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1. Introduction

A prioriy queue is an abstract data type consisting of a finite set P over a

universe U of elements. With each element x ● U is associated a value, key(x),

from a totally ordered domain (D, <). The total order on keys induces a

partial order on the elements, also denoted by <. The priority queue has the

following operations:

EMPTY?: Returns true if P = @, false otherwise.

INSERT( X): Sets P := P U {x}.

DELETE _ MIN: Sets P := P – {y} and returns y, where y is a minimal element

in P.
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(We omit a MAIU_EMP’IY operation for setting P := 0, since it can be easily

simulated using EMPTY? and DELETE _ MIN.) We assume that the elements

inserted (though not necessarily their values) are all distinct. Priority queues

find application in discrete event simulation, computational geometry, shortest

path computations, and many other areas of computer science.
A simple implementation of priority queues keeps the elements in an

ordered list. An insertion is performed by binary search using [log h] compar-

isons when it yields a list of size h, and the remaining operations take no

comparisons.1 However, the time per insertion is ~(h), making the algorithm

unattractive in practice for all but very small queues.

The heap [Aho et al., 1974] is a standard data structure for implementing

priority queues which, like the ordered list, uses O(log h) comparisons per

operation, but the time per operation is linear in the number of comparisons

and so is also O(log h). Indeed, heaps are so common as to be often identified

with the abstract data type that they implement. So that there is no confusion,

by a “heap” we mean a balanced binary tree with elements x, labeling each

node i such that for any nodes i, j, if i is an ancestor of j, then key(x, ) <

key(xl).

One of the first applications of heaps was to an algorithm for sorting n items

using O(n log n) comparisons [Williams, 1964]. Since Q( H log n) is a lower

bound on the number of comparisons for sorting, it follows that the amortized

cost z of a priority queue operation is fl(log n) in the worst case, where n is the

length of the operation sequence. Since heaps achieve this bound, they are in

some sense optimal.

A significant property of heaps is that they exploit the ability to access

memory randomly. The pattern of memory accesses is dynamically determined

by the data, and there is no apparent way of maintaining the logarithmic

amortized operation cost when implementing heaps on more restrictive types

of memory such as tapes or stacks.

Other data structures, such as 2–3 trees, etc., can also implement priority

queues with similar complexity bounds, but all require random-access storage.

Thus, priority queues have seemed to be an example of an abstract data type

whose efficient implementation required random-access storage, and heaps are

a simple implementation that seemed optimal.

In this paper, we show that both intuitions are wrong by presenting a new

priority queue algorithm, Fishspear, which can be implemented with sequential

storage (using a fixed number of pushdown stacks), and which is more efficient

than a heap in a sense that is made precise in the next section. Although it has

similar amortized efficiency to a heap in the worst case ( O(log n) comparisons

per queue operation), the number of comparisons is “little-oh” of the number
made by a heap for many classes of input sequences that are likely to occur m

practice. For example, if the queue builds to a certain size h and then receives

alternately a very large number of INSERT and DELETE_ MIN operations, where

the keys of the elements to be inserted are drawn randomly with uniform

distribution from the unit interval, then the amortized number of comparisons

made by a heap for each such pair is Q(log h), whereas the amortized cost for

‘ Logarithms are taken to the base 2 unless spec]fied otherwise.
‘The amortized cost of a sequence of opemtlons is the total cost of the sequence divided by the
number of operations [Sleator and Tarjan, 1985a; 1985b].
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Fishspear is O(l). (The queue at any time during this procedure contains the h

largest elements ever inserted, so the value of the smallest of these approaches

1. The probability that a newly inserted element will very soon be deleted

becomes large, and Fishspear is particularly efficient in such a situation.)

More generally, the number of comparisons required by Fishspear depends

only on the size of the “active” part of the queue, not on the overall size. In the

above example, the active part shrinks over time as the queue fills with larger

and larger elements. This notion is quantified more precisely in the next

section.

Fishspear can be implemented using sequential storage such as tapes or

stacks so that the overall run time is proportional to the total number of

comparisons, Sequential storage algorithms, such as Fishspear, are attractive

on typical paged computer systems since they tend to exhibit better paging

performance than random-access algorithms, such as heaps. This, together with

the better behavior on common but restricted classes of operation sequences,

could make Fishspear an attractive alternative to heaps in certain practical

situations.

The principal disadvantages of Fishspear are that it is more complicated to

implement than a heap, and the overhead per comparison may be greater.

Fishspear is similar to self-adjusting heaps [Slentor and Tarjan, 1985b; 1986]

in that the behavior depends dynamically on the data and the cost per

operation is low only in the amortized sense—individual operations can take

time Q(n) even though this occurs only rarely. Important differences are that

self-adjusting heaps support an additional operation, MELD, which Fishspear

does not, whereas Fishspear does not require random-access storage. We do

not know the relative performance of the two algorithms on restricted classes

of operation sequences.

2. Performance Bounds

New criteria are needed to measure adequately the performance of priority

queue algorithms. The speed of sorting algorithms, for example, is often

expressed in terms of the worst-case or average number of comparisons used in

sorting n input elements. They are useful expressions in that context, since, in

many applications, it is reasonable to assume that all initial orderings of the

inputs are about equally probable, and thus the parameter n provides an

adequate description of the problem.

The case of priority queues presents no such single natural parameter. The

total number of INSERT and DELETE_ MIN operations performed is one possible

measure, but, in many applications, the maximum length of the queue attained

is expected to be far less than the total number of elements inserted. We

require a measure more sensitive to the demands made on the priority queue.

We also need the further assurance that the running time can be closely

related to the number of comparisons made, so that the more combinatorial

analysis of the number of comparisons yields results on program performance.

A performance measure we shall use is based on the sequence h =

(}z,, . . . . /zm) denoting the size of the queue immediately after the insertion of
each of n elements.3 The sequence h is called the size profile. By a mn of the

3Here the parameter n is the number of insertions, not the total length of the operation
sequence.
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priority queue, we shall mean any sequence of priority queue operations for

which DELETE _ MIN is never applied to an empty queue and the queue is

initially and finally empty. For a run with size profile h, the usual heap

implementation may use log h, comparisons at the jth insertion and a corre-

sponding 2 log h, comparisons for that first subsequent deletion that takes the

queue from size h] down to size h, – 1. Hence, an upper bound for the

worst-case number of comparisons is approximately 3X log hJ. (More compli-

cated heap implementations reduce this bound to Z(log h, + O(log log h,))

[Carlsson, 1987; Gonnet and Munro, 1986].) For the naive list implementation,

the worst case is Z [log h, 1. As a lower bound, we have the following result,

which also appears in Sleator and Tarjan [1986].

THEOREM 1. The worst-case number of comparisons zised by any prioriq queue

algorithm on runs with size profile h is at least

PROOF. Consider all possible queue runs with size profile h and input

elements with distinct values. The priority queue algorithm is required to

determine the unique correct output order of the elements. Elements simulta-

neously in the queue are output in order, so each relative ordering of a new

element with respect to the elements currently in the queue yields a distinct

output sequence. There are h, places where the jth element can be inserted

relative to the other elements in the queue at that time, and each of these

yields a different output order; hence, the number of runs which must be

distinguished is Jlh,. By the usual information-theoretic argument, any algo-

rithm requires at least [log ~ hJ ] = [x log hJ ] binary comparisons to distinguish

among these runs. ❑

For a more refined complexity analysis, we would like to define the depth of

an element in the queue at any particular time. When the input elements have

distinct values the definition is straightforward, but for the general case a

careful treatment is needed. In Fishspear, it is convenient to operate a LIFO

regime, but in general the treatment of elements with equal values in a priority

queue may be quite arbitrary. For definiteness, we impose the following a

posteriori total ordering on queue elements in a particular run.

