
THANKS, HEAPS

This column is about “heaps,” a data structure that
we’ll use to solve two problems.

Sorting. Heapsort sorts an N-element array in
O(N log N) time and uses just a few words of extra
space.
Priority Queues. Heaps maintain a set of elements un-
der the operations of inserting new elements and ex-
tracting the smallest element in the set; each opera-
tion requires O(log N) time.

For both problems, heaps are simple to code and com-
putationally efficient.

Now that the advertising is out of the way, I can tell
you the real reason that I’m writing this column: heaps
have bothered me for a dozen years. The basic idea is
elegant, and the data structure is eminently practical.
I’ve implemented heaps several times in application
programs. But I never felt satisfied with my code: it was
lengthy and clumsy, fraught with special cases and
bugs. Although I didn’t know what to do about it, I was
deeply upset that a beautiful idea ended up as an ugly
program.

Several weeks ago I taught a three-day course on
“The Science of Programming,” using David Gries’s ex-
cellent text of that title. As the last exercise in the
course, we used the techniques of program verification
to write code for heaps. Imagine my delight when the
result was a short, clean, elegant program! This column
is my attempt to communicate three things: the funda-
mental idea of heaps, a sweet program that implements
the idea, and the powerful programming techniques
that lead from the former to the latter.

This column has a “bottom-up” organization: we’ll
start at the details and work up to the big picture. The
next two sections describe the heap data structure and
two routines to operate on it. The two subsequent sec-
tions use those tools to solve the problems mentioned
above.

The Data Structure
A heap is a data structure for representing a collection
of items.’ Our examples will represent numbers, but
the elements in a heap may be of any ordered type.

’ In other computing contexts. the word “heap” refers to a large segment of
memory from which variable-size nodes are allocated: we’ll ignore that inter-
pretation in this column.

0 1985 ACM 0001.0782/85/0300-0245 750

Here’s a heap of 12 integers:

A21
,20\ A

7, 2'\ :'
22

35 40 26 51 19

That binary tree is a heap by virtue of two properties.
We’ll call the first property Order: the value at any
node is less than or equal to the values of the node’s
children. This implies that the least element of the set
is at the root of the tree (12 in the example), but it
doesn’t say anything about the relative order of left and
right children. The second heap property is Shape; the
idea is captured by the picture

In words, a binary tree with the Shape property has its
terminal nodes on at most two levels, with those on the
bottom level as far left as possible. There are no “holes”
in the tree; if it contains N nodes, no node is of distance
more than log,N from the root. We’ll soon see how the
two properties together are restrictive enough to allow
us to find the minimum element in a set, but lax
enough so that we can efficiently reorganize the struc-
ture after inserting or deleting an element.

Let’s turn now from the abstract properties of heaps
to their implementation. There are, of course, many
possible representations of binary trees, such as records
and pointers. We’ll use an implementation that is suita-
ble only for binary trees with the Shape property, but is
quite effective for that special case. A IZ-element tree
with Shape is implemented in the l&element array X as
follows:

,L
X(5

,L
x13

x141 XI51 X 161 x171

x,4 >[9] X(i]X~ll] X,A]

In this implicit representation of a binary tree, the root

March 1985 Volume 28 Number 3 Communications of the ACM 245

Programming Pearls

is in X[l], its two children are in X[Z] and X[3], and so
on. Various functions on the tree are defined as follows.

root = 1
value(I) = X[I]
leftchild = 2*1
rightchild(1) = 2*L+l
parent(I) =: I div 2
null(I) = (I<l) or (I>N)

An N-element implicit tree necessarily has the Shape
property: there is no provision for missing elements.

This picture shows a ‘12-element heap and its imple-
mentation as an implicit tree in a 12-element array.

A21
/““\ A

,/““, /“: :’ 22

35 40 26 51 19

I12 20 15 29 23 17 22 35 40 26 51 19 1
1 12

Because the Shape property is guaranteed by the repre-
sentation, from now on we’ll use the name Heap to
mean that the value in any node is greater than or
equal to the value in its parent. Phrased precisely, the
array X[l . . N] has the Heap property if

V*ri&J X[i div 21 5 X[i]

In the next section we’ll want to talk about X[L..U]
having the heap property: we’ll define Heap@, U) as

V2LsisU X[i div 21 5 X[i]

Two Critical Routines
In this section we’ll study two routines for fixing an
array whose Heap property has been broken at one end
or the other. Both routines are efficient: they require
roughly log N time to reorganize a heap of N elements.
In the bottom-up spirit of this column, we’ll define the
routines here and then use them in the next sections.

