Applications 11

N760P

Agenda

Simulation
Discrete event simulation
Carwash simulation
Call bank simulation

e Graphs
Terminology
Representation
Traversal
Shortest path
Topological sorting

* Problem complexity

Simulation

_POSITION N\
0 W=

.

What is simulation?

Experiments with
models
on a computer

Models and systems

Model
Representation of a system

System

A chosen extract of reality

The human respiratory system

Classification of models

* Mental
(e.g.,a person’s perception of an object, a “world view”)

 Physical
(e.g., amodel railway, a wax figure, a globe)

e Symbolic
(e.g., H, + 0 =>water, I = ma)

Symbolic models |
Non-mathematical models ‘I
Language models
Oral and written descriptions
Graphic models
Pictures, drawings
Schematic models
Diagrams

Mathematical models ‘I

Mathematical models

e Static
Representation of a system in a given fixed state

e Dynamic
Representation of a system’s behavior over time

Mathematical models

e Analytical ';L-MC'
Relevant questions about the model can be P d.'
answered by mathematical reasoning ey

(they have a closed form solution)

e Non-analytical

Relevant questions about the model are
mathematically unmanageable
(holds for most real-world models)

Simulation
a possible narrowing

Simulation is experimentation with dynamic,

non-analytical models on a computer

10

Application examples

Biology
an ecosystem (e.g., the life in a lake), cell growth, the
human circulatory system, vegetation)

Physics
nuclear processes, mechanical movement
(e.g., solar systems, launching of rockets)

Chemistry
chemical reactions, chemical process plants

Geography
urban development, growth of a population

Computer science
computers, networks, video games, robotics

Management science
organizational decision making

11

Modeling is ?} @

purposive

Models can neither be false or true.
They can be more or less appropriate in relation to their purpose.

A good model is a model that serves its purpose.

The first step of a modeling process is a clarification of what the
model is to be used for.

Abstraction and aggregation are used for obtaining manageable
models.

Abstraction: Ignorance from irrelevant properties
Aggregation: Grouping several things together and
considering them as a whole

12

Dynamic model types

e Continuous
The state of the model is described by variables that vary
continuously (without jumps).

A

f\/

[
>

x = f(1)

The model is usually expressed as ordinary differential equations
and/or difference equations.

dx
—=g2(x,t

'xnext — xnow + g('xnow ’t)At “

13

e Discrete

The state of the model is described by variables that vary in

jumps (caused by events).

fi) |

v

Example:
A queue system (customers in a bank, patients in a health centre).

14

Combined continuous and discrete

The state may be described by variables that vary continuously and
are changed 1n jumps.

fir) |

/JJJ

v

Examples:

Elevator (the movement between floors is continuous, whereas start
and stop of the elevator are discrete events).

Refrigerator (the heat exchange with the surroundings is continuous,
whereas the thermostat causes discrete events)

15

Reasons for using
simulation

® The system does not exist

e Experiments with the real system are too
expensive, too time-consuming, or too
dangerous

e Experiments with the real system are
practically impossible (e.g., the sun system)

16

Purpose of simulation

(1) Decision making

(2) Insight ﬁ:

17

Difficulties of
simulation

* May be very expensive, in machine as well as
man resources

e Validation 1s difficult

e Collection of data, and analysis and interpretation
of results usually implies good knowledge of
statistics

18

Carwash simulation

19

Simulation of a carwash

Served car

Tearoom

Car washer

Car washer

Waiting line

20

System description

(1) The average time between car arrivals has been estimated at 11 minutes.

(2) When a car arrives, it goes straight into the car wash if this is idle;
otherwise, it must wait in a queue.

(3) As long as cars are waiting, the car wash is in continuous operation serving
on a first-come basis.

(4) Each service takes exactly 10 minutes.

(5) The car washer starts his day in a tearoom and returns there each time he
has no work to do.

(6) The carwash is open 8 hours per day.

(7) All cars that have arrived before the carwash closes down are washed.

21

Purpose of the simulation
(determines the model)

The purpose is to evaluate how much waiting time 1s
reduced by engaging one more car washer.

Model type

A discrete event model

22

Simulation paradigms

(1) Event-based
(E.g., “A car arrives”, “A wash is finished”)

(2) Activity-based
(E.g., “A car is being washed”)

(3) Process-based
(Eg, “A Car”, “A car Washer”)

E

23

Identification of events

(1) A car arrives (CarArrival)
(2) A wash is started (StartCarWashing)

(3) A wash is finished (StopCarWashing)

24

The package simulation.event

by Helsgaun

public abstract class Event {

protected abstract void actions();

public
public
public
public
public

final
final
final
final
final

void schedule(double evTime);

void cancel();

static double time();

static void runSimulation(double period);
static void stopSimulation();

Events and their associated actions are defined in subclasses of
class Event.