Fix a run and let x, be the ith element inserted into the queue. We

strengthen the given ordering “ < “ on the element values to a total order on
the elements x, as follows. Define .x, < xj if key( x, ) < key(x, ), or if key( x,) =

key( x, ) and X, is output before x,. (This is well defined since we assume all
elements are distinct.) The action of the priority queue is consistent with this

total order. We define the depth of x, at a time when it is in the queue as one

plus the number of elements xl with Xj < x, in the queue at that time.

There are several applications in which most of the elements inserted attain

only a relatively shallow depth during their residence in the queue. An example

is when the values of input elements are drawn from a uniform distribution and

the profile remains at an approximately constant level for long periods. We

would like to take advantage of such behavior with an algorithm that does not

disturb the deeper elements unnecessarily.
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We now define the max-depthprofile m for a run as the sequence (m ~, m2 . ..).

where mJ is the maximum depth attained in the queue by element xl during

the run. While the usual heap implementations appear to derive no advantage

when m << h, our main theorem shows that Fishspear requires at most

c i logmj + O(n)
j=l

comparisons on a run with n insertions (and n deletions), and the coefficient c

is less than 2.4.

We may obtain as a corollary that this upper bound for Fishspear holds when

“m,” is replaced by “h]”. Although an individual element can attain a depth in

the queue much greater than the size of the queue when it was first inserted,

the following shows that, on the average, the m’s are no bigger than the h’s.

THEOREM 2. Consider a priorig queue run with max-depth profile m and size

profile h. There exists a permutation w such that m, < hw(,) for all i, 1< i < n.

PROOF. Given any run in which the values of the xl are not all distinct,

there is another run with the same sequence of priority queue operations but

different elements in which all elements inserted have distinct values, and the

total ordering < (for corresponding elements in the two runs) is the same in

both. This means that the input–output behavior of the queue and the

max-depth profile is the same in both runs. So without loss of generality, we

may suppose that the values of the elements are all distinct and that the

element orderings < and + coincide.

Suppose there is some pair i, j with i < j and x, > Xj, where x,, xl are

adjacent in the total ordering. We shall consider the effect of interchanging x,

and x, in this ordering. Thus, we shall consider a new run identical to the

original except that the ith element inserted, i,, is xl, and the jth element

inserted, ~,, is x,. We let fit and m, denote the maximum depth attained by 2,

and ~1, respectively, in this new run.

If, m the original run, xl leaves the queue before x, enters, the interchange

would not affect ml or m,, so iii, = m, and ti, = mJ. Otherwise, x, and x, are

simultaneously in the queue. Let M be the maximum depth attained by x,

before Xj enters and let M’ and M“ be the original maximum depths that were

attained by x, and x, respectively after this time. Note that M’ > M“ since

xl > x, and x, leaves the queue first. Thus, in the original run,

m, = max{lf, M’} and ml = M“,

while in the new run,

R, = max{lf, M“} and iii] =M’.

We consider two cases and compare the pairs {ml, m,} and {fit, fi,},

(1) M s M’. Then m, = ~j and m, < %,.

(2) M’ s M. Then m, = m, and m] < %].

In each case, the pair {Z,, Ei,}, regarded as a multiset, is equal to {m,, m,} or

is bigger in one element.
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We can repeat this interchange process wherever there is a pair of elements

satisfying the given conditions. The size profile h is unaltered. The final result

will be a FIFO run in which the elements are inserted and deleted in the same

order. For such a run, m, = h, since the maximal depth of any element is its

initial depth. Since each interchange on the way to constructing the FIFO run

could only increase the value of {m,, m2, . . . } as a multiset, the result follows at

once. •l

3. The Fishspear Algorithm

The algorithm that we present in Section 3.2 is one instance of a general class

of (nondeterministic) algorithms that all operate on the same data structure

called a fishspear. The correctness of such algorithms is fairly easy to see. What

is not obvious is that there is a deterministic rule for making choices that leads

to good behavior.

3.1. FISHSPEAR DATA STRUCTURE. The fishspear data stmcture represents a

priority queue as a collection of sorted lists called segments. For segments X

and Y, we define X s Y if key(x) s key(y) for every x = X and y G Y. Note

that if X s Y, Y < Z and Y # 0, then X < Z. A k-barbed j$shspear consists of

(possibly empty) segments U, W~,..., WI and V~,.. ., P’l. Segments U, WL,. ... WI
form the shaft of the spear, and segments P’~,. . ., VI are the barbs of the spear.

The segments satisfy the following conditions:

3.3.1. Fishspear Inuariants

(1) Each segment is sorted in ascending order according to <.

(2) U<~and U<~fork>i>l.

(3)~<~and 14(<~fork>i>j> 1.

A fishspear is illustrated in Figure 1.

Four primitive operations can be performed on a fishspear:

DELErE _ SHARP. Assumes U is nonempty. Deletes and returns the first (i.e.,

smallest) element of U.

PMERGE. Assumes WL is nonempty. Performs a “partial merge” of VA with

WL by comparing the first element in WL with the first element in V~, removing

the smaller one and appending it to U. If V~ is empty, the first element of WL

is appended to U. (In this case, it is convenient for our analysis to consider that

a comparison has been made. Indeed, in some implementations, a comparison

with a “sentinel” element may be the most efficient course.)

BARB _CREATE(X). Creates a new segment Vk+ ~ initialized to (x). Sets

wL+l := U, U = NIL, and k := k + 1. The result is a (k + I)-barbed fishspear.
BARB_ DISPOSE. Assumes k > 0 and WA is empty. If k = 1, appends VI to U.

If k > 1, merges Vk into Vk_,. In either case, sets k t= k – 1.The result is a

(k – 1)-barbed fishspear. (For the same reason as for the PMERGE operation,
we consider the number of comparisons made in a BARB_ DISPOSE to be /V[ I if

k = 1 and lVk/ + lVL_ll, otherwise.)

When comparisons are made between elements with equal value, the out-

come is irrelevant to the correctness of the algorithm or our analysis. For

definiteness, and perhaps slightly improved performance in some cases, we

prefer to take the “smaller”’ to be the more recently inserted element, which

will necessarily be the one in P’k in both PMERGE and BARB_ DISPOSE.



Fishspear: A Priority Queue Algorithm

w~-* FIG. 1. A k-barbed fkhspear.

In addition to the operations above, we assume the existence of primitive

operations for testing and comparing the lengths of the various segments.

LEMMA 1. The primitil~e operations preserve the Fishspear Irulariants.

PROOF. The only nontrivial case is the PMERGE. The invariants follow

because the element x that is appended to U satisfies U < x s ~, ~, for

all i. ❑

It is easy to implement a priority queue with the help of the above primitives

if efficiency is not an issue. The priority queue operation EMPTY? corresponds

to the test U = 0, provided that U is nonempty whenever the queue is nonempty.

INSERT(X) can be performed by a BARB_ CREATE(X) on the fishspear data

structure. For DELETE _ MIN, an application of DELETE_ SHARP suffices, provided

that U is nonempy. The following algorithm is a lazy approach to making sure

U is nonempty whenever the queue is nonempty:

if U is empty then begin

while k > 0 and W~ is empty do BARB _DISPOSE;

if k > 0 then PMERGE

end

Performing this code before every EMPTY? and DELETE_MIN operation will

result in a correct, albeit inefficient, priority queue algorithm.

It is easy to construct examples which cause the above code to make 0(n2)

comparisons on an n-element input sequence. For example, such behavior

results on any sequence of n insertions followed by n DELETE_ MIN operations.

The n insertions produce an n-barbed fishspear with one element in each barb

and an empty shaft. At the time of the first DIELETE _ MIN, the above code

combines all n barbs in a series of unbalanced merges requiring 0( n2 )

comparisons.

