
iant says that the Heap property holds everywhere ex- 
cept (perhaps) between I and its parent. If the test I = 1 
is true, then I has no parent and the Heap property thus 
holds everywhere: the loop may therefore terminate. 
When I does have a parent, we’ll let P be the parent’s 
index by assigning P : = I div 2. If X[P] I X[I] 
then the heap property holds everywhere, and the loop 
may terminate. 

If, on the other hand, I is out of order with its parent, 
then we swap X[I] and X[P]. This step is illustrated in 
the following picture, in which node I is circled. 

BEFORE: 
a and b are 

6 
a c 

out of order 
d e 

&IER: 

All nodes 
are in order /‘\ 

c 

d e 

After the swap, all five elements are in the proper or- 
der: b c d and b < e because b was originally higher in 
the heap, u < b because the test X[P] 5 X[I] failed, and 
a < c by combining a < b and b < c. This gives the heap 
property everywhere in the array except (possibly) be- 
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FIGURE 2. Element 18 is Sifted Down the Heap (left to right) 

tween P and its parent; we therefore reestablish the 
invariant by assigning I : =P . 

The above pieces are assembled in Program 1, which 
runs in time proportional to log N because the heap has 
that many levels. The “pre” and “post” lines character- 
ize the procedure: if the precondition is true before the 
routine is called then the post-condition will be true 
afterwards. 

proc Si.ftUp(N) 
we Heap(l,N-1) and N>O 
post H-PC 1 ,N) 

I := N 
loop 

/* Inv: Heap(l,N) except (perhaps) 
between I and its parent */ 

if I=1 then break I 

P := I div 2 
if X[P] <= X[I] then break 
swap(x[pJ, X[IJ) 
I := P 

endloop 

loop 
/* Inv: Heap(l,N) except 

(perhaps) 
between I and its 
(0, 1 or 2) children */ 

The loop is similar to SiftUp’s. We first check whether I 
has any children, and terminate the loop if it has none. 
Now comes the subtle part: if I does have (one or two) 
children, then we set the variable C to index the least 
child of 1. Finally, we either terminate the loop if 
X[I] 5 X[C], or progress towards the bottom by swapping 
X[Z] and X[C] and assigning I : =C . 

PROGRAM 1. Procedure SiftUP The complete SiftDown routine is presented as Pro- 
gram 2. A case analysis like that done for SiftUp shows 
that the swap operation leaves the heap property true 
everywhere except (possibly) between C and its chil- 
dren. Like SiftUp, this procedure takes time propor- 
tional to log N, because it does a fixed amount of work 

Assigning a new value to X[l] when X[l . .N] is a 
heap leaves Heap@, N); Procedure SiftDown’s job is to 
make Heap(1, N) true. It does so by sifting Xfl] down 
the array until either i has no children or itis less than at each level of the heap. 

or equal to the children it does have. Figure 2 shows 18 
being sifted down the heap until it is finally less than 
its single child, 19. When an element is sifted up, it 
always goes toward the root. Sifting down is more com- 
plicated: an out-of-order element is swapped with its 
lesser child. 

The pictures illustrate the invariant of the SiftDown 
loop: the heap property holds everywhere except, possi- 
bly, between the circled node and its children. 

proc SiftDown 
we Heap(2,N) and lQ=O 
post HeaPt 1 ,N) 

I := 1 

loop 
/* Inv: Heap(l,N) except (perhaps) between 

I and its (0, 1 or 2) children */ 
c := 2*1 

if E-N then break 
/* C is the left child of I */ 
if C-F1 <= N then 

/* C+l is the right child of I */ 
if X[Ci-l] < X[C] then 

C := c+1 
/* C is the least child of I */ 
if X[I] <= X[C] then break 
Swap(xlCJ, XIII) 
I := c 

endloop 

PROGRAM 2. Procedure SiftDown 
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Priority Queues 
There are two sides to any data structure: its abstraction 
tells what it does (a queue maintains a sequence of 
elements under the operations of insert and extract], 
while its implementation tells how it does it (with an 
array or linked list, perhaps). We’ll start our study of 
priority queues by specifying their abstract properties, 
and then turn to implementations. 