25

import simulation.event.*;
import simset.*;
import random. *;

public class CarWashSimulation extends Simulation {
int noOfCarWashers, noOfCustomers;
double openPeriod = 8 * 60, throughTime;

Head tearoom = new Head(), waitingLine = new Head();

Random random = new Random(7913);
CarWashSimulation(int n) { noOfCarWashers = n;

class CarWasher extends Link {}
class Car extends Link { double entryTime = time();

class CarArrival extends Event {...}

class StartCarWashing extends Event {...}
class StopCarWashing extends Event {...}
public static void main(String args[]) {

new CarWashSimulation(2);

}

26

The constructor in
CarWashSimulation

CarWashSimulation(int n) {
noOfCarWashers = n;
for (int i = 1; i <= noOfCarWashers;
new CarWasher().into(tearoom);
new CarArrival().schedule(0);
runSimulation(openPeriod + 1000000);
report();

i++)

27

CarArrival

class CarArrival extends Event {

public void actions() {
if (time() <= openPeriod) {
new Car().into(waitingLine);

if (!tearoom.empty())
new StartCarWashing().schedule(time());
new CarArrival().schedule(time() +
random.negexp(l / 11.0));

28

StartCarWashing

class StartCarWashing extends Event {
public void actions() {

CarWasher theCarWasher = (CarWasher) tearoom.first();
theCarWasher.out();

Car theCar = (Car) waitingLine.first();

theCar.out();

new StopCarWashing(theCarWasher, theCar).
schedule(time() + 10);

29

StopCarWashing

class StopCarWashing extends Event {
CarWasher theCarWasher;
Car theCar;

StopCarWashing(CarWasher washer, Car car) {
theCarWasher = washer; theCar = car;

}

public void actions() {
theCarWasher.into(tearoom) ;
if (!waitingLine.empty())

new StartCarWashing().schedule(time());

noOfCustomers++;
throughTime += time() - theCar.entryTime;

30

The method report

void report() {
System.out.println(noOfCarWashers +
" car washer simulation");
System.out.println("No.of cars through the system = " +
noOfCustomers) ;
System.out.printf("Av.elapsed time = %1.2f\n",
throughTime / noOfCustomers);

Experimental results

1 car washer simulation
No.of cars through the system = 43
Av.elapsed time = 29.50

2 car washer simulation
No.of cars through the system = 43
Av.elapsed time = 12.46

3 car washer simulation
No.of cars through the system = 43
Av.elapsed time = 10.51

32

Implementation of the package
simulation.event

Scheduled events are kept in a circular two-way list, SQS, sorted in
increasing order of their associated event times.

ON

(= —ap=o»)

pred

33

public abstract class Event {
protected abstract void actions();

private final static Event SQS = new Event()
{ pred = suc = this; }
protected void actions() {}

}i
private static double time = 0;

private double eventTime;
private Event pred, suc;

{

34

public void schedule(final double evTime) ({

if (evTime < time)

throw new RuntimeException
("attempt to schedule event in the past");

cancel();

eventTime = evTime;

Event ev = SQS.pred;

while (ev.eventTime > eventTime)
ev = ev.pred;

pred = ev;

suc = ev.suc;

ev.suc = suc.pred = this;

35

public void cancel() {
if (suc != null) {
suc.pred = pred;
pred.suc = suc;
suc = pred = null;

/ SucC

pred

36

public static void runSimulation(double period) {

time = 0;
while (SQS.suc != SQS) {

}

Event ev = SQS.suc;
time = ev.eventTime;
if (time > period)
break;
ev.cancel ()
ev.actions (

) ;

stopSimulation();

public static void stopSimulation()
while (SQS.suc != SQS)

[t

SQS.suc.cancel();

37

Process-based simulation

A process is a system component that executes a sequence of
activities in simulated time.

event event event
car alrrives wash '15 started wash iI finished
wait in queue get washed
< . >< . > time
activity activity

A
\ 4

process

Identification of processes

(1) car
(2) CarWasher

(3) CarGenerator

39

The package javaSimulation
by Keld Helsgaun

public abstract class Process extends Link ({
protected abstract void actions();

public static double time();

public static void activate(Process p);
public static void hold(double t);
public static void passivate();

public static void wait(Head q);

Processes and their associated actions are defined in subclasses of
class Process.

40

import javaSimulation.*;
import javaSimulation.Process;

public class CarWashSimulation extends Process {
int noOfCarWashers, noOfCustomers;
double openPeriod = 8 * 60, throughTime;

Head tearoom = new Head(), waitingLine = new Head();

Random random = new Random(7913);

CarWashSimulation(int n) { noOfCarWashers =

public void actions() {...}

class Car extends Process {...}

class CarWasher extends Process {...}
class CarGenerator extends Process {...}
public static void main(String args[]) {

activate(new CarWashSimulation(2));

41

The actions of the main process

public void actions() {
for (int i = 1; i <= noOfCarWashers; i++)
new CarWasher().into(tearoom) ;
activate(new CarGenerator());
hold(openPeriod + 1000000);
report();

42

Class CarGenerator

class CarGenerator extends Process {

public void actions() {
while (time() <= openPeriod) {
activate(new Car());

hold(random.negexp(l / 11.0));

43

Class Car

class Car extends Process {
public void actions() {

double entryTime = time();
into(waitingLine);
if (!tearoom.empty())

activate((CarWasher) tearoom.first());
passivate();
noOfCustomers++;
throughTime += time() - entryTime;

44

Class CarWasher

class CarWasher extends Process {
public void actions() {
while (true) {

out();

while (!waitingLine.empty()) {
Car served = (Car) waitingLine.first();
served.out();
hold(10);

activate(served);

}

wait(tearoom);

45

A call bank simulation

A call bank consists of a large number of operators who handle phone
calls. An operator is reached by dialing one phone number.

If any of the operators are available, the user is connected to one of them.

If all operators are already taking a phone, the phone will give a busy
signal, and the user will hang up.