3.2. A PARTICULAR ALGORITHM. The strategy of our algorithm is to per-

form PMERGE and BARB_ DISPOSE operations selectively between priority queue

operations so as to maintain a balance on the sizes of the various segments of

the fishspear. Exactly what kind of balance our algorithm actually achieves is

unclear. Through an involved analysis, we provide an upper bound on the total

number of comparisons, but we have been unable to obtain a simple inductive

condition on the fishspear which our algorithm preserves and from which our

bound follows.

Because of the stack-like quality of the fishspear, it is natural to present our

algorithm recursively. However, it is not the queue operations such as INSERT
and DELETE _ MIN that are defined recursively but rather a “Fishspear Process”

FPR that runs autonomously, massaging the fishspear and processing priority

queue operations. In other words, we regard FPR as a black box to which we

send priority queue operations to be performed and which sends answers back

to us in response to those operations. FPR is separate from the “User” process
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FIG. 2. Process structure of the Flshspear s.lgo-
queue operations

User
rithm.

FPR

returned values

which is issuing the priority queue operations, although FPR could be imple-

mented as a coroutine just as well. This view is illustrated in Figure 2.

We assume two synchronized primitives for interprocess communication,

SEND(x) and RECEIVE, where x is a message, (cf. CSP [Hoare, 1978]). A process

executing RECEIVE will wait until the other process is ready to execute SEND(X)

for some x, at which time the RECEIVE operation returns x as its value and

both processes continue. Similarly, a process executing SEND(X) is forced to

wait until the other process is ready to execute RECEIVE.

Messages are either “requests” or “responses.” A request is an element of

D U {’empty?’, ‘delete’}, a response is an element of D U {(true’, ‘false’}. The

‘empty?’ request receives the response ‘true’ or ‘false’ as appropriate. The

‘delete’ request corresponds to the DELETE_MIN operation and receives the

response x, where x G l) is the deleted minimum element. An operation

INSERT(x), for x E ~, is performed by sending the request x and receives no

response. It is convenient to define the following function on requests:

(‘insert’ if r~D,
0P(r) = ~

if r G {’empty?’, ‘delete’}.

We assume process User performs RECEIVE immediately following each

sEND(’empty?’) and SEND(”deiete’) request, in order to obtain the response.

FPR maintains two pieces of global data: An integer k and a k-barbed

fishspear stored in variables U, ~, an ~, 1 s j s k, as described above. All of

the manipulations of this data are performed by the four fishspear primitives,

which are invoked from time to time by FPR.

The top-level code MA]NR for process FPR is shown in Figure 3. Braces { . ..}

are used in the code to delimit comments.

The heart of the algorithm is the recursive procedure S. It performs one or

more RECEIVE operations, carries out the actions specified by the messages

received, responds to each ‘delete’ or ‘empty?’ request by issuing a SEND with

the answer, and modifies the fishspear to reflect the changes in the queue

contents.

The code for S is given in Figure 4. The constant ~ is a tuning parameter.

We are able to prove the best worst-case bounds for @ = 0.7034 ..., but any

value strictly between O and 1 yields a correct algorithm. In this program, and

elsewhere in this paper, we use the convention that segments and sets are
named by uppercase letters and their cardinalities are denoted by the corre-

sponding lowercase letter. Thus, u denotes the length of U, etc.

3.3. CORRECTNESS OF FPR. To show that algorithm FPR correctly imple-

ments a priority queue, we must show that it uses the four fishspear primitives

correctly and that it always continues to process new inputs.

We begin by examining the recursive structure of FPR and the actions which

it performs in more detail. The top-level procedure MAINR (see Figure 3)

repeatedly calls the recursive procedure S. Each instance of S may make one

or more recursive calls on itself. An instance of a call on S is an activation.
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Procedure MAINR:

{ Initially k = O and U = 0 } FIG. 3. The top-level driver

repeat S forever

Procedure S:

1.

2.
3.
4.
5.
6.
7.
8.
9.

10.

11.
1~.

13.

14.

15.

16.

17.

18.

19.

20.

local variable lJ \
b:=[pul ““””” ””””””””””””””””””””””’””

. . . . . . . . . . . . . . . a

repeat

z := RECEIVE

case OP(Z) of

‘empty?’:

SEND(U = O)
done := false

‘delete’:

SEND(DELETE5HARP)

done := (u = O)

‘insert’:

BARB.CREATE(Z)
. . . . . . . . . . . . . . . . . . . . . . . . . a’

while wk >0 do “

if vk ~ u or u ~ b then PMERGE

else {v~ < u < b} S
. . . . . . . . . . . . . . . . . . . . . . . . w’

BARB_DISPOSE “ “ “ “ “ “ “ “

done := true

end-case

until done
. ..W

FIG. 4.

We collect some useful

LEMMA 2

(1) If CO1’ZtrOziS ill MAINR.

The recursive procedure S.

11

Time

reference

points

properties of FPR in the following lemma:

then k = O.
(~) hen any ~ctiuatioll of S teminate~, the fish~pear has the same number k of

barbs as when it was staited.

(3) At lines 4 and 7, LL = O if and only if the jishspear is empty.
(4) At line 10, u # O.

PROOF. Parts (1) and (2) follow from the structure of the recursion and the

observation that BARB _ CREATE increments k, BARB_ DISPOSE decrements k,

and nothing else changes k.
For part (3), if u # O, then the fishspear is clearly nonempty. Suppose Lf = O

at lines 4 or 7. The assignments in lines 11 and 18, and the test in line 20

ensure that u = O when the current activation began and that the fishspear is

the same at line 7 as it was at the start of the activation. It follows from the test

in line 15 that only MAINR can call S when u = 0. Hence, by part (1), k = O and
the entire queue is empty.

For part (4), the queue is not empty at line 10 since in a run, DELETE_MIN is

never applied to an empty queue. The proof that u # O at line 10 follows the

reasoning used to establish part (3). ❑
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THEOREM 3. Process FPR con-ect~ implements priority queue operations.

PROOF. Each ‘insert’ or ‘delete’ request causes an immediate corresponding

BARB _ CREATE or DELETE _SHARP, which ensures that the set of elements

represented in the fishspear is, correct. Since FPR uses only the four fishspear

primitives to change the fishspear, Lemma 1 ensures that the Fishspear

Invariants are preserved. Hence, DELETE_ SHARP correctly returns a minimum

element in the queue. An ‘empty?’ request is answered according to the truth

value of “u = O,” which is correct by part (3) of Lemma 2. The fact that the

preconditions for DELETE _SHARP are satisfied follows from part (4) of

Lemma 2.

It remains to show that FPR continually processes requests. If not, there is a

point of time after which control never reaches line 4. If control remains

forever within the same activation, it repeatedly executes PMERGE operations in

the while-loop at line 14. This is impossible since a PMERGE decreases z’~ + w~.

No new activation is started since then its line 4 would be reached. The

remaining alternative is that the current activation is terminated and the

recursion level is reduced. But this can happen only a finite number of

times. ❑

3.4. AN EXAMPLE. Figure 5 shows a portion of a sample run of Fishspear. It

begins with the fishspear that results from the following sequence of priority

queue operations: 171, 115, D, 193, 155, D, 119, 131, 134, 116, 183, D, D, 121, D,

D, 113, 192, 150, 148, 140, 151, 117, 191, 180, 112, 133. (“Ix” stands for INSERT(X)

and “D” stands for DELETE _ MIN.) It then shows the sequence of fishspear

primitives triggered by the additional operation 163.

