
1

Applications II

2

Simulation
Discrete event simulation
Carwash simulation
Call bank simulation

Agenda

•  Graphs
 Terminology

Representation
 Traversal

Shortest path
Topological sorting

•  Problem complexity

3

Simulation

4

���
���
���
���
���Experiments with���

models ���
on a computer

What is simulation?

5

Model���
Representation of a system

Models and systems

System
A chosen extract of reality

The human respiratory system

6

Classification of models

•  Mental
 (e.g., a person’s perception of an object, a “world view”)

• Physical
(e.g., a model railway, a wax figure, a globe)

•  Symbolic
(e.g., H2 + 0 water, F = ma)⇒

7

Language models
Oral and written descriptions

Graphic models
Pictures, drawings

Schematic models
Diagrams

Non-mathematical models

Mathematical models

Symbolic models

8

Mathematical models

•  Static
Representation of a system in a given fixed state

•  Dynamic
 Representation of a system’s behavior over time

9

•  Analytical
 Relevant questions about the model can be

answered by mathematical reasoning
(they have a closed form solution)

Mathematical models

•  Non-analytical
Relevant questions about the model are
mathematically unmanageable
(holds for most real-world models)

10

Simulation
a possible narrowing

 Simulation is experimentation with dynamic,
non-analytical models on a computer

11

Application examples
•  Biology

an ecosystem (e.g., the life in a lake), cell growth, the
human circulatory system, vegetation)

•  Physics
nuclear processes, mechanical movement
(e.g., solar systems, launching of rockets)

•  Chemistry
chemical reactions, chemical process plants

•  Geography
urban development, growth of a population

•  Computer science
computers, networks, video games, robotics

•  Management science
organizational decision making

12

Modeling is ���
purposive

Models can neither be false or true.
They can be more or less appropriate in relation to their purpose.

A good model is a model that serves its purpose.
The first step of a modeling process is a clarification of what the
model is to be used for.

Abstraction and aggregation are used for obtaining manageable
models.

Abstraction: Ignorance from irrelevant properties
Aggregation: Grouping several things together and

 considering them as a whole

13

•  Continuous
The state of the model is described by variables that vary
continuously (without jumps).

Dynamic model types

t

x = f(t)

The model is usually expressed as ordinary differential equations
and/or difference equations.

dx
dt

= g(x, t) xnext = xnow + g(xnow ,t)Δt

14

•  Discrete
The state of the model is described by variables that vary in
jumps (caused by events).

f(t)

t

Example:
A queue system (customers in a bank, patients in a health centre).

15

f(t)

t

Examples:
Elevator (the movement between floors is continuous, whereas start
and stop of the elevator are discrete events).
Refrigerator (the heat exchange with the surroundings is continuous,
whereas the thermostat causes discrete events)

•  Combined continuous and discrete
The state may be described by variables that vary continuously and
are changed in jumps.

16

Reasons for using
simulation

•  The system does not exist

•  Experiments with the real system are too
expensive, too time-consuming, or too
dangerous

•  Experiments with the real system are
practically impossible (e.g., the sun system)

17

Purpose of simulation

(1) Decision making

(2) Insight

18

Difficulties of
simulation

• May be very expensive, in machine as well as
man resources

• Validation is difficult

• Collection of data, and analysis and interpretation
of results usually implies good knowledge of
statistics

19

Carwash simulation

20

Waiting line

Car washer

Served car

Tearoom

Car washer

Simulation of a carwash

21

System description
(1)  The average time between car arrivals has been estimated at 11 minutes.

(2) When a car arrives, it goes straight into the car wash if this is idle;
otherwise, it must wait in a queue.

(3) As long as cars are waiting, the car wash is in continuous operation serving
on a first-come basis.

(4) Each service takes exactly 10 minutes.

(5) The car washer starts his day in a tearoom and returns there each time he
has no work to do.

(6) The carwash is open 8 hours per day.

(7) All cars that have arrived before the carwash closes down are washed.

22

Purpose of the simulation
(determines the model)

The purpose is to evaluate how much waiting time is
reduced by engaging one more car washer.