Placing an arbitrary element in X[N] when X[l..N-I]
is a heap will probably not yield Heap(1, N); establish-
ing the property is the job of procedure SiftLIp. Its name
describes its strategy: we sift the new element up the
tree as far as it should go, swapping it with its parent
along the way. (Take a second to contemplate which
way is up: the root of the heap is at the top of the tree,
and therefore X[N] is at the bottom of the array.) The

246 Communications of the ACM

12 - 12 12 _ - - - ,‘\ A\
A20\, A\ /““\

15
\ A20\ ‘-3%

13

/““I ;“: :’ 22 22 22

35 40 26 51 19 13 b
/““\ /“‘\ 6 13 /““I /“‘\ :‘\

35 40 26 51 19 17 35 40 26 51 19 17

FIGURE 1. Element 13 is Sifted Up the Heap (left to right)

process is illustrated in Figure 1, which shows the new
element 13 being sifted up the heap until it is at its
proper position as the right child of the root. The pro-
cess continues until the circled node is greater than or
equal to its parent (as in Figure 1) or it is at the root of
the tree. If the process starts with Heap(1, N - 1) true, it
leaves Heap(1, N) true.

With that intuitive background, let’s write the code.
The sifting process calls for a loop, so we’ll start with
the loop invariant. In Figure 1, the heap property holds
everywhere in the tree except between the circled
node and its parent. If we let I be the index of the
circled node, then we can use the invariant

loop
/* Inv: Heap(l,N) except (perhaps)

between I and its parent */

Because we originally have Heap(1, N - l), we initialize
the loop by the assignment I : =N .

The job of the looi, is to check whether we have
finished yet (either by the circled node being at the top
of the heap or greater than or equal to its parent) and, if
not, to make progress towards termination. The invar-
iant says that the Heap property holds everywhere ex-
cept (perhaps) between I and its parent. If the test I = 1
is true, then I has no parent and the Heap property thus
holds everywhere: the loop may therefore terminate.
When I does have a parent, we’ll let P be the parent’s
index by assigning P : = I div 2. If X[P] I X[I]
then the heap property holds everywhere, and the loop
may terminate.

If, on the other hand, I is out of order with its parent,
then we swap X[I] and X[P]. This step is illustrated in
the following picture, in which node I is circled.

BEFORE:
a and b are

6
a c

out of order
d e

&IER:

All nodes
are in order /‘\

c

d e

After the swap, all five elements are in the proper or-
der: b c d and b < e because b was originally higher in
the heap, u < b because the test X[P] 5 X[I] failed, and
a < c by combining a < b and b < c. This gives the heap
property everywhere in the array except (possibly) be-

March 1985 Volume 28 Number 3

Progranfmirfg Pearls

A ,lS

/““\ A /“\ --A 18 /““\ 17
\

/""\ /"\ :' 22 7, ?'\ / 17 22 7'1 ?: 6 18 22

35 40 26 51 19 35 40 26 51 19 35 40 26 51 19

FIGURE 2. Element 18 is Sifted Down the Heap (left to right)

tween P and its parent; we therefore reestablish the
invariant by assigning I : =P .

The above pieces are assembled in Program 1, which
runs in time proportional to log N because the heap has
that many levels. The “pre” and “post” lines character-
ize the procedure: if the precondition is true before the
routine is called then the post-condition will be true
afterwards.

proc Si.ftUp(N)
we Heap(l,N-1) and N>O
post H-PC 1 ,N)

I := N
loop

/* Inv: Heap(l,N) except (perhaps)
between I and its parent */

if I=1 then break I

P := I div 2
if X[P] <= X[I] then break
swap(x[pJ, X[IJ)
I := P

endloop

loop
/* Inv: Heap(l,N) except

(perhaps)
between I and its
(0, 1 or 2) children */

The loop is similar to SiftUp’s. We first check whether I
has any children, and terminate the loop if it has none.
Now comes the subtle part: if I does have (one or two)
children, then we set the variable C to index the least
child of 1. Finally, we either terminate the loop if
X[I] 5 X[C], or progress towards the bottom by swapping
X[Z] and X[C] and assigning I : =C .