Each fishspear is described by two lines of text. The first line shows the

sequence of segments U, WL, . . . . WI. Adjacent segments are separated by a

“fork”; consecutive forks denote null segments. The second line shows the

sequence of barbs VA, ..., VI. Not shown in the diagram is the b-stack. The

values of b in this example are b~ = 2, b2 = 3, and hl = 7,

A PMERGE operation can be triggered by either of two conditions in line 15

of Figure 4. Those PMERGE operations for which the condition 14 > b holds are

indicated by a star ( * ). In this example, there is only one BARB_ CREATE but

two BARB_ DISPOSE operations, and the fishspear finishes with one less barb.

4. Cornplexip Analysis

We present an upper bound on the worst-case number of comparisons,

Comp(m), made by FPR on an input sequence with max-depth profile m.

Recall from the definitions of the primitive operations that our convention M
extravagant with comparisons.

THEOREM 4. For all /3, O < ~ < 1, there exist c, c’ such that

FPR with n inset~ions atld max-depth profile m,

In particular, for P = 0.7034, we may take c = 2.4. (Further

interdependence of’ c, c’, and ~ are gitlen in the anabsis below. )

for all mns of

details on the
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1213 ~173440~ 48507183 9293
33 518091

102. BARB.CREATE(63)

103. PMERGE

104. PMERGE

105. BARBDISPOSE

106. PMERGE

107. PMERGE*

108. PMERGE*

109. PMERGE*

110. BARBDISPOSE

+;13++ 73440

33 7:;; ;; 839293

12~13~173440 ~485071 839293
63 33 518091

1213= ~173440~ 485071839293
63 33 518091

1213 ~173440~ 48507183 9293
3363 518091

121317 ~3440~ 48507183 9293

3363 518091

12131733 ~3440~ 48507183 9293

63 518091

1213173334 ~40~48507183 9293

63 518091

1213173334 40~ .=48 5071 839293

63 518091

121317333440 =48 5071839293

51638091

FIG. 5. A portion of a run of Fishspear.

The proof consists of several parts. First, we classify each comparison made

by FPR as being of Type I or Type II, and we observe that at most n Type I

comparisons are made in the course of the algorithm. We analyze the number

of Type II comparisons by setting up a “toll economy” in which tolls are

charged to queue elements at various points in the algorithm and are used to

pay for comparisons. The tolls collected are sufficient to pay for all the Type II

comparisons, and each element x, is charged only c log m, + c“ tolls. Summing

over all the elements gives

number of Type II comparisons s tolls collected

< CT. log m, + C’rn.

The theorem then follows by summing the upper bounds for the two types of
comparisons and taking c’ = c“ + 1.

4.1. COMPARISON TYPES. A comparison that results in an element entering

the shaft of the fishspear is of Type I; all other comparisons are Type II. An
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examination of the algorithm shows that there are only two places at which

elements are compared: within the PMERGE of line 15 of S, and within the

BARB_ DISPOSE of line 17 of S. PMERGE compares the first element of P’k with

the first element of W~ and appends the smaller to U. Thus, that comparison is

of Type I if the smaller element came from P’k and is of Type II if the smaller

element came from W~. (Recall that we consider a comparison to have been

made even if Vk is empty. Such a “pseudo-comparison” is of Type II by this

definition.) In BARB _DISPOSE, if k >1, then all comparisons are of Type II,

since no elements enter the shaft. If k = 1, then, by convention, we consider L),

comparisons to be made, and these are of Type I.

LEMMA 3. The algorithm makes at most n Type I comparisons.

PROOF. Each element enters the shaft only once, since it can never leave

the shaft until eventually deleted from the queue. ❑

4.2. PROGRESS OF FPR. We begin our analysis of the Type II comparisons

by relating the amount of progress made by a single activation of S in

processing priority queue operations to the size and shape of the fishspear

before and after the activation.

We require a notation for naming activations. Names are certain strings u

of positive integers. Sm, the activation named by ~, is defined inductively on

Iu /. For i >1, S, denotes the ith activation of S from the top-level program

MAINR. Inductively, if o is a nonempty string of natural numbers, then So,

denotes the activation of S that results from the ith execution of line 16 by S,,.

If o is the empty string or a string that does not correspond to an activation of

S, then Sm is undefined. The lelel of Sm is defined to be Iu I and is the

recursion depth of the activation.

Each run of the queue is naturally partitioned according to the most recent

activation S,,, if any. V7e associate with any activation of S all of its computa-

tional steps except thctse carried out in recursive activation called from S.

Now consider a pa titular activation Sm. Let a(m) and do) denote the

times at which the activation begins and ends, respectively. If an ‘insert’ is

received, then the block from line 13 to 18 is executed, after which SW

terminates. In this case, we define a’(o) to be the time just after line 13 of Sm

is executed, and d(m) to be the time just before line 17 is executed. Clearly,

a(a) < a!’(a) < (o’(a) < (0((7).

These time points are shown in Figure 4. We omit the name u of the

activation when it is clear from context.

Let ~ be a time between steps of S.. It is an easy consequence of the
definitions that if a’(m) < ~ < o’(m) then k = Icrl, othervme, k = Iml – 1.

Thus, the level of recursion is always within one of the number of barbs of the

fishspear.

The following notation allows us to talk about the way the fishspear changes

over time. Fix a particular activation Sr of S, and let ~ be a time such that

a s ~ s o and control is between lines of S in S.. We say ~ is a time in Sa.

Let U, be the set of elements in segment U, and k, the value of variable k, at

time ~. If k, >0, then V, and W, denote the sets of elements in segments V~,

and W~, at time ~, respectively. We take V, and W, to be the empty set when

k.= O.
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Since these definitions depend on the current value of k, VT always refers to

the top barb of the fishspear, and WT refers to the portion of the shaft between

the top two barbs (if they exist). As usual, the corresponding lowercase letter

refers to the cardinality of the set, so u. = IU, 1,etc.

We define the following sets of elements with respect to an activation So and

time 7 in S~:

IN, = set of elements inserted into the queue after time a and still present

in the queue at time r;

OUT, = set of elements present in the queue at time a but gone from the

queue by time r;

U“id = U n U., the set of old elements in U at time ~;r T

Uncw = U n INT, the set of new elements in U at time ~.r 7

We often omit the subscript ~ when ~ is clear from context. Some important

relationships among these sets are shown in Figure 6 for ~ between a’ and o’

and are easily proved by induction on r.

LEMMA 4. Consider a time r between the reference points LY’ and w’.

(1) OUT, W’, u“”, u’”” V’are disjoint sets

(2) u = U“[d u U“ew. ‘

(3) IN= Un’” U V.

(4) U. = OUT U W U UO1d.

In the following lemmas, we prove some key properties of S. The reader may

find it helpful to refer to Figure 7, which repeats the while-loop of S from

Figure 4. Note that k, the number of barbs of the fishspear, is incremented by

the BARB _CREATE operation and restored to its original value by the corre-

sponding BARB _ DISPOSE. Thus the segment W~ is the same before and after

any activation SC of S. The only segments that change as a result of S. are U

and V~. The test condition “u > b“ in S is important in maintaining the

proportions of the fishspear.

LEMMA 5. Let SC be an actillation of S. Let r be any time in S., a’(u) < r

< 0’(v), such that line 15 of Sq is never reached with u > b at any time during

the interval ,~om a’ to r. Then

in, >u, - 1.

PROOF. Observe that if the condition “u > b“ once becomes true, then it

remains true for the duration of Sm, because as long as it is true, the then

branch of the condition in line 15 is always taken, and PMERGE never de-

creases u.

We proceed to prove the lemma. At time I- = a’, the lemma holds trivially

since UT = O. Subsequently, the only places where IN or U is modified are in

lines 15 and 16 of S. Let ~ be a time just after one of those two lines has been

performed, and suppose the conditions of the lemma are satisfied at time ~.
Let fi be the time just before the execution of that line. By induction, we
assume the lemma holds at time n-. We consider the two cases in turn.