Model type

 A discrete event model

23

Simulation paradigms

(1) Event-based
 (E.g., “A car arrives”, “A wash is finished”)

(2) Activity-based
 (E.g., “A car is being washed”)

(3) Process-based
 (E.g., “A car”, “A car washer”)

24

Identification of events

(1) A car arrives (CarArrival)

(2) A wash is started (StartCarWashing)

(3) A wash is finished (StopCarWashing)

25

The package simulation.event
by Helsgaun

public abstract class Event {
 protected abstract void actions();
 public final void schedule(double evTime);
 public final void cancel();
 public final static double time();
 public final static void runSimulation(double period);
 public final static void stopSimulation();
}

Events and their associated actions are defined in subclasses of
class Event.

26

import simulation.event.*;
import simset.*;
import random.*;

public class CarWashSimulation extends Simulation {
 int noOfCarWashers, noOfCustomers;
 double openPeriod = 8 * 60, throughTime;
 Head tearoom = new Head(), waitingLine = new Head();
 Random random = new Random(7913);

 CarWashSimulation(int n) { noOfCarWashers = n; ... }

 class CarWasher extends Link {}
 class Car extends Link { double entryTime = time(); }

 class CarArrival extends Event {...}
 class StartCarWashing extends Event {...}
 class StopCarWashing extends Event {...}

 public static void main(String args[]) {
 new CarWashSimulation(2);
 }
}

27

The constructor in
CarWashSimulation

CarWashSimulation(int n) {
 noOfCarWashers = n;
 for (int i = 1; i <= noOfCarWashers; i++)
 new CarWasher().into(tearoom);
 new CarArrival().schedule(0);
 runSimulation(openPeriod + 1000000);
 report();
}

28

CarArrival

class CarArrival extends Event {
 public void actions() {
 if (time() <= openPeriod) {
 new Car().into(waitingLine);
 if (!tearoom.empty())
 new StartCarWashing().schedule(time());
 new CarArrival().schedule(time() +
 random.negexp(1 / 11.0));
 }
 }
}

29

StartCarWashing

class StartCarWashing extends Event {
 public void actions() {
 CarWasher theCarWasher = (CarWasher) tearoom.first();
 theCarWasher.out();
 Car theCar = (Car) waitingLine.first();
 theCar.out();
 new StopCarWashing(theCarWasher, theCar).
 schedule(time() + 10);
 }
}

30

StopCarWashing

class StopCarWashing extends Event {
 CarWasher theCarWasher;
 Car theCar;

 StopCarWashing(CarWasher washer, Car car) {
 theCarWasher = washer; theCar = car;
 }

 public void actions() {
 theCarWasher.into(tearoom);
 if (!waitingLine.empty())
 new StartCarWashing().schedule(time());
 noOfCustomers++;
 throughTime += time() - theCar.entryTime;
 }
}

31

The method report

void report() {
 System.out.println(noOfCarWashers +
 " car washer simulation");
 System.out.println("No.of cars through the system = " +
 noOfCustomers);
 System.out.printf("Av.elapsed time = %1.2f\n",
 throughTime / noOfCustomers);
}

32

1 car washer simulation
No.of cars through the system = 43
Av.elapsed time = 29.50

2 car washer simulation
No.of cars through the system = 43
Av.elapsed time = 12.46

3 car washer simulation
No.of cars through the system = 43
Av.elapsed time = 10.51

Experimental results

33

Scheduled events are kept in a circular two-way list, SQS, sorted in
increasing order of their associated event times.

Implementation of the package
simulation.event

2.33 5.3 7.24 9.8

0
SQS

suc

pred

34

public abstract class Event {
 protected abstract void actions();
 ...
 private final static Event SQS = new Event() {
 { pred = suc = this; }
 protected void actions() {}
 };

 private static double time = 0;

 private double eventTime;
 private Event pred, suc;
}

35

public void schedule(final double evTime) {
 if (evTime < time)
 throw new RuntimeException
 ("attempt to schedule event in the past");
 cancel();
 eventTime = evTime;
 Event ev = SQS.pred;
 while (ev.eventTime > eventTime)
 ev = ev.pred;
 pred = ev;
 suc = ev.suc;
 ev.suc = suc.pred = this;
}

5.3

2.33 7.24
suc

pred

ev

36

public void cancel() {
 if (suc != null) {
 suc.pred = pred;
 pred.suc = suc;
 suc = pred = null;
 }
}

suc

pred

5.3

2.33 7.24

37

public static void runSimulation(double period) {
 time = 0;
 while (SQS.suc != SQS) {
 Event ev = SQS.suc;
 time = ev.eventTime;
 if (time > period)
 break;
 ev.cancel();
 ev.actions();
 }
 stopSimulation();
}

public static void stopSimulation() {
 while (SQS.suc != SQS)
 SQS.suc.cancel();
}