PROGRAM 1. Procedure SiftUP The complete SiftDown routine is presented as Pro-
gram 2. A case analysis like that done for SiftUp shows
that the swap operation leaves the heap property true
everywhere except (possibly) between C and its chil-
dren. Like SiftUp, this procedure takes time propor-
tional to log N, because it does a fixed amount of work

Assigning a new value to X[l] when X[l . .N] is a
heap leaves Heap@, N); Procedure SiftDown’s job is to
make Heap(1, N) true. It does so by sifting Xfl] down
the array until either i has no children or itis less than at each level of the heap.

or equal to the children it does have. Figure 2 shows 18
being sifted down the heap until it is finally less than
its single child, 19. When an element is sifted up, it
always goes toward the root. Sifting down is more com-
plicated: an out-of-order element is swapped with its
lesser child.

The pictures illustrate the invariant of the SiftDown
loop: the heap property holds everywhere except, possi-
bly, between the circled node and its children.

proc SiftDown
we Heap(2,N) and lQ=O
post HeaPt 1 ,N)

I := 1

loop
/* Inv: Heap(l,N) except (perhaps) between

I and its (0, 1 or 2) children */
c := 2*1

if E-N then break
/* C is the left child of I */
if C-F1 <= N then

/* C+l is the right child of I */
if X[Ci-l] < X[C] then

C := c+1
/* C is the least child of I */
if X[I] <= X[C] then break
Swap(xlCJ, XIII)
I := c

endloop

PROGRAM 2. Procedure SiftDown

March 7985 Volume 28 Number 3 Communications of the ACM 241

Programming Pearl5

Priority Queues
There are two sides to any data structure: its abstraction
tells what it does (a queue maintains a sequence of
elements under the operations of insert and extract],
while its implementation tells how it does it (with an
array or linked list, perhaps). We’ll start our study of
priority queues by specifying their abstract properties,
and then turn to implementations.

A priority queue manipulates an initially empty set’
of elements, which we’ll call S. The Insert procedure
inserts a new element into th.e set; we can define that
more precisely in terms of its pre- and post-conditions.

proc Insert(T)
pre ISI < MaxSize
post Current S = Original SU(T]

Procedure Extructh4in deletes the smallest element in
the set and returns that value in its single parameter T.

proc ExtractMin(T)
pre ISI > 0
post Original S = Current SU(T]

and T=min(Original S)

This procedure could, of course, be modified to yield
the maximum element, or any extreme element under
a total ordering,

Priority queues are useful in many applications. An
operating system may use such a structure to represent
a set of tasks; they are inserted in an arbitrary order,
and the task with highest priority is extracted to be
executed. In discrete event simulation, the elements
are times of events: the simulation loop extracts the
events with the least (next) time, and possibly adds
more events to the queue. In both applications the basic
priority queue must be augmented to contain additional
information beyond the elements in the set; we’ll ig-
nore that “implementation detail” in our discussion.

Sequential structures such as arrays or linked lists
are obvious candidates for implementing priority
queues. If the sequence is sorted it is easy to extract the
minimum but hard to insert a new element; the situa-
tion is reversed for unsorted structures. Table I shows
the performance of the structures on an N-element set.

TABLE I. Priority Queue Implementation

Sorted Sequence ON O(l) OW’)
Heaps O(b N) O(Ioe Nf O(N log N)
Unsorted Sequence O(l) O(Nj owl

The heap implementation of priority queues provides
a middle ground between the two extremes. It repre-
sents an N-e1emen.t set in the array X[l . . N] with the
heap property, where X is declared as X[l . .MuxSize].

‘Because the set can contain multiple copies of the same element. we would
be more precise to call it a “multiset” or a “bag.” The union operator is
defined so that (2.31 U 121 = 122.3).

We initialize the set to be empty by assignment N: =O .
To insert a new element we increment N and place the
new element in X[N]. That gives the situation that
SiftUp was designed to fix: Heup(1, N - 1). The insertion
code is therefore

proc Insert(T)
if -MaxSize then error
N:=N+l ; X [N] :=T
/* Heap(l,N-1) */
SiftUp
/* Heap(l,N) */

Procedure ExtructMin finds the minimum element in
the set, deletes it, and restructures the array to have
the heap property. Because the array is a heap, the
minimum element is in X[l]. The N - 1 elements re-
maining in the set are now in X[2. .N], which has the
heap property: we regain Heup(1, NJ in two steps. We
first move X[N] to X[l] and decrement N; the elements
of the set are now in X[l N], and Heap@, N) is true.
The second step calls SiftDown. The code is straightfor-
ward.

proc ExtractMin(T)
if N<l then error
T := X[l]

X[l] :=X(N]; N:=N-1

/* HeaP(2,N) */
SiftDown

I* H-PC 1 ,N) */

Both Insert and ExtructMin require O(log N) time when
applied to N-element heaps.