Case 1. The PMERGE in line 15 was performed. Since u. < b by assumption,

and control reached the PMERGE, we have L). 2 u.. It follows from Lemma 4
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u

OUT w u old u new v J

u. IN

FIG. 6. Relations among the basic sets between times a’ and w’.

13. BARB.CREATE(Z)

14.
a’

while uk>Odo “’”’”””””’””””’”””’”” ‘“””’””

1.5. if Vk > u or u ~ b then PMERGE

16. else {v~ < u < b} S
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17.
u’

BARB-DISPOSE

FIG. 7. While-1oop from the recurswe procedure S.

that inn > LIT. Since the PMERGE does not change IN and it moves exactly one

element into U, we have inT = in. > LLT = UT – 1 as desired.

Case 2. The receive call in line 16 was performed. Consider its effect on U

and V. The fishspear is left with the same number of segments as it had

previously. Line 16 can only decrease (or leave unchanged) the size of UO1d, for

the segment U immediately after the recursive call consists entirely of ele-

ments that were in U just before the call together with new elements (i.e.,

elements inserted into the queue during the recursive call). Line 16 can only

increase (or leave unchanged) the size of V, for its overall effect is to add to V

some new elements inserted during the recursive call. Using Lemma 4, it

follows that in – u = L) – ZL”’J can only increase. Since inv – u ~ > – 1 by the

induction hypothesis, then also in, – UT > – 1, as desired

The lemma follows by induction. ❑

The following is a direct consequence of Lemma 5 and puts a lower bound

on the amount of work done by S as a function of Ua, the initial size of U.

LEMMA 6. For any activation So of S, either

PROOF. There are two cases, depending on whether line 15 of S. was ever
reached with LL 2 b.

Case 1. This inequality was never true at line 5. Then by Lemma 5,

ins, > Ua, – 1. Also, Wti, = O since the while loop of line 14 terminated, so it

follows from Lemma 4 that out@, = U. – u~~. Hence,

inw + outm= inw( + outuc > (UW – 1) + (Ua – 14:$)

>U m – 1.
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Case 2. The inequality was true at some execution of line 15. Let ~ be the

time at which the first such execution began. Then by Lemma 5, irz, > UT – 1.

From time ~ to o’, only PMERGE operations are done, so ins, = in,. Since the

test came out true, we have UT > b. Hence,

4.3. THE TOLL ECONOMY. To bound the number of Type II comparisons,

we associate “tokens” with each element xl inserted into the queue, the total

value of which depends on the maximum depth ml attained by xl. Lemma 7

gives an upper bound on the total value T of all tokens.

Each Type II comparison is naturally associated with the unique activation in

which it occurred, as described in Section 4.2. We similarly assign each token

to a unique activation in the run. Lemma 9 shows that the total number of

Type II comparisons assigned to S@ is at most the total value of all tokens

assigned to Sc. Summing over all activations shows that the total number of

Type II comparisons is at most T, and hence the upper bound on T applies to

the number of Type H comparisons as well.

4.3.1. Tokens. Associated with each element xl inserted into the queue are

two sets of tokens, the in-tokens and the out-tokens. The tokens in each set are

numbered sequentially from 1 to [(m, + 1)/y],where y is a small positive

constant. (Certainly, y < ~/2.) In addition, each element has two base tokens.

The ualue of in-token (out-token) number of d is tl/d(to/d),and the value of

a base token is t~,where t ~, to,and tB are positive constants to be specified

later.

Let T be the total value of all tokens. The following lemma gives an upper

bound on the tolls collected.4

LEMMA 7

( )T<2nt~+(tI+ to) filnm, +nlnx .
,=1 Y

PROOF. Since the largest number of a token associated with x, is [(ml +

1)/y], we have

since

Hence,

2m, e
T52ntB+(t~+to)~ln~

i=l

and the result follows. ❑

‘ln x denotes the natural logarithm of x.
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4.3.2. Parameters. A number of parameters have been introduced so far. ~

affects the performance of the algorithm, and y, tB, tI,and to affect the

amount of tolls collected. Rather than simply fix these parameters to particular

constants and then prove our bounds, we choose to leave them unspecified

until the end, introducing instead only the constraints needed to make our

analysis work. Our final step will be to show that the constraints are satisfiable

and to optimize the constants in the final bound. In order to express the

constraints, we introduce two additional parameters, (3 and *.

Constraint Set. We assume that b, y, t~, t,, to, 13,4 are positive constants

that satisfy the following:
.

2y<~<l,

6t–(6t+ *(l–t))lnt–2–t20 for all t= (o,(?),

w-; (tl+to),

W++to)>
tB =tl(l – y).

We define the following function:

F(p, q,r) = 8p – (Omax{p, q} + *r)lnp – 2 –q.

(1)

(~)

(3)

(4)

(5)

(6)

F arises as a residual term in our analysis, with suitable terms substituted for

p, q, and r. Note that the inequality of (3) is just I’(t,t,1 – t) >0. The
following claim is a purely analytical fact that we will need later.

CLAIM. Letq, r> O.If O<p<fland either q+r>lorq>~, then the

Constraint Set implies F(p, q, r) >0.

PROOF. Consider the partial derivative when p < q:

dF
—–o–(oq++r);
dp –

()
=(jl_! _+l

P P

< 0.

This shows that F decreases as p increases to q.

We have three cases depending on how q relates to p and ~.

Casel. q<p <~. Then r>(l–q) >(l–p). Also, p <~<1, solnp
< 0. Hence,

F= Op–(6p+~r)lnp–2–q

>Op–(6p+*(l–p))lnp –2–p.

By (3), F >0 as desired.
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Case 2. p < q < B. Again r >1 – q. Since the partial derivative of F with

respect to p is negative, we can replace p by q to get

F=%p–(dq +~r)lnp–2–q

>6q–(Oq +~(l–q))lnq–2 –q.

Again, (3) gives F >0 as desired.

Case 3.p<~<q. The partial derivative of F with respect to p is again

negative, so we can replace p by (3 and r by O to get

F=6p–($q +~r)lnp–2–q

>0~–6qln &2-q

=( O&2) -q(61n~+ l). (7)

There are two subcases.

Subcase 1. ~ > –21n ~. Then, by (2), we have 6 = – l/in ~ > 2/~.

Hence, by (7),

F>(6&2)-q(Oln~+l)

> 0.

Subcase 2. ~ < – 2 in 13. By (2), we have

2+p 1

‘=p(l-ln~)> –lnp’

and so, using the Case 3 assumption that P < q, (’7) gives

(8)

F>(O&2)-~(61n~+l)

=6~(1–ln P)–2– P

= o.

Thus, in all three cases, F >0, establishing the claim.

4.3.3. Assigning Tokens to Activations. We give rules

particular activations. A token assigned to activation Sc

❑

for assigning tokens to

is said to be collected

by Sm.

Sm collects tokens as follows (provided they exist):

—One base token and in-tokens 1,..., Us(m) – 1 from any element that was

received for insertion in the queue in line 4 of S0.

—One base token and out-tokens 1,..., Us(m) – 1 from any element that was

deleted in response to a ‘delete’ received in line 4 of SW.
—In-tokens ua(m, ~,..., U~tu) – 1 of element x if activation S., is defined and

x was inserted in the queue during the time interval spanned by S.,.

—Out-tokens ua(o,~, -.. , ~~cm) – 1 of element x if activation Srl is defined

and x was deleted from the queue during the time interval spanned by S.,.

Note that, since f3 < 1, the test in line 15 of S ensures that Ua(m,) < ,U~( m).