Simulate the service provided by the pool of operators. The variables are
* The number of operators in the bank
* The probability distribution that governs dial-in attempts
* The probability distribution that governs connect time
* The length of time the simulation is to be run

46

O NOOOTHS WON =

NN N NN DNNN - o o o o e e o
OO S, WON~-~ 0 O0COONOODOGTSAS,WN-OOv

User
User
User
User
User
User
User
User
User
User
User
User
User
User
User
User
User
User
User
User
User
User
User
User
User
User

0 dials 1in
0 hangs up
dials in
dials 1in
dials in
dials in
dials 1in
dials in

at
at
at
at
at
at
at
at

time
time
time
time
time
time
time
time

Sample output

and connects for 1 minute

and connects for S5 minutes
and connects for 4 minutes
and connects for 11 minutes
but gets busy signal
but gets busy signal
but gets busy signal

hangs up at time
hangs up at time
dials in at time
dials in at time

CONIN = O bW N =
CONOOO VT A WN O

and connects for 8 minutes
and connects for 6 minutes

9 dials in at time 9 but gets busy signal

10 dials in at time 10
11 dials in at time 11
12 dials in at time 12
13 dials in at time 13
3 hangs up at time 14

14 dials in at time 14
8 hangs up at time 14

15 dials in at time 15
7 hangs up at time 15

16 dials in at time 16
17 dials in at time 17
15 hangs up at time 18
18 dials in at time 18

but
but
but
but
and
and

and
but

and

gets busy signal
gets busy signal
gets busy signal
gets busy signal
connects for 6 minutes
connects for 3 minutes

connects for 5 minutes
gets busy signal

connects for 7 minutes

figure 134

Sample output for the
modem bank
simulation involvin
three modems: A dial-
in is attempted every
minute; the average
connect time is 5
minutes; and the
simulation is run for
18 minutes

47

figure 13.5

The Event class used
for modem simulation

NG HAE WN =

/**

* The event class.

* Implements the Comparable interface

* to arrange events by time of occurrence.
* (nested in ModemSim)

*/

private static class Event implements Comparable<Event>

{

static final int DIAL_IN
static final int HANG_UP

1;
2;

public Event()
{

}

public Event(int name, int tm, int type)

{

this(0, 0, DIAL_IN);

who
time
what

name;
tm;
type;

}

pubTic int compareTo(Event rhs)

{
}

return time - rhs.time;

int who; // the number of the user
int time; // when the event will occur
int what; // DIAL_IN or HANG_UP

48

1 import java.util.Random;
2 import java.util.PriorityQueue;

3

4 // ModemSim clas interface: run a simulation

5//

6 // CONSTRUCTION: with three parameters: the number of

7// modems, the average connect time, and the

8// interarrival time

9//

10 // ******************PUBLIC OPERATIONS*********************

11 // void runSim() --> Run a simulation

12

13 public class ModemSim

14 {

15 public ModemSim(int modems, double avgLen, int callIntrvl)
16 { /* Figure 13.7 */ }

17

18 // Run the simulation.

19 public void runSim(long stoppingTime)
20 { /* Figure 13.9 */ }
21
22 // Add a call to eventSet at the current time,
23 // and schedule one for delta in the future.
24 private void nextCall(int delta)
25 { /* Figure 13.8 */ }
26
27 private Random r; // A random source
28 private PriorityQueue<Event> eventSet; // Pending events
29

30 // Basic parameters of the simulation

31 private int freeModems; // Number of modems unused
32 private double avgCalllen; // Length of a call

33 private int freqOfCalls; // Interval between calls
34

35 private static class Event implements Comparable<Event>

36 { /* Figure 13.5 */ }

37 }

figure 13.6

The ModemSim class
skeleton

49

figure 13.7

The ModemSim
constructor

O NGO A WON =

/**

* Constructor.

* @param modem number of modems.
* @param avglLen averge length of a call.
* @param callIntrv] the average time between calls.

public ModemSim(int modems, double avgLen, int callIntrvl)

new PriorityQueue<Event>();

// Schedule first call

*/

{
eventSet =
freeModems = modems;
avgCalllLen = avglen;
freq0fCalls = calllntrvl;
r = new Random();
nextCall(freq0fCalls);

}

50

figure 13.8

The nextCall method
places a new DIAL_IN
event in the event

ueue and advances
the time when the
next DIAL_IN event will
occur

O~NOOOOHE WON -

private int userNum = 0;
private int nextCallTime = 0;

/**
* Place a new DIAL_IN event into the event queue.
* Then advance the time when next DIAL_IN event will occur.
* In practice, we would use a random number to set the time.
*/

private void nextCall(int delta)

{
Event ev = new Event(userNum++, nextCallTime, Event.DIAL_IN);
eventSet.insert(ev);
nextCallTime += delta;

}

51

1 /**
2 * Run the simulation until stoppingTime occurs.
3 * Print output as in Figure 13.4.
4 */
5 pubTlic void runSim(long stoppingTime)
6 {
7 Event e = null;
8 int howlLong;
9
10 while('eventSet.isEmpty())
11 {
12 e = eventSet.remove();
13
14 if(e.time > stoppingTime)
15 break;
16
17 if(e.what == Event.HANG_UP) // HANG_UP
18
19 freeModems++;
20 System.out.printin("User " + e.who +
21 " hangs up at time " + e.time);
22 }
23 else // DIAL_IN
24 {
25 System.out.print("User " + e.who +
26 " dials in at time " + e.time + " ");
27 if(freeModems > 0)
28 {
29 freeModems--;
30 howLong = r.nextPoisson(avgCalllen);
31 System.out.printin("and connects for "
32 + howLong + " minutes");
33 e.time += howlong;
34 e.what = Event.HANG_UP;
35 eventSet.add(e);
36 }
37 else
38 System.out.printin("but gets busy signal");
39
40 nextCall(freqOfCalls);
41 }
42 }
43 }
figure 13.9

The basic simulation routine

52

0 A Y/ Y/ VA YA YA YA Y YA YA YA

o [P)
) [bE
1 EsIeéLl-,Hl‘l.enS) 3
o [PEE] [[E
ofBw e[Jopma])
o BT [o 2] [] [+ B)
o [] [P a5 [s])
o [Bs) [o B] 1o] [s 2])
o [0 [o [B2} [7[BE])
o [} [[7 ;
ufEe [:
1B r6BE_} [o LI ;

figure 13.10

The priority queue for
modem bank
simulation after each
step

The time at which each event occurs is
shown in boldface.