A Sorting Algorithm
Priority queues provide a simple algorithm for sorting
A[1 ..N]:

for1 :=ltoNdo
Insert(A[I])

for1 :=ltoNdo
ExtractMin(A[I])

The N Insert and ExtructMin operations have a total cost
of O(N log N), while the array X[l . .N] used for heaps
requires N additional words of storage.

In this section we’ll study the Heapsort algorithm,
which has several advantages over the obvious ap-
proach: it uses less code, it uses less space because it
doesn’t require the auxiliary array, and it may use less
time (see Problem 2). For purposes of this algorithm
we’ll assume that SiftUp and SiftDown have been modi-
fied to operate on heaps in which the largest element is
at the top; that is easy to accomplish by swapping “<”
and “>I’ signs.

The simple algorithm uses two arrays, one for the
priority queue and one for the elements to be sorted;
Heapsort saves space by using just one. The single im-
plementation array X represents two abstract struc-
tures: a heap at the left end and at the right end the
sequence of elements, originally in arbitrary order and
finally sorted. This picture shows the evolution of the

248 Communications of the ACM March 1985 Volume 28 Number 3

Programmiq Pearls

array X; the array is drawn horizontally, while time
marches down the vertical axis.

Step 1

Step N

u Step 2N

The Heapsort algorithm is a two-stage process: the first
N steps build the array into a heap, and the next N
steps extract the elements in decreasing order and
build the final sorted sequence, right to left.

The job of the first stage is to build the heap. Its
invariant can be drawn as

L Heap ?

1 I N

This code establishes Heap(l, N).

for I := 2 to N do
/* Inv: Heap(l,I-1) */
SiftUp(1)
/* HeaP(l,I) */

The second stage uses the heap to build the sorted
sequence. Its invariant is

Heap, % 1 sorted, t

1 I N

The loop body maintains the invariant in two opera-
tions: because X[l] is the largest among the first I ele-
ments, swapping it with X[I] extends the sorted se-
quence by one element. That swap compromises the
heap property, which we regain by sifting down the
new top element. The code for the second stage is

for I := N downto 2 do

I* Heap(l,I) and Sorted(I+l,N)
and X(1.. I] <= X[I+l..N] */

Swap(X(ll, XLII)
I* Heap(2,1-1) and Sorted(I,N)

and X[l..I-l] <= X[I..N] */

SiftDown(I-1)

I* Heap(l,I-1) and Sorted(I,N)
and X[l.. I-l] <= X(I..N] */

The complete Heapsort algorithm requires just five
lines of code.

for I :=2 toNdo
SiftUp(1)

for I :=N downto 2 do
Swap(X[ll, X(11
SiftDown(I-1)

Because the algorithm uses N - 1 SiftUp and SiftDown

operations, each of cost O(log N), it runs in time
O(N log N).

Principles
Efficiency. The Shape property guarantees that all nodes
in a heap are within log2N of the root; procedures
SiftUp and SiftDown have efficient run times precisely
because the trees are balanced. Heapsort avoids using
extra space by overlaying two abstract structures (a
heap and a sequence) in one implementation array.

Correctness. To write code for a loop we first state its
invariant precisely; the loop then makes progress to-
wards termination while preserving its invariant. The
Shape and Order properties represent a different kind of
invariant: they are invariant properties of the heap data
structure. A routine that operates on a heap may as-
sume that the properties are true when it starts to work
on the structure, and it must in turn make sure that
they remain true when it finishes.

Abstraction. Good engineers distinguish between what
a component does (the abstraction seen by the user)
and how it does it (the implementation inside the black
box). In this column we’ve seen two ways to package
black boxes: procedural abstraction and abstract data
types.

Procedural Abstraction. We can use a sort procedure to
sort an array without knowing its implementation: we
view the sort as a single operation. Procedures SiftUp
and SiftDown provide us with a similar level of abstrac-
tion: as we built priority queues and heapsort, we
didn’t care how the procedures worked, but we knew
what they did (fixing an array with the Heap property
broken at one end or the other). Good engineering al-
lowed us to define these black-box components once,
and then use them to assemble two different kinds of
systems.