Hence, no token is collected by more than one activation. In particular,
in-token number d of element x (if it exists) is collected by Sm, where o- is the

longest string such that d < u .(. ~ and x is inserted in the queue during the
time interval spanned by S.. It follows that any in-tokens U~(~,)7 ..., LJ~C~)– 1

which exist are collected from each element x, that entered the queue during



20 M. J. FISCHER AND M. S. PATERSON

the ith execution of line 16 of Sm. A similar observation holds for out-tokens.

We let T(a) denote the total value of all tokens collected by activation Sm.

4.3.4. Counting Tolls. The tolls collected during Sc can be related to the

progress parameters of Section 4.2. The analysis is made difficult by the fact

that token d only exists for an element x, if m, is sufficiently large. Although

any individual ml might be small, the following lemma shows that most

elements of any large group of elements simultaneously in the queue necessar-

ily have large m ‘s. Thus, we obtain lower bounds on the tolls collected by

identifying points during the activation in which large sets of elements are

simultaneoulsy present in the queue and counting up the value of the tokens

they contain.

h3MMA 8. For imy set X of elements present simultaneously in the queue,

token number d exists for all but at most [ yd] – 1 of them.

PROOF. For all except 1ydl – 1 elements of X, the current depth, and

hence the maximum depth attained, equals or exceeds 1yd], Hence these

elements all have tokens numbered up to at least [([ ydl + 1)/y 1, and so at

least d. ❑

Let type[r( a ) be the number of Type II comparisons with activation S.. This

should be bounded above by the tolls collected.

LEMMA 9 (TOLLS LEMMA). Let S. be an activation of S. Then

T(o) >typeII(m).

PROOF. We consider first the case where UU = O. The test condition of line

15 ensures that this case only occurs when Sm is called from MAINR. Therefore,

k = O and the queue is empty when S@ begins. Control remains in SW and no

comparisons are made until an ‘insert’ request is received. (Recall that ‘delete’

requests are not legal when the queue is empty.) At this point, lines 13, 14, and

17 are performed, causing one Type I and no Type II comparisons to be made.

Hence, T(o) = 1 and typelI( o- ) = O, and the result follows.

We assume for the remainder of the proof that U. >0.

Recall that S,r collects at most one in-token d from each element x that was

inserted into the queue during the time interval spanned by Su, but in-token d

might not be collected from x, either because it does not exist, or because

d > L~a(m~, or because x was inserted during the time interval spanned by Sat

(the ith recursive call on S) and d < Utif ~,). Similar remarks apply to the
counting of out-tokens. Thus, a careful analysis is required to avoid

overcounting.
Our strategy for counting the in-tokens collected by S~ is to identify for each

d a set of elements that are simultaneously in the queue and from which Sm is

allowed to collect any in-tokens d that exist. Lemma 8 guarantees that in-token

d exists for all but ~ydj – 1 of the elements in the set. To be sure that SU is

allowed to collect these in-tokens, we require that d < .ua(m ~, and we show that

every element in the set was either received for insertion by line 4 of S~, or

was inserted into the queue during an activation Sut for which d > Z/a(~,).

Similarly, we count out-tokens collected by So by identifying for each d a set of
elements which are simultaneously in the queue and for which S0 is allowed to

collect any out-tokens d that exist. Even though we fail to count all of the
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tokens actually collected by Sm, the tokens we do count are sufficient to pay for

all of the comparisons made by SU.

Before defining the sets from which we count in-tokens, we describe particu-

lar activations SW, whose start times will be of particular interest. Consider

successive executions of line 16 during the while-loop of Sm. Let il = 1 and let

i ,+ ~ be the least number i such that Sat exists and Ua(ml) > .U.(WZ,). Finally, let

s be the largest index for which i, is defined. If SU does not execute line 16 at

all, then all i, are undefined, and we take s = O. For each r for which i, is

defined, define p(r) = a( u i,); thus ~(r) is the time at which activation Sat,

begins. (For technical convenience, we take Uw(o) = 1.) Note that the t.L’s have

been chosen so that U&(l) < u~~z) < ““” < UK(,), and Ua(w,) < UP{,) for all i, r

such that 1 < r <s and i < i,+ ~ or r =s. Note also that UK(,) < Ua by the test

in line 15 of S.

Each of LVWtJ), lNO, and OUT. are sets of elements that are simultaneously

in the queue—the elements of lNW(, ~ are all present at time p(j), the elements

of llV@ are all there at time o, and the elements of OUT. were all in the

queue at time a. If UP(, _ ~, s d < UP(, ~, we count in-token d for all but

lydl – 1 of the elements in lNW(,}. Similarly, if UP(,) < d < u., we count

in-token d for all but \ yd] — 1 of the elements in lNW. Finally, if UP(J) < d < U.,

we count out-token d for all but [ yd] – 1 of the elements in OUTO. Because

~~#(1) < u&(2) < .“” < UW(A), in-token d is counted for at most one of the sets

lNPt,),l s j < s, and lNW.

We must argue that each token so counted is indeed collected by S.

according to the rules in Section 4.3.3. Suppose in-token d from element

.x E INW(J) is counted, so Uw(j _ ~, < d < UK(,). If x was received for insertion

into the queue at line 4 of Sr, then Sti indeed collects d since d < uPt, ~ < U..

Otherwise, x was inserted into the queue during the time spanned by activa-

tion Sal for some i < i~. But again Sm collects d since Ua(ul) < Uw(, - ~j ~ d <

u ~(,) < U.. Similar arguments apply to in-tokens counted from elements m lNW

and out-tokens counted from elements in OUT..

We now derive a lower bound on the value of the tokens collected by SO.

(1)

(2)

(3)

At least one base token is collected by S~ because at least one element is

inserted or deleted. It has value

Let 1 <j s s and let uWf, _lj _< d < UP(J). By Lemma 8, in-token number d

is collected from all but 1yd~ – 1 of the elements in liVUf,, for a total value

of at least t,(irz~(,) – (yd – I))/d. Summing

value of at least

s Ztldl) –1

over j an’d d gives a total

(yd - 1));. (lo)

Let UP($) < d < u.. By Lemma 8, in-token d is collected from all but

lydl – 1 of the elements in lNW,.) U IN. for a total value of at least

24.—1
1

TJ(0) = ~ tI(max{in&(,j, ins} – (yd – l))Z. (11)
d=uw(,,



22 M. J. FISCHER AND M. S. PATERSON

(4) Let UP(,) s d < u.. By Lemma 8, out-token d is collected from all but

[yd] – 1 of the elements in OUTO for a total value of at least

Ua- 1

Tl(m) = ~ to(outu– (yd– 1)$ (12)

d=up(,,

Thus, T(o) > X$.l TA(m).

By Lemma 5, in~(,) > LL&(,) – 1, and since UW(,) – 1 > d in the summation,

(10) yields

= f,(l– y)(up($) – 1).

With the inequality

eqs. (11) and (12) yield

Lfe– 1

–(tI + to)(yua – 1)) ~ ;
d=uwc,l

–(t, + to)yu. )ln *
UN(S)

(13)

(14)

since in – 1 by Lemma 5. Whichever case of Lemma 6 holds, wew(s) ~, UP($)
have ~z~a < Z?ZW+ ozlta + 1 < max{uv(,), inU + 1} + outw + 1;hence,

Using (4) and (5) from the Constraint Set, (14) and (15) yield

(15)

(
Ua

> $ max{uw(, ), ilzti + 1} + *(outW + I))ln ——— (16)
11 “/4s)
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From (l), (4), and (6), we have tB = tI(l– y) >0. Thus, adding together (9),

(13), and (16), we get

T(o) 2 tB + tl(l– Y)(up(,)– 1)

U.
+ ( f3 max{uw($), irzw + 1} + *(oz~tW + l))ln —

UK($)

> OuW,,, + (6 max{uw,,,, in. + 1} + *out@)ln ~. (17)

Substituting

UP(S) in. + 1
p=— q=

Um ‘ UG ‘

in (17) gives

T(u) > 2ua+irzo + 1

The test in line 15 of Sm ensures that

implies that either q + r > 1 or q > ~, so

u&L(\ )

Outw
and ~=—

U ~

+ uUF(p, q, r). (18)

uP(.) < ~u~, so p < /3. Lemma 6
the Claim gives

F(p, q,r) >0. (19)

We also have u. < u. for activation S.. This is assured for recursive

activations of S by the test in line 15 of the parent activation. If Sm was started

directly by MAINR, it holds because u. = O and we have assumed U. >0.