The number of free operators (if any) are
shown to the right of the priority queue.

53

ModemSim s = new ModemSim(3, 5.0, 1);
s.runSim(20);

figure 13.11 1 J**
A simple main to test 2 * Quickie main for testing purposes.
the simulation 3 */
4 public static void main(String [] args)
5 {
6
7
8

Using simulation.event

public class CallSim extends Simulation {
public CallSim(int operators, double avglLen,
int callIntrvl) {
availableOperators = operators;
avgCalllLen = avgLen;
freqOfCalls = calllIntrvl;

}

class DialIn extends Event { ... }
class HangUp extends Event { ... }

public static void main(String[] args) {
new CallSim(3, 5.0, 1);
new DialIn(0).schedule(0.0);
runSimulation(20);

}

int availableOperators, freqOfCalls;

double avgCalllen;
Random r = new Random();

55

class DiallIn extends Event {
DialIn(int who) { this.who = who; }

@Override public void actions() {
System.out.print("User " + who +
" dials in at time " + time() + "
if (availableOperators > 0) {
availableOperators--;
int howLong = r.poisson(avgCallLen);
System.out.println("and connects for " +
howLong + " minutes");
new HangUp(who).schedule(time() + howLong);
} else
System.out.println("but gets busy signal');
new DialIn(who + 1).schedule(time() + freqOfCalls);

}

int who;

ll);

56

class HangUp extends Event {
HangUp(int who) { this.who = who; }

@Override public void actions() {
availableOperators++;
System.out.println("User " + who +
" hangs up at time " + time());

int who;

57

Using javaSimulation

public class CallSim extends Process {
public CallSim(int operators, double avgLen,
int callIntrvl, int stopTime) {
availableOperators = operators; avgCallLen = avglen;
freqO0fCalls = callIntrvl; simTime = stopTime;

}

@Override public void actions() {
activate(new User(0));
hold(simTime) ;

class User extends Process { ... }

public static void main(String[] args) {
activate(new CallSim(3, 5.0, 1, 20));

}

int availableOperators, freqOfCalls, simTime;
double avgCalllen;
Random r = new Random();

58

class User extends Process {
User (int who) { this.who = who; }

@Override public void actions() {
activate(new User(who + 1), delay, freqOfCalls);
System.out.print("User " + who +
" dials in at time " + time() + " ");
if (availableOperators > 0) {
availableOperators--;
int howLong = r.poisson(avgCallLen);
System.out.println("and connects for " +
howLong + " minutes");
hold(howLong) ;
availableOperators++;
System.out.println("User " + who +
" hangs up at time " + time());
} else
System.out.println("but gets busy signal");

int who;

59

Graphs

Graphs

A graph is a useful abstract concept.

Intuitive definition: A graph is a set of objects and a set of
relations between these objects.

Mathematical definition: A graph G = (V, E) is a finite set
of vertices, V, (or nodes) and a finite set of edges, E,
where each edge connects two vertices (E CcV X V).

@—
©

A

® o
& ©
F
V={A,B,C,D,E,F,G,H,I}
E={(AB),(A0),(AF),(AG),(D,E),(D)F),(EF),(EG),(HD}

61

Applications

Anything involving relationships among objects
can be modeled as a graph

Traffic networks:
Vertices: cities, crossroads
Edges: roads

Electric circuits:
Vertices: devices
Edges: wires

Organic molecules:
Vertices: atoms
Edges: bonds

Game graphs:
Vertices: board positions
Edges: moves

62

Applications

(continued)

Software systems:

Vertices: methods
Edges: method A calls method B

Object-oriented design (UML diagramming):
Vertices: classes/objects
Edges: inheritance, aggregation, association

Project planning:
Vertices: subtasks
Edges: dependencies (subtask A must finish be before
subtask B can start)

63

Historical foundation of
graph theory

) ININGSHEMNGA

x '\" '3/

4 ‘r?: ek

m&nﬂ L ---; 2y ,__, A - :
5“ an ‘} t‘ “.i\ ‘; R, o o " ; Map of Konigsberg in

A ! f 7 2 ol yb Euler’s time showing the

actual layout of the seven
bridges, highlighting the
river Pregel and the bridges

The problem was to find a walk through the city that would cross
each bridge once and only once. Euler proved in 1735 that this
problem has no solution.

64

Euler’s analysis

L. Euler, 1707-83

During any walk in the graph, the number of times one enters a non-terminal vertex
equals the number of times one leaves it.

Now if every bridge is traversed exactly once it follows that for each land mass
(except possibly for the ones chosen for the start and finish), the number of bridges
touching that land mass is even (half of them, in the particular traversal, will be
traversed "toward" the landmass, the other half "away" from it).

However, all the four land masses are touched by an odd number of bridges.

65

Terminology

The two vertices of an edge is called its end vertices.

@—O

If an edge is a ordered pair of end vertices, then the edge is said to
be directed. This is indicated on the visual representation by
drawing the edge as an arrow.

@—O

A directed graph (or digraph) is a graph in which all edges are
directed.