A priority queue manipulates an initially empty set’ 
of elements, which we’ll call S. The Insert procedure 
inserts a new element into th.e set; we can define that 
more precisely in terms of its pre- and post-conditions. 

proc Insert(T) 
pre ISI < MaxSize 
post Current S = Original SU(T] 

Procedure Extructh4in deletes the smallest element in 
the set and returns that value in its single parameter T. 

proc ExtractMin(T) 
pre ISI > 0 
post Original S = Current SU(T] 

and T=min(Original S) 

This procedure could, of course, be modified to yield 
the maximum element, or any extreme element under 
a total ordering, 

Priority queues are useful in many applications. An 
operating system may use such a structure to represent 
a set of tasks; they are inserted in an arbitrary order, 
and the task with highest priority is extracted to be 
executed. In discrete event simulation, the elements 
are times of events: the simulation loop extracts the 
events with the least (next) time, and possibly adds 
more events to the queue. In both applications the basic 
priority queue must be augmented to contain additional 
information beyond the elements in the set; we’ll ig- 
nore that “implementation detail” in our discussion. 

Sequential structures such as arrays or linked lists 
are obvious candidates for implementing priority 
queues. If the sequence is sorted it is easy to extract the 
minimum but hard to insert a new element; the situa- 
tion is reversed for unsorted structures. Table I shows 
the performance of the structures on an N-element set. 

TABLE I. Priority Queue Implementation 

Sorted Sequence ON O(l) OW’) 
Heaps O(b N) O(Ioe Nf O(N log N) 
Unsorted Sequence O(l) O(Nj owl 

The heap implementation of priority queues provides 
a middle ground between the two extremes. It repre- 
sents an N-e1emen.t set in the array X[l . . N] with the 
heap property, where X is declared as X[l . .MuxSize]. 

‘Because the set can contain multiple copies of the same element. we would 
be more precise to call it a “multiset” or a “bag.” The union operator is 
defined so that (2.31 U 121 = 122.3). 

We initialize the set to be empty by assignment N: =O . 
To insert a new element we increment N and place the 
new element in X[N]. That gives the situation that 
SiftUp was designed to fix: Heup(1, N - 1). The insertion 
code is therefore 

proc Insert(T) 
if -MaxSize then error 
N:=N+l ; X [N] :=T 
/* Heap(l,N-1) */ 
SiftUp 
/* Heap(l,N) */ 

Procedure ExtructMin finds the minimum element in 
the set, deletes it, and restructures the array to have 
the heap property. Because the array is a heap, the 
minimum element is in X[l]. The N - 1 elements re- 
maining in the set are now in X[2. .N], which has the 
heap property: we regain Heup(1, NJ in two steps. We 
first move X[N] to X[l] and decrement N; the elements 
of the set are now in X[l N], and Heap@, N) is true. 
The second step calls SiftDown. The code is straightfor- 
ward. 

proc ExtractMin(T) 
if N<l then error 
T := X[l] 

X[l] :=X(N]; N:=N-1 

/* HeaP(2,N) */ 
SiftDown 

I* H-PC 1 ,N) */ 

Both Insert and ExtructMin require O(log N) time when 
applied to N-element heaps. 

A Sorting Algorithm 
Priority queues provide a simple algorithm for sorting 
A[1 ..N]: 

for1 :=ltoNdo 
Insert(A[I]) 

for1 :=ltoNdo 
ExtractMin(A[I]) 

The N Insert and ExtructMin operations have a total cost 
of O(N log N), while the array X[l . .N] used for heaps 
requires N additional words of storage. 

In this section we’ll study the Heapsort algorithm, 
which has several advantages over the obvious ap- 
proach: it uses less code, it uses less space because it 
doesn’t require the auxiliary array, and it may use less 
time (see Problem 2). For purposes of this algorithm 
we’ll assume that SiftUp and SiftDown have been modi- 
fied to operate on heaps in which the largest element is 
at the top; that is easy to accomplish by swapping “<” 
and “>I’ signs. 