38

event

process

time

wait	
 in	
 queue	
 get	
 washed	

activity	

event event

activity	

Process-based simulation

A process is a system component that executes a sequence of
activities in simulated time.

car arrives wash is started wash is finished

39

(1) Car

(2) CarWasher

(3) CarGenerator

Identification of processes

40

Processes and their associated actions are defined in subclasses of
class Process.

public abstract class Process extends Link {
 protected abstract void actions();

 public static double time();
 public static void activate(Process p);
 public static void hold(double t);
 public static void passivate();
 public static void wait(Head q);
}

The package javaSimulation
by Keld Helsgaun

41

import javaSimulation.*;
import javaSimulation.Process;

public class CarWashSimulation extends Process {
 int noOfCarWashers, noOfCustomers;
 double openPeriod = 8 * 60, throughTime;
 Head tearoom = new Head(), waitingLine = new Head();
 Random random = new Random(7913);

 CarWashSimulation(int n) { noOfCarWashers = n; }

 public void actions() {...}

 class Car extends Process {...}
 class CarWasher extends Process {...}
 class CarGenerator extends Process {...}

 public static void main(String args[]) {
 activate(new CarWashSimulation(2));
 }
}

42

The actions of the main process

public void actions() {
 for (int i = 1; i <= noOfCarWashers; i++)
 new CarWasher().into(tearoom);
 activate(new CarGenerator());
 hold(openPeriod + 1000000);
 report();
}

43

class CarGenerator extends Process {
 public void actions() {
 while (time() <= openPeriod) {
 activate(new Car());
 hold(random.negexp(1 / 11.0));
 }
 }
}

Class CarGenerator

44

class Car extends Process {
 public void actions() {
 double entryTime = time();
 into(waitingLine);
 if (!tearoom.empty())
 activate((CarWasher) tearoom.first());
 passivate();
 noOfCustomers++;
 throughTime += time() - entryTime;
 }
}

Class Car

45

class CarWasher extends Process {
 public void actions() {
 while (true) {
 out();
 while (!waitingLine.empty()) {
 Car served = (Car) waitingLine.first();
 served.out();
 hold(10);
 activate(served);
 }
 wait(tearoom);
 }
 }
}

Class CarWasher

46

A call bank simulation

A call bank consists of a large number of operators who handle phone
calls. An operator is reached by dialing one phone number.

If any of the operators are available, the user is connected to one of them.

If all operators are already taking a phone, the phone will give a busy
signal, and the user will hang up.

Simulate the service provided by the pool of operators. The variables are
•  The number of operators in the bank
•  The probability distribution that governs dial-in attempts
•  The probability distribution that governs connect time
•  The length of time the simulation is to be run

47

Sample output

48

49

50

51

52

53

The time at which each event occurs is
shown in boldface.

The number of free operators (if any) are
shown to the right of the priority queue.

54

55

public class CallSim extends Simulation {
 public CallSim(int operators, double avgLen,
 int callIntrvl) {
 availableOperators = operators;
 avgCallLen = avgLen;
 freqOfCalls = callIntrvl;
 }

 class DialIn extends Event { ... }
 class HangUp extends Event { ... }

 public static void main(String[] args) {
 new CallSim(3, 5.0, 1);
 new DialIn(0).schedule(0.0);
 runSimulation(20);
 }

 int availableOperators, freqOfCalls;
 double avgCallLen;
 Random r = new Random();
}

Using simulation.event

56

class DialIn extends Event {
 DialIn(int who) { this.who = who; }

 @Override public void actions() {
 System.out.print("User " + who +
 " dials in at time " + time() + " ");
 if (availableOperators > 0) {
 availableOperators--;
 int howLong = r.poisson(avgCallLen);
 System.out.println("and connects for " +
 howLong + " minutes");
 new HangUp(who).schedule(time() + howLong);
 } else
 System.out.println("but gets busy signal");
 new DialIn(who + 1).schedule(time() + freqOfCalls);
 }

 int who;
}

57

class HangUp extends Event {
 HangUp(int who) { this.who = who; }

 @Override public void actions() {
 availableOperators++;
 System.out.println("User " + who +
 " hangs up at time " + time());
 }

 int who;
}

58

Using javaSimulation
public class CallSim extends Process {
 public CallSim(int operators, double avgLen,
 int callIntrvl, int stopTime) {
 availableOperators = operators; avgCallLen = avgLen;
 freqOfCalls = callIntrvl; simTime = stopTime;
 }