A undirected graph is a graph in which no edges are directed.

66

Terminology

(continued)

A path is a sequence of vertices connected by edges.

A simple path is a path in which all vertices are distinct.

A cycle is a path that is simple, except that the first and last

vertex are the same.
q @—
@
(D—E

Cycles: FDEF, AFEGA, and AFDEGA

67

Terminology

(continued)

A graph G'= (V', E') is a subgraph of a graph G = (V, E) if
V'cVand E'CE.

A graph is said to be connected if, for every two vertices u and v,
there is a path from u to v or a path from v to u.

A graph, which is not strongly connected, consists of two or more
connected subgraphs, called components.

@—@

Two components

68

Terminology

(continued)

A tree is a connected graph without cycles.
A forest is a set of disjoint trees.

A spanning tree for a graph G is a tree composed of all vertices
of G and some (or perhaps all) of its edges.

VINNIZE\ NI\

\‘}/ LV \ /’f/’
7] I3

| TN o]
/&ﬁ / Ny

Graf G Spanning tree for G

69

Terminology

(continued)

A graph in which every pair of vertices are connected by a unique
edge 1s said to be complete.

[for an undirected complete graph: |El = IVI(IVI-1)/2)]

A dense graph is a graph in which the number of edges is close to
the maximal number of edges.

A sparse graph is a graph with only a few edges.

A graph is a weighted graph if a number (weight) is assigned to
each edge.

[weights usually represent costs |

70

figure 14.1
A directed graph

A directed weighted graph

(Vo —=—~(w)
NN
RN

1

71

Basic graph problems

Paths:
Is there a path from A to B?

Cycles:
Does the graph contain a cycle?

Connectivity (spanning tree):
Is there a way to connect all vertices?

Biconnectivity:
Will the graph become disconnected if one
vertex is removed?

Planarity:
Is there a way to draw the graph without
edges crossing?

72

Basic graph problems

(continued)

Shortest path:
What is the shortest way from A to B?

Longest path:
What is the longest way from A to B?

Minimal spanning tree:
What is the cheapest way to connect all vertices?

Hamiltonian cycle:
Is there a way to visit all the vertices without
visiting the same vertex twice?

Traveling salesman problem:
What is the shortest Hamiltonian cycle?

73

Representation of graphs

Graphs are abstract mathematical objects.
Algorithms have to work with concrete representations.

Many different representations are possible. The choice is
decided by algorithms and graph types (sparse/dense,
weighted/unweighted, directed/undirected).

Three data structures will be described:

(1) edge set
(2) adjacency matrix
(3) adjacency lists

74

(1) Edge set

class Graph {

Set<Edge> edges;

}

class Edge {
Vertex source,
double cost;

dest;

class Vertex {
String name;

}

75

(2) Adjacency matrix

ABCDEVFGHTI
A 11001100
B 1 0000O00O0
cC 10 0000O00O0
D 00O 11000
E 0001 1100
F 10011 00O
G 100010 00
H 0000O0O0O 1
I 0000O0O0O01

class Graph { // unweighted
boolean[][] adjMatrix;

}

class Graph { // weighted
double[][] adjMatrix;

}

76

(3) Adjacency lists

@&—Q0

TEREQITEUD O %>
1

77

(3) Adjacency lists

class Graph {
Map<String,Vertex> vertexMap;

}

class Vertex {
String name; // Vertex name
List<Edge> adj; // Adjacent vertices

class Edge {
Vertex dest; // Second vertex of edge
double cost; // Edge weight

78

figure 14.1
A directed graph

figure 14.2

Adjacency list
representation of the
Eraph shown in

igure 14.1; the
nodes in list i
represent vertices
adjacent to i and the
cost of the connecting
edge.

1) —={3(1) =
4(10) — 3(3) F—_
0(4) — 5(6) =
4(2) —» 6(4) —» 5(8)
6(6) —_
—
=

2 (2)

79

Comparison of representations

Space requirements:

Edge set: O(IET)
Adjacency matrix: O(IVI?)
Adjacency lists: O(IVI + |E)

80

Choice of representation affects
algorithm efficiency

Time complexity (worst case):

Is there an edge from A to B?
Edge set: O(IE)
Adjacency matrix: O(1)
Adjacency lists: O(IVI)

Is there an edge from A to anywhere?
Edge set: O(IET)
Adjacency matrix: O(IVI)
Adjacency lists: O(1)

81

Traversing graphs

Goal: “visit” every vertex of the graph.

Depth-first traversal (recursive):

* Mark all vertices as “unvisited”
* Visit vertex 1
* To visit a vertex v:

* mark 1t
* (recursively) visit all unmarked vertices
connected to v by an edge

Solves some simple graph problems:
connectivity, cycles

Basis for solving difficult graph problems:
biconnectivity, planarity

82

Implementation of depth-first traversal
(adjacency lists)

class Vertex {
String name;
List<Edge> adj;
boolean visited;

void visit () {
visited = true;
for (Edge e : adj) {
Vertex w = e.dest;
if (!w.visited)
w.visit();

Time complexity: O(IEl)

Depth-first traversal of a component

A
A:FCBG
B: A x'
C: A B ©
D:FE
E:GFD

| @j@
F:AED
G:EA @//

D—E) ﬁ@
F F

Z

@

=

o

e

=

84

Depth-first traversal of a component
results in a depth-first tree

A depth-first traversal of a connected graph represented by
adjacency lists requires O(IEl) time

85

Non-recursive
depth-first traversal

Use an explicit stack of vertices.