Hence, VO = La + Vo, < u. + in. + 1, so

2ua+inW+ 1 >ua+~’a. (20)

Combining (18), (19), and (20), we have

T(o-)>ua+oa. (21)

To complete the proof, we note that Type II comparisons assigned to S. are

made only in lines 15 and 17 of S. At most U. Type II comparisons are made by

PMERGE in line 15, since each such comparison removes an element from W,

and W at time a’ has size at most u.. The number of comparisons made by

BARB_ DISPOSE in line 17 is at most Uo. If k. > 0, itsimply merges together two

segments to produce V@; if ka = O, all comparisons made are of Type I. Hence,

(21) yields

T(a) > typeII(m). ❑

For the next lemma, we sum the above inequality over all activations.

LEMMA 10. Let ~, y, t~, tI, to be constants for which the Constraint Set can

be satisfied. The total number of Type II comparisons made by Fishspear on a run
with n insertions and max-depth profile m is at most
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PROOF. The run can be partitioned into segments of operations processed

by activations of S invoked directly by MAINR. Each of these activations is

complete except for the last. We consider the run to have ended when all

priority queue operations have been processed and control reaches line 4 of

some activation Sm. By assumption, the queue is empty at the end of the run.

The tests on lines 11, 14, and 20 ensure that control returns to MAINR after the

last ‘delete_ rein’ operation and before any other priority queue operation is

processed. After that, Su is started, and only ‘empty?’ operations are pro-

cessed. Thus, no comparisons are made by the incomplete final activation Sa.

The bound for the completed activations is an immediate consequence of

Lemmas 7 and 9. ❑

We are finally in a position to prove the main theorem of this section.

PROOF OF THEOREM 4. We first argue that the Constraint Set is satisfiable

for any positive -y, ~ satisfying (l). Equation (2) defines 0. The left-hand side

of (3) as a function of t is bounded from below over the interval (0, @), and it is

a linear function of ~ with a positive coefficient that is bounded away from

zero. It follows that (3) is satisfied for sufficiently large $. Similarly, (4) and (5)

can be satisfied by taking t~= to sufficiently large since 2y/~ < 1. Finally, (6)

defines tB.

With

c = (tI + to)ln2 (22)

and

2e
c’=2t~+ l+(tI+to)ln —,

Y

the bound of Theorem 4 follows from Lemmas 3 and 10.

We get our best bounds by choosing ~ = – 2 in ~ = 0.7034..”. Equation (2)

then yields 6 = 2.843.””. Calculus and numerical evaluation show that ~ =

0.5674 “““ satisfies (3), and equality holds (to within the limits of our precision)

for t = 0.141 . . . . (The function of (3) over the interval (O, ~) is shown in Figure
8.) Thus, 6 + ~ = 3.410 “.. . By choosing y sufficiently close to O and not

insisting that t~ = to, we can make tI + to arbitrarily close to 3.410”””. Finally,

(22) shows that the constant c of Theorem 4 can be chosen arbitrarily close to

3.410””” x ln2 = 2.363.””.

In particular, we may choose c = 2.4. ❑

5. An Iterative Algorithm

The recursive algorithm presented in Section 3 can be expressed in an

equivalent iterative form. Although the recursive version is easier to analyze,

the iterative version is shorter and simpler. The iterative form also lends itself

to a conventional implementation of the data type as a collection of procedures

and functions that operate on a shared data structure.

5.1. ITERATIVE ALGORITHM FP1. The iterative algorithm includes one new

procedure, CLEAN, which performs the PMERGE and BARB _DISPOSE operations

involved in rebalancing the queue. It always leaves U # 0 unless the entire

queue is empty.
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FIG. 9. Algorlthm FPI.

Procedure CLEAN:

1. local variable balanced := false

2. while k >0 and not balanced do

3. if ~~ = O then BARBDISPOSE
4. else if Uk ~ u or u ~ bh then PMERGE

5. else balanced := true

6. b~+l := [/3ul

Procedure MAINI:

1. CLEAN

2. repeat forever

3. z := RECEIVE

4. case OP(X) of

5. ‘empty?’:

6. SEND(U = O)

7. ‘delete’:

8. SEND(DELETESHARP)

9. if u ==O then CLEAN

10. ‘insert’:

11. BARB-CREATE(Z)

12. CLEAN

13. end-case

14. end-repeat

Implicit in the recursive structure of S is a pushdown stack on which the

local variable b is kept. In the iterative algorithm, we keep this data on an

explicit pushdown stack, the b-stack. The variable associated with the ith-level

current activation of S is denoted by b,. By Lemma 2, the level of the most

recent current activation of S is equal to k at line 15 of S where b is used, so in

the corresponding test of the iterative algorithm, b can be replaced by b~.

The complete iterative algorithm is presented in Figure 9. Initially, k = O

and U = 0.

5.2. ANALYSIS OF ALGORITHM FPI. We analyze FPI by showing it to be

equivalent to FPR. The equivalence between the two algorithms is strong in

the sense that both, when presented with the same sequence of requests,

perform the same sequence of fishspear primitive operations, SEND and
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RECEIVE operations, and updates to the b-stack. Hence, the sequences of

fishspears, b-stacks, and results returned by the two algorithms are identical.

To state this more precisely, we look in some detail at the state structure

of the two algorithms. A complete state of an algorithm is the entire collection

of data that determines its future behavior. In the case of FPR, this consists of

the fishspear, the recursion stack, the control point, and the two variables x

and done. In the case of FPI, this consists of the fishspear, the b-stack, the

control point, and the variables x and balanced. The essential state consists of a

portion of the complete state that is common to both algorithms, namely the

fishspear and the sequence of b-values.

Next, we distinguish those control points of the two algorithms that immedi-

ately precede operations which affect the essential state or produce input and

output. Namely, we consider the points just before the four fishspear primitives

are invoked, just before SEND and RECEIVE are performed, and just before the

assignments to b. Each algorithm performs SEND at two places in its code and

each other of these operations at only one place, so each algorithm has eight

distinguished control points. Note that it is unnecessary to differentiate the

control points in the three occurrences of CLEAN since their subsequent

executions are identical.

Let z be a distinguished control point of either algorithm and q an essential

state. We call the pair (z, q) a determining state of that algorithm. If s is a

complete state with distinguished control point z and essential state q, then we

say that s has (Z, q) as its determining part. It is easily verified for both

algorithms that for any determining state (z, q) there is a unique determining

state (z’, q’) such that, starting from any complete state s with determining

part (z, q), at the next distinguished control point (if any) the state s’ has

determining part (z’, q’). Moreover, such a complete state s’ is always reached.

Thus, we can view each algorithm as making transitions from one distinguished

control point to another, controlled only by the essential state.

There is a natural correspondence x between the distinguished control

points of FPI and FPR. If z is the distinguished control point of FPI

immediately preceding the SEND in line 6, then X(z) is the distinguished

control point of S immediately preceding the SEND in line 7. If z is the

distinguished control point of FPI immediately preceding the SEND in line 8,

then X(Z) is the distinguished control point of S immediately preceding the

SEND in line 10. For the other distinguished control points z of FPI, ,y(z) is the

(unique) control point of FPR which immediately precedes the same operation
as the one immediately following z in FPI.