 @Override public void actions() {
 activate(new User(0));
 hold(simTime);
 }

 class User extends Process { ... }

 public static void main(String[] args) {
 activate(new CallSim(3, 5.0, 1, 20));
 }

 int availableOperators, freqOfCalls, simTime;
 double avgCallLen;
 Random r = new Random();
}

59

class User extends Process {
 User(int who) { this.who = who; }

 @Override public void actions() {
 activate(new User(who + 1), delay, freqOfCalls);
 System.out.print("User " + who +
 " dials in at time " + time() + " ");
 if (availableOperators > 0) {
 availableOperators--;
 int howLong = r.poisson(avgCallLen);
 System.out.println("and connects for " +
 howLong + " minutes");
 hold(howLong);
 availableOperators++;
 System.out.println("User " + who +
 " hangs up at time " + time());
 } else
 System.out.println("but gets busy signal");
 }

 int who;
}

60

Graphs

61

Graphs

A graph is a useful abstract concept.

Intuitive definition: A graph is a set of objects and a set of
relations between these objects.

Mathematical definition: A graph G = (V, E) is a finite set
of vertices, V, (or nodes) and a finite set of edges, E,
where each edge connects two vertices .(E ⊆ V ×V)

HA

GB C

D E

I

 F

V = {A, B, C, D, E, F, G, H, I}
E = {(A,B), (A,C), (A,F), (A,G), (D,E), (D,F), (E,F), (E,G), (H,I)}

62

Applications

Anything involving relationships among objects
can be modeled as a graph

Traffic networks:
Vertices: cities, crossroads
Edges: roads

Organic molecules:
Vertices: atoms
Edges: bonds

Electric circuits:
Vertices: devices
Edges: wires

Game graphs:
Vertices: board positions
Edges: moves

63

Object-oriented design (UML diagramming):
Vertices: classes/objects
Edges: inheritance, aggregation, association

Project planning:
Vertices: subtasks
Edges: dependencies (subtask A must finish be before
 subtask B can start)

Software systems:
Vertices: methods
Edges: method A calls method B

Applications ���
(continued)

64

Historical foundation of
graph theory

Map of Königsberg in
Euler’s time showing the
actual layout of the seven
bridges, highlighting the
river Pregel and the bridges

The problem was to find a walk through the city that would cross
each bridge once and only once. Euler proved in 1735 that this
problem has no solution.

65

Euler’s analysis

→

During any walk in the graph, the number of times one enters a non-terminal vertex
equals the number of times one leaves it.
Now if every bridge is traversed exactly once it follows that for each land mass
(except possibly for the ones chosen for the start and finish), the number of bridges
touching that land mass is even (half of them, in the particular traversal, will be
traversed "toward" the landmass, the other half "away" from it).
However, all the four land masses are touched by an odd number of bridges.

→

L. Euler, 1707-83

66

Terminology

A directed graph (or digraph) is a graph in which all edges are
directed.

A undirected graph is a graph in which no edges are directed.

The two vertices of an edge is called its end vertices.
H I

If an edge is a ordered pair of end vertices, then the edge is said to
be directed. This is indicated on the visual representation by
drawing the edge as an arrow.

H I

67

Terminology ���
(continued)

A path is a sequence of vertices connected by edges.

A simple path is a path in which all vertices are distinct.

A cycle is a path that is simple, except that the first and last
vertex are the same.

Cycles: FDEF, AFEGA, and AFDEGA

A

GB C

D E

H I

 F

68

A graph is said to be connected if, for every two vertices u and v,
there is a path from u to v or a path from v to u.

A graph, which is not strongly connected, consists of two or more
connected subgraphs, called components.

Terminology ���
(continued)

Two components

A

GB C

D E

H I

 F

A graph G'= (V', E') is a subgraph of a graph G = (V, E) if
V '⊆V and E '⊆ E.

69

A tree is a connected graph without cycles.
A forest is a set of disjoint trees.

A spanning tree for a graph G is a tree composed of all vertices
of G and some (or perhaps all) of its edges.