void traverse(Vertex startVertex) {
Stack<Vertex> stack = new Stack<Vertex>();
stack.push(startVertex);
startVertex.visited = true;
while (!stack.empty()) {
Vertex v = stack.pop();
for (Edge e : v.adj) {
Vertex w = e.dest;
if (!w.visited) {
stack.push (w);
w.visited = true;

Breadth-first traversal

If the stack is replaced by a queue, the graph will be traversed in
breadth-first order (level order).

void traverse(Vertex startVertex) {
Queue<Vertex> queue = new LinkedList<>();
queue.add(startVertex);
startVertex.visited = true;
while (!queue.isEmpty()) {
Vertex v = queue.remove();
for (Edge e : v.adj) {
Vertex w = e.dest;
if (!w.visited) {
queue.add(w);
w.visited = true;

Breadth-first traversal of a component

88

Breadth-first traversal of a component
results in a breadth-first tree

VAN

® '©

A breadth-first traversal of a connected graph represented by
adjacency lists requires O(IEl) time

89

Depth-first traversal versus
breadth-first traversal

current

N Fh—

c‘)

Ju=(

start —»
start —

Depth-first Breadth-first

90

Best-first traversal

If the queue is replaced by a priority queue, the graph will be
traversed in best-first order.

Queue<Vertex> queue = new PriorityQueue<>();

Class vertex should implement the Comparable interface, or

the priority queue should rely on a supplied Comparator object.

O(IEl) insertions and O(IVl) removals; each takes O(logIVl)
time for a heap-based priority queue.

Time complexity: O((IVI+IEl)logIWVl)

91

Shortest paths

92

The shortest path problem

Find the shortest path from vertex A to vertex B

Unweighted shortest path (minimize the number of edges):
Use breadth-first traversal.
Traverse the graph starting at A, using a queue.

Weighted shortest path (find the “cheapest” path):
Use best-first traversal (Dijkstra’s algorithm):
Traverse the graph starting at A, using a priority queue.
The priority of each unvisited vertex is the cost of the
currently cheapest path from A to that vertex.
Works only for graphs with non-negative weights.

93

figure 144

An abstract scenario
of the data structures
used in a shortest-
path calculation, with
an input graph taken
from a file. The
shortest weighted
path fromAto Cis A to
géo E to D to C (cost is

Starting vertex

Goal vertex

Result

dist prev name adj

D C 10 0 D e 3 (23),1 (10) |
N 1 c | —» 2(19) |
A D 87 2 A e 0(87).3 (12) |
E D 43
3 E 1t 3 B] 4(11) |
C A 19 4 L e 0(43) |
Input Graph table
D (0) E (4)
B (3)
A@) Cc()
Visual representation of graph Dictionary

94

figure 14.5

D C 10

AB 12 Data structures used
D B 23 in a shortest-path

A D 8 calculation, with an
ED 43 input graph taken

B E 11 from a file; the

C A 19 shortest weighted

path from A to Cis
AtoBtoEtoDtoC
Input (cost is 76).

- ————————

— | D [0 [23|66

—{C [T19 | [76

Y
| i
H
Y ¥ !
—| B 1] [12_ " |
vertexMap A
Y E
—>E lﬁi 43 [23 /\ I

(o - ;
;
I > A [[12 T 87]0 | E
:
§

.

Legend: Dark-bordered boxes are Vertex objects. The unshaded portion in each box
contains the name and adjacency list and does not change when shortest-path computation
is performed. Each adjacency list entgf contains an Edge that stores a reference to another
Vertex object and the edge cost. Shaded portion is dist and prey, filled in after shortest path
computation runs.

Dark arrows emanate from vertexMap. Light arrows are adjacency list entries. Dashed arrows
are the prev data member that results from a shortest-path computation.

95

1
2
3
4
5
6
7
8

11
12

Class Edge

// Represents an edge in the graph. figure 14.6
class Edge The basic item stored
{ in an adjacency list
public Vertex dest; // Second vertex in Edge
public double cost; // Edge cost
public Edge(Vertex d, double c)
{
dest = d;
cost = C;
}
}

96

/
c
{

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15 }

Class Vertex

/ Represents a vertex in the graph.
lass Vertex

pubTic String name; // Vertex name

public List<Edge> adj; // Adjacent vertices

public double dist; // Cost

public Vertex prev; // Previous vertex on shortest path
public int scratch;// Extra variable used in algorithm

public Vertex(String nm)
{ name = nm; adj = new LinkedList<Edge>(); reset(); }

public void reset()
{ dist = Graph.INFINITY; prev = null; scratch = 0; }

figure 14.7

The Vertex class
stores information for
each vertex

97

1 // Graph class: evaluate shortest paths.

2 //

3 // CONSTRUCTION: with no parameters.

4

5 // ******************PUBLIC OPERATIONS**********************

6 // void addEdge(String v, String w, double cvw)

7// --> Add additional edge

8 // void printPath(String w) --> Print path after alg is run
9 // void unweighted(String s) --> Single-source unweighted

10 // void dijkstra(String s) --> Single-source weighted

11 // void negative(String s) --> Single-source negative weighted
12 // void acyclic(String s) --> Single-source acyclic

13 // ******************ERRORS*********************************
14 // Some error checking is performed to make sure that graph is ok

15 // and that graph satisfies properties needed by each
16 // algorithm. Exceptions are thrown if errors are detected.