Abstract Data Types. Built-in data types in program-
ming languages are abstractly defined by means of a
mathematical object and operations on the object, to-
gether with certain limitations: users needn’t know
about their implementation. Priority queues can be
viewed in the same way, as shown in Table II. Some
modern programming languages allow programmers to
define their own data types, such as priority queues.
Subsequent code may declare a variable to be of type
“Priority Queue”; the code sees only the abstraction,

TABLE II. Integers and Priority Queues as Abstract Data Types

PROHRTY INTEGERS ~~RIORIPY Qt.&s.’

Mathematical Model Integer Set of Inteaers

Operations Assignment,
Addition, etc.

Initialize to empty,
Insert

ExtractMin

Limitations Maximum and Maximum set size,
minimum size Size of elements

Implementations Two’s complement,
Signed decimal

Sorted array,
Heap

March 1985 Volume 28 Number 3 Communications of the ACM 249

Programming Pearls

and may not know about its implementation. This dis-
cipline increases the probability of reusing software.

Problems
1. Modify SiftDown to have the following specification.

proc SiftDown(L,U)
we Heap(L+l,U)
post HeaP(L,u)

What is the run time of the code? Show how it can
be used to construct an N-element heap in O(N)
time, and thereby a faster Heapsort with the follow-
ing structure.

Step 1

Step N

Step 2N

(Not only is this Heapsort faster than the one in the
text, it also uses less code.)

Implement Heapsort to run as quickly as possible
(see Problem 1, and also consider moving code out of
loops). How does it compare to other O(N log N)
sorting algorithms, such as Quicksort and Mergesort?

How might the heap implementation of priority
queues be used to solve the following problems?
How do your answers change when the inputs are
sorted?

Construct a Huffman code (such codes are dis-
cussed in most books on information theory and
many books on data structures).
Compute l-he sum of a large set of floating point
numbers.
Find the 1000 largest of ten million numbers
stored on a magnetic tape.
Merge many small sorted files into one large
sorted file (this problem arises in implementing a
disk-based Mergesort program).

[D.S. Johnson] The bin packing problem calls for as-
signing a set of N weights (each between zero and
one) to a minimal number 3f unit-capacity bins. The
first-fit heuristic for this problem considers the
weights in the sequence in which they are pre-
sented, and places each weight in the first bin in
which it fits, scanning the bins in increasing order.
Show how a Iheap-like structure can implement this
heuristic in O(N log N) time. (This problem is dis-
tantly related. to efficient algorithms for first-fit stor-

Further Reading
J.W.J. Williams’s original paper on heaps appeared in
Communications of the ACM in June 1964, and is still
fascinating reading today. Even though it is miniature
by today’s standards (less than a page long), it is large
by the standards of the time (Floyd’s TREESORT algo-
rithm in the August 1962 Communications was less than
a quarter of a page!).

For a more up-to-date view of heaps, see Tarjan’s
Data Structures and Network Algorithms, published in
1983 by the Society for Industrial and Applied Mathe-
matics. Chapter 3 is devoted to heaps. This monograph
is a fine introduction to the field described in its title,
and at only $14.50, you can’t afford not to buy it.

age allocation, such as those discussed in Exercise
6.2.4.30 of Knuth’s Sorting and Searching.)

[E. McCreight] A common implementation of se-
quential files on disk has each block point to its
successor, which may be any block on the disk. This
method requires a constant amount of time to write
a block (as the file is originally written), to read the
first block in the file, and to read the Ith block, once
you have read the 1 - 1” block. Reading the lth block
therefore requires time proportional to 1. Show how
by adding just one additional pointer per node, you
can keep all the other properties, but allow the lth
block to be read in time proportional to log I. [Hint:
heaps have implicit pointers from node I to what
other nodes?] Explain what the algorithm for read-
ing the Ith block has in common with an algorithm
for raising a number to the Ifh power in time propor-
tional to log 1.

On many computers the most expensive part of a
binary search program is the division by 2 to find
the center of the current range. Show how the im-
plicit trees used for heaps can replace that division
with a multiplication (assuming that the table has
been constructed properly). Give algorithms for
building and searching such a table.

What are appropriate implementations for a priority
queue that represents integers in the range 1.. K,
when the average size of the set is much larger than
K?

For Correspondence: Jon Bentley, AT&T Bell Laboratories, Room E-317,
600 Mountain Avenue, Murray Hill, NJ 07974.

Permission to conv without fee all or oart of this material is granted
provided that the-copies are not made’ or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear. and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, OP to
republish, requires a fee and/or specific permission.

250 Communications of the ACM March 1985 Volume 28 Number 3