Graf G Spanning tree for G

Terminology ���
(continued)

70

A graph in which every pair of vertices are connected by a unique
edge is said to be complete.

 [for an undirected complete graph: |E| = |V|(|V|-1)/2)]

A dense graph is a graph in which the number of edges is close to
the maximal number of edges.
A sparse graph is a graph with only a few edges.

A graph is a weighted graph if a number (weight) is assigned to
each edge.

[weights usually represent costs]

Terminology ���
(continued)

71

A directed weighted graph

72

Basic graph problems

Paths:
Is there a path from A to B?

Cycles:
Does the graph contain a cycle?

Connectivity (spanning tree):
Is there a way to connect all vertices?

Biconnectivity:
Will the graph become disconnected if one
vertex is removed?

Planarity:
Is there a way to draw the graph without
edges crossing?

73

Shortest path:
What is the shortest way from A to B?

Longest path:
What is the longest way from A to B?

Minimal spanning tree:
What is the cheapest way to connect all vertices?

Hamiltonian cycle:
Is there a way to visit all the vertices without
visiting the same vertex twice?

Traveling salesman problem:
What is the shortest Hamiltonian cycle?

Basic graph problems
(continued)

74

Representation of graphs

Graphs are abstract mathematical objects.
Algorithms have to work with concrete representations.

Many different representations are possible. The choice is
decided by algorithms and graph types (sparse/dense,
weighted/unweighted, directed/undirected).

Three data structures will be described:

(1) edge set
(2) adjacency matrix
(3) adjacency lists

75

(1) Edge set

class Edge {
 Vertex source, dest;
 double cost;
}

class Graph {
 Set<Edge> edges;
}

class Vertex {
 String name;
}

76

(2) Adjacency matrix

A B C D E F G H I
A 0 1 1 0 0 1 1 0 0
B 1 0 0 0 0 0 0 0 0
C 1 0 0 0 0 0 0 0 0
D 0 0 0 0 1 1 0 0 0
E 0 0 0 1 0 1 1 0 0
F 1 0 0 1 1 0 0 0 0
G 1 0 0 0 1 0 0 0 0
H 0 0 0 0 0 0 0 0 1
I 0 0 0 0 0 0 0 1 0

class Graph { // unweighted
 boolean[][] adjMatrix;
}

class Graph { // weighted
 double[][] adjMatrix;
}

A

GB C

D E

H I

 F

77

(3) Adjacency lists

 A:
 B:
 C:
 D:
 E:
 F:
 G:
 H:
 I:

F C B G

A

A

F E

G F D

A E D

E A

I

H

A

GB C

D E

H I

 F

78

class Edge {
 Vertex dest; // Second vertex of edge
 double cost; // Edge weight
}

class Graph {
 Map<String,Vertex> vertexMap;
}

class Vertex {
 String name; // Vertex name
 List<Edge> adj; // Adjacent vertices
}

(3) Adjacency lists

79

80

Comparison of representations

Space requirements:

Edge set: O(|E|)
Adjacency matrix: O(|V|2)
Adjacency lists: O(|V| + |E|)

81

Time complexity (worst case):

Is there an edge from A to B?
 Edge set: O(|E|)
 Adjacency matrix: O(1)
 Adjacency lists: O(|V|)

 Is there an edge from A to anywhere?
 Edge set: O(|E|)
 Adjacency matrix: O(|V|)
 Adjacency lists: O(1)

Choice of representation affects
algorithm efficiency

82

Goal: “visit” every vertex of the graph.
Depth-first traversal (recursive):

* Mark all vertices as “unvisited”
 * Visit vertex 1

* To visit a vertex v:
* mark it
* (recursively) visit all unmarked vertices
 connected to v by an edge

Traversing graphs

Solves some simple graph problems:
connectivity, cycles

Basis for solving difficult graph problems:
biconnectivity, planarity

83

class Vertex {
 String name;
 List<Edge> adj;
 boolean visited;

 void visit() {
 visited = true;
 for (Edge e : adj) {
 Vertex w = e.dest;
 if (!w.visited)
 w.visit();
 }
 }
}

Implementation of depth-first traversal
(adjacency lists)

Time complexity: O(|E|)