17

18 public class Graph

19 {

20 public static final double INFINITY = Double.MAX_VALUE;

21

22 public void addEdge(String sourceName, String destName, double cost)
23 { /* Figure 14.10 */ }

24 public void printPath(String destName)

25 { /* Figure 14.13 */ }

26 public void unweighted(String startName)

27 { /* Figure 14.22 */ }

28 ublic void dijkstra(String startName) .
2o U0)% Foure 140743 Shortest-path algorithms
30 public void negative(String startName)

31 { /* Figure 14.29 */ }

32 public void acyclic(String startName)

33 { /* Figure 14.32 */ }

34

35 private Vertex getVertex(String vertexName)

36 { /* Figure 14.9 */ }

37 private void printPath(Vertex dest)

38 { /* Figure 14.12 */ }

39 private void clearAl1()

40 { /* Figure 14.11 */ }

4

42 private Map<String,Vertex> vertexMap = new HashMap<String,Vertex>();
43 }

44

45 // Used to signal violations of preconditions for
46 // various shortest path algorithms.
47 class GraphException extends RuntimeException

48 {
49 public GraphException(String name)
50 { super(name); }
51 }
figure 14.8

The Graph class skeleton

98

WO NOOOOTHE WN -

- b b
W N~ O

14

/**

* If vertexName is not present, add it to vertexMap.

* In either case, return the Vertex.

*/

private Vertex getVertex(String vertexName)

{

Vertex v = vertexMap.get(vertexName);
if(v ==null)

{
v = new Vertex(vertexName);
vertexMap.put(vertexName, v);
}
return v;

figure 14.9

The getVertex routine
returns the Vertex
object that represents
vertexName, creatin
the object if it needs
to do so

99

1 /'.’-'*
2 * Add a new edge to the graph.
3 */
4 public void addEdge(String sourceName, String destName, double cost)
5 {
6 Vertex v = getVertex(sourceName);
7 Vertex w = getVertex(destName);
8 v.adj.add(new Edge(w, cost));
9 }
figure 14.10
Add an edge to the graph

100

figure 14.11

Private routine for
initializing the output
members for use by
the shortest-path
algorithms

1
2
3
4
5
6
7
8
9

/**

* Initializes the vertex output info prior to running

* any shortest path algorithm.

*/
private void clearAl1()
{

for(Vertex v : vertexMap.values())
v.reset();

101

figure 14.12

A recursive routine for
printing the shortest
path

O NOOOHAE WN =

/**
* Recursive routine to print shortest path to dest
* after running shortest path algorithm. The path
* is known to exist.
*/
private void printPath(Vertex dest)
{
if(dest.prev != null)
{
printPath(dest.prev);
System.out.print(" to ");

}

System.out.print(dest.name);

102

figure 14.13

A routine for printing
the shortest path by
consulting the graph
table (see Figure
14.5)

NS WON =

/**
* Driver routine to handle unreachables and print total cost.
* It calls recursive routine to print shortest path to
* destNode after a shortest path algorithm has run.
*/
public void printPath(String destName)
{
Vertex w = vertexMap.get(destName);
if(w==null)
throw new NoSuchETementException();
else if(w.dist == INFINITY)
System.out.printin(destName +
else

{

is unreachable");

System.out.print("(Cost is: " + w.dist + ") ");
printPath(w);
System.out.printin();

103

Input format:
source_name dest_name cost

1 /**
2 * A main routine that
3 * 1. Reads a file (supplied as a command-Tine parameter)
4 * containing edges.
5 * 2. Forms the graph.
6 * 3. Repeatedly prompts for two vertices and
7 * runs the shortest path algorithm.
8 * The data file is a sequence of lines of the format
9 * source destination.
10 */
11 public static void main(String [] args)
12
13 Graph g = new Graph();
14 try
15
16 FileReader fin = new FileReader(args[0]);
17 BufferedReader graphFile = new BufferedReader(fin);
18
19 // Read the edges and insert
20 String Tline;
21 while((Tline = graphFile.readLine()) !'= null)
22 {
23 StringTokenizer st = new StringTokenizer(Tine);
24
25 try
26
27 if(st.countTokens() !=3)
28 {
29 System.err.printIn("Skipping bad line " + Tine);
30 continue;
31 }
32 String source = st.nextToken();
33 String dest = st.nextToken();
34 int cost = Integer.parselnt(st.nextToken());
35 g.addEdge(source, dest, cost);
36
37 catch(NumberFormatException e)
38 { System.err.printin("Skipping bad Tine " + line); }
39
40 }
4 catch(IOException e)
42 { System.err.printin(e); }
43
44 System.out.printin("File read...");
45 System.out.printIn(g.vertexMap.size() + " vertices");
46
47 BufferedReader in = new BufferedReader(
48 new InputStreamReader(System.in));
49 while(processRequest(in, g))
50 ;
51 }
figure 14.14

A simple main

104

O NOOOA WN -

W WWWWWWWWWMNNNNNNNNNODN = = DD D D D
©C O NOOHAE WON-- OO O0OONTOODL,WN-00CO~NOODODA,WN-—-0O0©

40

/**

* Process a request; return false if end of file.

*/

public static boolean processRequest(BufferedReader in, Graph g)

{

String startName = null;
String destName = null;
String alg = null;

try
{
System.out.print("Enter start node:");
if((startName = in.readLine()) == null)
return false;
System.out.print("Enter destination node:");
if((destName = in.readLine()) == null)
return false;
System.out.print(" Enter algorithm (u, d, n, a): ");
if((alg = in.readLine()) == null)
return false;

if(alg.equals("u"))
g.unweighted(startName);
else if(alg.equals("d"))
g.dijkstra(startName);
else if(alg.equals("n"))
g.negative(startName);
else if(alg.equals("a"))
g.acyclic(startName);

g.printPath(destName);

catch(IOException e)

{ System.err.printin(e); }
catch(NoSuchElementException e)
{ System.err.printin(e); }

catch(GraphException e)
{ System.err.printin(e); }
return true;

figure 14.15

For testing purposes,
processRequest calls

one of the shortest-

path algorithms

105

figure 14.17

The graph after all the
vertices whose path
length from the
starting vertex is 1
have been found

Unweighted shortest path

(breadth-first traversal)

figure 14.16

The graph after the
starting vertex has
been marked as
reachable in zero
edges

106

figure 14.18

The graph after all the
vertices whose
shortest path from the
starting vertex is 2
have been found

figure 14.19

The final shortest
paths

107

figure 14.20

If wis adjacent to v
and there is a path to
v, there also is a path
tow.