The simple algorithm uses two arrays, one for the 
priority queue and one for the elements to be sorted; 
Heapsort saves space by using just one. The single im- 
plementation array X represents two abstract struc- 
tures: a heap at the left end and at the right end the 
sequence of elements, originally in arbitrary order and 
finally sorted. This picture shows the evolution of the 
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array X; the array is drawn horizontally, while time 
marches down the vertical axis. 

Step 1 

Step N 

u Step 2N 

The Heapsort algorithm is a two-stage process: the first 
N steps build the array into a heap, and the next N 
steps extract the elements in decreasing order and 
build the final sorted sequence, right to left. 

The job of the first stage is to build the heap. Its 
invariant can be drawn as 

L Heap ? 

1 I N 

This code establishes Heap(l, N). 

for I := 2 to N do 
/* Inv: Heap(l,I-1) */ 
SiftUp(1) 
/* HeaP(l,I) */ 

The second stage uses the heap to build the sorted 
sequence. Its invariant is 

Heap, % 1 sorted, t 

1 I N 

The loop body maintains the invariant in two opera- 
tions: because X[l] is the largest among the first I ele- 
ments, swapping it with X[I] extends the sorted se- 
quence by one element. That swap compromises the 
heap property, which we regain by sifting down the 
new top element. The code for the second stage is 

for I := N downto 2 do 

I* Heap(l,I) and Sorted(I+l,N) 
and X(1.. I] <= X[I+l..N] */ 

Swap(X(ll, XLII) 
I* Heap(2,1-1) and Sorted(I,N) 

and X[l..I-l] <= X[I..N] */ 

SiftDown(I-1) 

I* Heap(l,I-1) and Sorted(I,N) 
and X[l.. I-l] <= X(I..N] */ 

The complete Heapsort algorithm requires just five 
lines of code. 

for I :=2 toNdo 
SiftUp(1) 

for I :=N downto 2 do 
Swap(X[ll, X(11 
SiftDown(I-1) 

Because the algorithm uses N - 1 SiftUp and SiftDown 

operations, each of cost O(log N), it runs in time 
O(N log N). 

Principles 
Efficiency. The Shape property guarantees that all nodes 
in a heap are within log2N of the root; procedures 
SiftUp and SiftDown have efficient run times precisely 
because the trees are balanced. Heapsort avoids using 
extra space by overlaying two abstract structures (a 
heap and a sequence) in one implementation array. 

Correctness. To write code for a loop we first state its 
invariant precisely; the loop then makes progress to- 
wards termination while preserving its invariant. The 
Shape and Order properties represent a different kind of 
invariant: they are invariant properties of the heap data 
structure. A routine that operates on a heap may as- 
sume that the properties are true when it starts to work 
on the structure, and it must in turn make sure that 
they remain true when it finishes. 

Abstraction. Good engineers distinguish between what 
a component does (the abstraction seen by the user) 
and how it does it (the implementation inside the black 
box). In this column we’ve seen two ways to package 
black boxes: procedural abstraction and abstract data 
types. 

Procedural Abstraction. We can use a sort procedure to 
sort an array without knowing its implementation: we 
view the sort as a single operation. Procedures SiftUp 
and SiftDown provide us with a similar level of abstrac- 
tion: as we built priority queues and heapsort, we 
didn’t care how the procedures worked, but we knew 
what they did (fixing an array with the Heap property 
broken at one end or the other). Good engineering al- 
lowed us to define these black-box components once, 
and then use them to assemble two different kinds of 
systems. 

Abstract Data Types. Built-in data types in program- 
ming languages are abstractly defined by means of a 
mathematical object and operations on the object, to- 
gether with certain limitations: users needn’t know 
about their implementation. Priority queues can be 
viewed in the same way, as shown in Table II. Some 
modern programming languages allow programmers to 
define their own data types, such as priority queues. 
Subsequent code may declare a variable to be of type 
“Priority Queue”; the code sees only the abstraction, 

TABLE II. Integers and Priority Queues as Abstract Data Types 

PROHRTY INTEGERS ~~RIORIPY Qt.&s.’ 