Let (z, q) be a determining state of FPI. We argued above that the next

determining state (z’, q’) reached by FPI, starting at some state with determin-
ing part (z, q), is uniquely determined by (z, q). Similarly, the next determining

state (z”, q“ ) reached by FPR, starting at some state with determining part

(X(Z), q), is uniquely determined by ( x(z), q). It is tedious but straightforward
to verify for all (z, q) that ( z“, q“ ) = ( X( z’ ), q’). It follows that the transitions

on distinguished control points for both algorithms are the same when the

distinguished control points from the two algorithms are identified by x. The
common transition table for the two algorithms is shown in Figure 10. The

condition under which a given transition occurs is shown in the corresponding

box of the table. An empty box indicates that the transition cannot occur.

The following theorem is an immediate consequence of the above discussion:



RECV RECEIVE

SEND] SEND (in case ‘empty’)

DEL-S DELETE-SHARP

SEND2 SEND (in case ‘delete’)

BARB.C EIARB.CREATE

Set b~+l b~+l := [~u]

PMERGE PMERGE

BARB-D BARBDISPOSE
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Control Point abbreviations Test conditions

c1 0P(x) = ‘empty?’

C2 OP(X) = ‘delete’

(73 OP(x) = ‘insert’

c, (k= O) V((w~>O) A(v~<u<b~))

c, (k>o)A(wk >o)A((vk zu)v(Uzbk))

C6 (k> O)/l(wk =())

c; (U= O)AC4

c: (U= O)AC5

c; (U= O)AC6

Transitions

RECV SEND1 DEL-S SEND2 BARB-C Set bk+l PMERGE BARBD

RECV c1 C2 C3

SEND1 true

DEL5 true

SEND2 U+o c; c; c;

BARB_C c, c, Gj

Set bk+l true

PMERGE cd c, c,

BARBD cd C5 C6

FIG. 10. Transitions of algorithms FPR and FPI.

Function EMPTY?:

return (u = O)

Function DELETE.MIN:

local variable z := DELETE_SHARP
if u = O then CLEAN FIG. 11. A procedural version of algorithm FPI.

return z

Procedure INSERT(Z):
BARB-CREATE(Z)

CLEAN

THEOREM 5. Algorithms FPR and FPI produce the same sequence of essential

states and responses on the same sequence of requests.

COROLLARY 1. The bound of Theorem 4 on the namber of comparisons

applies also to FPI.

5.3. A CONVENTIONAL PRESENTATION OF THE ITERATIVE ALGORITHM. Algo-

rithm FPI can easily be expressed as a collection of functions and procedures

corresponding to the defining operations for a priority queue. They are shown

in Figure 11. Initially, k = O, u = @, and b, = 0.

6. Implementation with Sequential Storage

Until now, we have been measuring only the number of comparisons made.

However, Fishspear can be implemented using sequential storage so that the
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total number of operations is at most a constant times the number of compar-

isons and priority queue operations. We describe such an implementation of

the iterative algorithm FPI of Section 5.

We use three pushdown stacks T, V, W in addition to a fixed number of

integer registers. V and W are used to hold the fishspear segments of the same

names, the segments being arranged so that the segments with highest indices

are on top. Each segment is sorted according to < on 11, with the smallest

element on top. Outside the procedure CLEAN, U is also sorted with smallest

element on top and is held at the top of stack W. Thus, stack W holds the

whole shaft in sorted order. When CLEAN is entered, U = D, and inside CLEAN,

U is represented as a reverse-sorted list on T (with the largest element on top).

Registers k, u, u, and w record the number of barbs and the current lengths

of U, V~, and Wk, respectively, and are updated whenever the fishspear changes.

The length of each other segment is stored on top of that segment on its stack

and is copied to an appropriate register as required.

Operations are of three kinds. Integer operations have unit cost and include

assignment, increment, decrement, comparison of two integers, and evaluation

of [ /3u] for integer u. Element operations also have unit cost and include value

comparisons and assignments of one element variable to another. The four

fishspear primitives are not unit cost and must be analyzed separately.

Most integer and element operations outside of the fishspear primitives can

be associated with the next priority queue operation. The exceptions are those

involved in iterations of the while-loop in CLEAN: these are associated with the

next comparison made. Since at most a constant number of these operations is

assigned to each priority queue operation or comparison, the total cost of these

operations is O(Comp(m) + IV), where N is the length (number of priority

queue operations) of the run. We use N here, instead of n, only because of

EMPTY? operations, which make no comparisons and do not change the queue.

We now consider the four fishspear primitives.

BARB_ CREATE increments k, renames U as W~, leaving it in place on stack

W, and puts a new singleton barb on stack V.

BARB_ DISPOSE merges together the top two barbs on stack V when k > 1. It

copies these two barbs one each to stacks T and W, reversing them in the

process, and then does the merge back on to stack V. The time for these

operations is proportional to the length of the result, which is also the number

of comparisons used by the merge. Hence, the cost is associated with the

comparisons made by BARB_ DISPOSE. If k = 1, it just appends the top barb on

stack V to U. The time is proportional to the length of the barb, which is the

number of (pseudo-)comparisons accounted for in our analysis.

PMERGE is a constant cost operation, for it simply compares the top elements
of V and W and moves the smaller one to U, which is in reverse order on stack

T. We associate the cost with the comparison made by PMERGE. (Recall that we

are assuming a comparison is made even in the degenerate case that the barb

is empty.)

DELETE _sHARP just removes the top element of U, which is at the top of

stack W whenever this primitive is called.
Finally, when CLEAN k finished, it is necessary to copy and reverse U from

stack T to the top of stack W. We associate the cost of copying each element

with the comparisons made by the PMERGE operation that put it in U.
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THEOREM 6. For all ~, O < ~ <1, Fishspear can be implemented so that on

a run of length N with n insertions and max-depth profile m, the total number of

operations is

( )ON+~logml .
~=1

PROOF. By carefully implementing the algorithm

total number of operations is bounded by

O(N + Comp(m)).

as described above. the

The bound then follows immediately from Theorem 4. ❑

7. Conclusions

We have presented a priority queue algorithm with many novel properties in its

implementation and complexity. There are several aspects that invite better

understanding.

The complexity analysis presented here concentrated on proving a worst-case

bound for the number of comparisons used and we chose a value for the tuning

parameter ~ accordingly. We have no reason to suppose that this choice

optimizes the worst-case number of comparisons. In any practical application,

the best choice for ~ would depend on the expected properties of the

sequences of requests.

An unusual feature of the Fishspear algorithm is that it makes use of the

values on the b-stack which record past information about the structure of the

fishspear. This should not be too unexpected because the algorithm is designed

to perform well with respect to the run profiles m and h introduced in Section

2. These values for elements currently in the queue also depend on past

history. It would be of interest to know whether there are algorithms for

manipulating the fishspear that require no other information than the fish-

spear itself, but still perform well with respect to the same or similar perfor-

mance criteria.

We have implemented Fishspear for testing purposes but have not attempted

to optimize the efficiency of the code. Its competitiveness vis-h-vis conventional

priority queue algorithms would depend on details of the programming lan-

guage and machine architecture. Our current impression is that the algorithm

is very efficient in its management of the deeper levels of the priority queue,

because it usually leaves these untouched for long periods and manipulates

them in linear lists. A weakness of the algorithm is likely to be relatively

inefficient performance at the “sharp end” of the queue, though this might be

avoided by special code for that region. An attractive more general approach

which we would like to explore is to combine a priority queue structure

optimized for short queues, to handle shallow elements, with a fishspear to

hold the deeper elements, perhaps in background storage. Such a hybrid could

combine the strengths of each structure.
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