84

Depth-first traversal of a component

A

B C G

F

D E

A

B C G

F

D E

A

B C G

D E

F

A

B C

D

G

E

F

A

B

D

C G

E

F

A

B C G

D E

F

A: F C B G
B: A
C: A
D: F E
E: G F D
F: A E D
G: E A

A

B C G

F

D E

85

A depth-first traversal of a connected graph represented by
adjacency lists requires O(|E|) time

A

F C B

E

DG

1

2

3

4 5

6 7

Depth-first traversal of a component
results in a depth-first tree

86

void traverse(Vertex startVertex) {
 Stack<Vertex> stack = new Stack<Vertex>();
 stack.push(startVertex);
 startVertex.visited = true;
 while (!stack.empty()) {
 Vertex v = stack.pop();

 for (Edge e : v.adj) {
 Vertex w = e.dest;
 if (!w.visited) {
 stack.push(w);
 w.visited = true;
 }
 }
 }
}

Non-recursive���
depth-first traversal

Use an explicit stack of vertices.

87

If the stack is replaced by a queue, the graph will be traversed in
breadth-first order (level order).

Breadth-first traversal

void traverse(Vertex startVertex) {
 Queue<Vertex> queue = new LinkedList<>();
 queue.add(startVertex);
 startVertex.visited = true;
 while (!queue.isEmpty()) {
 Vertex v = queue.remove();

 for (Edge e : v.adj) {
 Vertex w = e.dest;
 if (!w.visited) {
 queue.add(w);
 w.visited = true;
 }
 }
 }
}

88

A

B C G

F

D E

F C B G

A

B C G

F

D E

C B G E D

A

B C G

D E

F B G E D

A

B C G

D E

F G E D

A

B C G

D E

F E D

A

B C G

D E

F D

A

B C G

D E

F

Breadth-first traversal of a component

A: F C B G
B: A
C: A
D: F E
E: G F D
F: A E D
G: E A

89

A

F C B

E D

G

1

2 3 4 5

6 7

Breadth-first traversal of a component
results in a breadth-first tree

A breadth-first traversal of a connected graph represented by
adjacency lists requires O(|E|) time

90

Depth-first
start

current

Breadth-first
start

current

Depth-first traversal versus
breadth-first traversal

91

Best-first traversal

Queue<Vertex> queue = new PriorityQueue<>();

If the queue is replaced by a priority queue, the graph will be
traversed in best-first order.

Class Vertex should implement the Comparable interface, or
the priority queue should rely on a supplied Comparator object.

O(|E|) insertions and O(|V|) removals; each takes O(log|V|)
time for a heap-based priority queue.

Time complexity: O((|V|+|E|)log|V|)

92

Shortest paths

93

The shortest path problem

Find the shortest path from vertex A to vertex B

Unweighted shortest path (minimize the number of edges):
Use breadth-first traversal.
Traverse the graph starting at A, using a queue.

Weighted shortest path (find the “cheapest” path):
Use best-first traversal (Dijkstra’s algorithm):
Traverse the graph starting at A, using a priority queue.
The priority of each unvisited vertex is the cost of the
currently cheapest path from A to that vertex.
Works only for graphs with non-negative weights.

94

Starting vertex

Goal vertex

Result

95

96

Class Edge

97

Class Vertex

98

Shortest-path algorithms

99

100

101

102

103

104

Input format:
source_name dest_name cost

105

106

Unweighted shortest path
(breadth-first traversal)

107

108

(of cost Dw= Dv+1)

109

We maintain a roving
eyeball that hops from
vertex to vertex and is
initially at V2.

Roving eyeball
da. strejfende øjeæble

110

Time complexity: O(|E|)

111

Positive weighted shortest path
(Dijkstra’s algorithm, 1959)

For a given source vertex in the graph, the algorithm finds the
path with lowest cost (i.e. the shortest path) between that vertex
and every other vertex.

It can also be used for finding costs of shortest paths from a
single vertex to a single destination vertex by stopping the
algorithm once the shortest path to the destination vertex has
been determined.

E. W. Dijkstra, 1930-2002

112

Let the node at which we are starting be called the initial node. Let the
distance of node Y be the distance from the initial node to Y.

1.  Assign to every node a distance value. Set it to zero for our
initial node and to infinity for all other nodes.

2.  Mark all nodes as unvisited. Set initial node as current.
3.  For the current node, consider all its unvisited neighbors and

calculate their tentative distance (from the initial node). If this
distance is less than the previously recorded distance (infinity in
the beginning, zero for the initial node), overwrite the distance.