Mathematical Model Integer Set of Inteaers 

Operations Assignment, 
Addition, etc. 

Initialize to empty, 
Insert 

ExtractMin 

Limitations Maximum and Maximum set size, 
minimum size Size of elements 

Implementations Two’s complement, 
Signed decimal 

Sorted array, 
Heap 
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and may not know about its implementation. This dis- 
cipline increases the probability of reusing software. 

Problems 
1. Modify SiftDown to have the following specification. 

proc SiftDown(L,U) 
we Heap(L+l,U) 
post HeaP(L,u) 

What is the run time of the code? Show how it can 
be used to construct an N-element heap in O(N) 
time, and thereby a faster Heapsort with the follow- 
ing structure. 

Step 1 

Step N 

Step 2N 

(Not only is this Heapsort faster than the one in the 
text, it also uses less code.) 

Implement Heapsort to run as quickly as possible 
(see Problem 1, and also consider moving code out of 
loops). How does it compare to other O(N log N) 
sorting algorithms, such as Quicksort and Mergesort? 

How might the heap implementation of priority 
queues be used to solve the following problems? 
How do your answers change when the inputs are 
sorted? 

Construct a Huffman code (such codes are dis- 
cussed in most books on information theory and 
many books on data structures). 
Compute l-he sum of a large set of floating point 
numbers. 
Find the 1000 largest of ten million numbers 
stored on a magnetic tape. 
Merge many small sorted files into one large 
sorted file (this problem arises in implementing a 
disk-based Mergesort program). 

[D.S. Johnson] The bin packing problem calls for as- 
signing a set of N weights (each between zero and 
one) to a minimal number 3f unit-capacity bins. The 
first-fit heuristic for this problem considers the 
weights in the sequence in which they are pre- 
sented, and places each weight in the first bin in 
which it fits, scanning the bins in increasing order. 
Show how a Iheap-like structure can implement this 
heuristic in O(N log N) time. (This problem is dis- 
tantly related. to efficient algorithms for first-fit stor- 

Further Reading 
J.W.J. Williams’s original paper on heaps appeared in 
Communications of the ACM in June 1964, and is still 
fascinating reading today. Even though it is miniature 
by today’s standards (less than a page long), it is large 
by the standards of the time (Floyd’s TREESORT algo- 
rithm in the August 1962 Communications was less than 
a quarter of a page!). 

For a more up-to-date view of heaps, see Tarjan’s 
Data Structures and Network Algorithms, published in 
1983 by the Society for Industrial and Applied Mathe- 
matics. Chapter 3 is devoted to heaps. This monograph 
is a fine introduction to the field described in its title, 
and at only $14.50, you can’t afford not to buy it. 

age allocation, such as those discussed in Exercise 
6.2.4.30 of Knuth’s Sorting and Searching.) 

[E. McCreight] A common implementation of se- 
quential files on disk has each block point to its 
successor, which may be any block on the disk. This 
method requires a constant amount of time to write 
a block (as the file is originally written), to read the 
first block in the file, and to read the Ith block, once 
you have read the 1 - 1” block. Reading the lth block 
therefore requires time proportional to 1. Show how 
by adding just one additional pointer per node, you 
can keep all the other properties, but allow the lth 
block to be read in time proportional to log I. [Hint: 
heaps have implicit pointers from node I to what 
other nodes?] Explain what the algorithm for read- 
ing the Ith block has in common with an algorithm 
for raising a number to the Ifh power in time propor- 
tional to log 1. 

On many computers the most expensive part of a 
binary search program is the division by 2 to find 
the center of the current range. Show how the im- 
plicit trees used for heaps can replace that division 
with a multiplication (assuming that the table has 
been constructed properly). Give algorithms for 
building and searching such a table. 

What are appropriate implementations for a priority 
queue that represents integers in the range 1.. K, 
when the average size of the set is much larger than 
K? 
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