4.  When we are done considering all neighbors of the current node,
mark it as visited. A visited node will not be checked ever again;
its distance recorded now is final and minimal.

5.  If all nodes have been visited, finish. Otherwise, set the unvisited
node with the smallest distance (from the initial node) as the next
“current node” and continue from step 3.

Dijkstra’s algorithm

113

114

Example

CB

A

E

D

F

0

428

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

328

5 11

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

328

5 8

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

∞∞

115

Example continued

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

116

117

118

Dijkstra’s algorithm used for solving a
robot planning problem

119

Proof of Dijkstra’s algorithm

Suppose there is a path from S to v of length less than Dv.
This path must go through a vertex u that has not yet been visited.
But since the length of the path from S to u, Du, is less than Dv, we
would have chosen u instead of v. Hence we have a contradiction.

120

Implementation of Dijkstra’s algorithm
void dijkstra(Vertex startVertex) {
 clearAll();
 PriorityQueue<Vertex> pq = new PriorityQueue<>();
 pq.add(startVertex); startVertex.dist = 0;
 while (!pq.isEmpty()) {
 Vertex v = pq.remove();

 for (Edge e : v.adj) {
 Vertex w = e.dest;
 if (v.dist + e.cost < w.dist) {
 w.dist = v.dist + e.cost;
 w.prev = v;
 pq.update(w); // error: no such method!

 }
}

}
}

pq.update(w): If w is not in pq, then add w to pq; otherwise, update pq by
reestablishing its ordering property. Unfortunately, the update method is
not available in Java’s PriorityQueue.

121

Class Path

122

Time complexity:
O(|E|.log|V|)

123

Negative-weighted shortest path
(The Bellman-Ford algorithm, 1958)

void bellmanFord(Vertex startVertex) {
 clearAll();
 startVertex.dist = 0;
 Collection<Vertex> vertices = vertexMap.values();
 for (int i = 1; i < vertices.size(); i++) {
 for (Vertex v : vertices) {
 for (Edge e : v.adj) {
 Vertex w = e.dest;
 if (v.dist + e.cost < w.dist) {
 w.dist = v.dist + e.cost;
 w.prev = v;
 }
 }
 }
 }
}

Iteration i finds all shortest paths from startVertex that uses i or fewer edges.
Time complexity: O(|E|.|V|)

124

Bellman-Ford example

∞∞

0

∞

∞

∞

48

7 1

-2 5

-2

3 9

∞

-2

∞

0

∞

∞

∞

48

7 1

-2 5
3 9

8 -2 4

-2

-28

0

4

∞

48

7 1

-2 5
3 9

∞

-15

6
1

9

-25

0

1

-1

9

48

7 1

-2 5

-2

3 9 4

125

Check for negative-cost cycles (add this code after the loop):

for (Vertex v : vertices) {
 for (Edge e : v.adj) {
 Vertex w = e.dest;
 if (v.dist + e.cost < w.dist)
 error("Negative-cost cycle detected");
 }
}

126

An edge can dequeue at
most O(|V|) times.
Time complexity: O(|E|.|V|)

v.scratch is odd when
vertex v is on the queue.
v.scratch/2 tells us
how many times v has
left the queue.

127

DAGs

A DAG may, for instance, be used for modeling an activity
network. Directed edges are used to specify that some
activities must be finished before an activity can start.

An oriented graph without cycles is called a DAG
(Directed Acyclic Graph).

128

The vertices of a DAG can be ordered so that if there is a path from u
to v, then v appears after u in the ordering. This is called a topological
sort of the graph.

Topological sorting

Topological ordering: All directed edges point from left to right
[not necessarily unique]

129

A topological sorting algorithm

(1) Create an empty queue

(2) Choose a vertex without any ingoing edges

(3) Insert the vertex in the queue. Remove the vertex and all its
outgoing edges from the graph.

(4) Repeat (2) and (3) while the graph is not empty

Now the queue contains the vertices in topological order

130

V2 V0 V1 V3 V4 V6 V5

131

Java implementation
List<Vertex> tologicalOrder() {
 Collection<Vertex> vertices = vertexMap.values();
 for (Vertex v : vertices)
 v.scratch = 0; // v's indegree = 0
 for (Vertex v : vertices)
 for (Edge e : v.adj)
 e.dest.scratch++;
 Queue<Vertex> q = new LinkedList<>();
 for (Vertex v : vertices)
 if (v.scratch == 0)
 q.add(v);
 List<Vertex> result = new ArrayList<>();
 int iterations = 0;
 while (!q.isEmpty() && ++iterations <= vertices.size()) {
 Vertex v = q.remove();
 result.add(v);
 for (Edge e : v.adj)
 if (--e.dest.scratch == 0)
 q.add(e.dest);
 }
 return iterations == vertices.size() ? result : null;
}

132

Shortest path for a
DAG

Visit order:
V2 V0 V1 V3 V4 V6 V5

133

Time complexity: O(|E|)

Uses topological sort

134

Complexity of shortest path algorithms

135

136

137

Some activities have zero slack. These are critical activities that must be
finished on schedule. A path consisting entirely of zero-slack edges is a
critical path.

slack

138

Problem complexity

139

Problem complexity

For a large class of important problems no fast solution algorithms are
known.

An inefficient algorithm: running time grows at least exponentially
[Ω(cn)]

A problem is said to be hard or intractable if there does not exist a
polynomial-time algorithm for solving the problem.

An efficient algorithm: running time is limited by some polynomial
[O(nc)]

A problem that can be solved by a efficient algorithm is said to be easy.

140

Examples of hard problems

•  The traveling salesman problem
A salesman must visit N cities. Find a travel route
that minimizes his costs.

•  Job scheduling
A number of jobs of varying duration are to be
executed on two identical machines before a given
deadline. Is it possible to meet the deadline?

•  Satisfiability
Is it possible to determine if the variables in a
Boolean expression can be assigned in such a way
as to make the expression evaluate to true?

(a ∨ b)∧ (¬a ∨ b)

141

•  Longest path
Find the longest simple path between two vertices of a graph.

•  Partitioning
Given at set of integers. Is it possible to partition the set into
two subsets so that the sum of the elements in each of the two
subsets is the same?

•  3-coloring
Is it possible to color the vertices of a graph by only three colors
such that no two adjacent vertices have the same color?

More examples of hard problems

142

NP-complete problems

For none of these problems do we know an algorithm that solves the
problem in polynomial time.

All experts are convinced that such algorithms do not exist. However,
this has not yet been proved.

The problems belong to the class of problems called NP-complete
problems.

143

An NP-complete problem is a problem that can be solved in polynomial
time on a nondeterministic machine.

A nondeterministic machine has the wonderful ability to make the correct
choice in any situation where a choice is to be made.

A usual deterministic machine may be used to simulate correct choices in
exponential time by trying each possible choice.

If only one NP-complete problem can be solved in polynomial time, every
NP-complete problem can be solved in polynomial time.

NP-completeness

144

Decidability

Undecidable problems are decision problems which no algorithm
can decide.

 Examples:

•  Prove that an algorithm always terminates (the stop problem)

•  Decide if a formula in the predicate logic is valid

•  Decide if two syntax descriptions define the same language

145

(a)
while (x != 1)
 x = x - 2;

Termination?

while (x != 1)
 if (x % 2 == 0)
 x = x / 2;
 else
 x = 3 * x + 1;

Collatz sequences:
 12, 6, 3, 10, 5, 16, 8, 4, 2, 1
 9,28,14,7,22,11,34,17,52,26,13,40,20,10,5,16,8,4,2,1

(b)

Collatz conjecture (1937): No matter what number you start
with, you will always eventually reach 1.
The conjecture has still not been proven!

146

The program terminates, if and only if Fermat's last theorem is false.

For n ≥ 3, no three positive integers a, b, and c can satisfy an + bn = cn.

P. de Fermat (1601-65)

(c)
for (int x = 3; ; x++)

 for (int a = 1; a <= x; a++)
 for (int b = 1; b <= x; b++)
 for (int c = 1; c <= x; c++)
 for (int n = 3; n <= x; n++)
 if (Math.pow(a,n) + Math.pow(b,n) == Math.pow(c,n))
 System.exit(0);

Termination? ���
(continued)

The theorem was proven in 1995

147

It is impossible to design an algorithm that for any algorithm
can decide if it terminates.

The halting problem

Now define:

 void p() {
 while (terminates(p)) /* do nothing */;
}

What is the result of the call terminates(p)?

Proof (by contradiction):
Assume there exists a method terminates(p), which for
any method p returns true if p terminates; otherwise, false.

148