(of cost D= D +1)

108

figure 14.21

Searching the graph
in the unweiﬁhted
shortest-pat
computation. The
darkest-shaded
vertices have already
been completely

rocessed, the
ightest vertices have
not yet been used as
v, and the medium-
shaded vertex is the
current vertex, v. The
stages proceed left to
right, top to bottom, as
numbered.

We maintain a roving
eyeball that hops from
vertex to vertex and is
initially at V.

Roving eyeball

da. strejfende gjexble

109

1 /**

2 * Single-source unweighted shortest-path algorithm.
3 */

4 public void unweighted(String startName)

5 {

6 clearAl1();

7

8 Vertex start = vertexMap.get(startName);

9 if(start == null)

10 throw new NoSuchElementException("Start vertex not found");
11

12 Queue<Vertex> q = new LinkedList<Vertex>();
13 q.add(start); start.dist = 0;

14

15 while(!q.isEmpty())

16 {

17 Vertex v = q.remove();

18

19 for(Edge e : v.adj)

20 {

21 Vertex w = e.dest;

22

23 if(w.dist == INFINITY)

24 {

25 w.dist = v.dist + 1;

26 w.prev = v;

27 g.add(w);

figure 14.22
The unweighted shortest-path algorithm, using breadth-first search Time complexity: O(IEl)

110

Positive weighted shortest path

(Dijkstra’s algorithm, 1959) -

E. W. Dijkstra, 1930-2002

For a given source vertex in the graph, the algorithm finds the
path with lowest cost (i.e. the shortest path) between that vertex
and every other vertex.

It can also be used for finding costs of shortest paths from a
single vertex to a single destination vertex by stopping the
algorithm once the shortest path to the destination vertex has
been determined.

111

Dijkstra’s algorithm

Let the node at which we are starting be called the initial node. Let the
distance of node Y be the distance from the initial node to Y.

1. Assign to every node a distance value. Set it to zero for our
initial node and to infinity for all other nodes.

2. Mark all nodes as unvisited. Set initial node as current.

3. For the current node, consider all its unvisited neighbors and
calculate their tentative distance (from the initial node). If this
distance is less than the previously recorded distance (infinity in
the beginning, zero for the initial node), overwrite the distance.

4. When we are done considering all neighbors of the current node,
mark it as visited. A visited node will not be checked ever again;
its distance recorded now is final and minimal.

5. If all nodes have been visited, finish. Otherwise, set the unvisited
node with the smallest distance (from the initial node) as the next
“current node” and continue from step 3.

112

figure 14.23

The eyeball is at v and
w is adjacent, so D,
%hould be lowered to

113

114

Example continued

115

figure 14.25

Stages of Dijkstra's
algorithm. The
conventions are the
same as those in

Figure 14.21.

116

®
.
.
.
.
.
.
4
.
.
.
.
. .

www . combinatorica

. L4
L
*
®
L J
L] 1 :
L
@ ¢ i
®
‘ L
&
@
L J
L
L
. COIn

117

Dijkstra’s algorithm used for solving a
robot planning problem

118

Proof of Dijkstra’s algorithm

figure 14.24

If D, is minimal
among all unseen
vertices and if all edge
costs are nonnegative,
D, represents the
shortest path.

Suppose there is a path from S to v of length less than D,.

This path must go through a vertex u that has not yet been visited.
But since the length of the path from S to u, D, 1s less than D, we
would have chosen u instead of v. Hence we have a contradiction.

119

Implementation of Dijkstra’s algorithm

void dijkstra(Vertex startVertex) {
clearAll();
PriorityQueue<Vertex> pg = new PriorityQueue<>();
pg.add(startVertex); startVertex.dist = 0;
while (!pg.isEmpty()) {
Vertex v = pqg.remove();
for (Edge e : v.adj) {
Vertex w = e.dest;
if (v.dist + e.cost < w.dist) {
w.dist = v.dist + e.cost;
w.prev = v;
pg.update(w); // error: no such method!

pg.update(w): If wis not in pqg, then add w to pqg; otherwise, update pg by
reestablishing its ordering property. Unfortunately, the update method is
not available in Java’s PriorityQueue.

120

Class Path

1 // Represents an entry in the priority queue for Dijkstra's algorithm.
2 class Path implements Comparable<Path>

3 {

4 public Vertex dest; // w

5 public double cost; // d(w)
6

7 public Path(Vertex d, double c)
8 {

9 dest = d;

10 cost = ¢;

11 }

12

13 public int compareTo(Path rhs)
14 {

15 double otherCost = rhs.cost;
16

17 return cost < otherCost ? -1 : cost > otherCost ? 1 : 0;

figure 14.26

Basic item stored in the priority queue

121

1 /**
2 * Single-source weighted shortest-path algorithm.
3 ¥/
4 pubTic void dijkstra(String startName)
5 {
6 PriorityQueue<Path> pq = new PriorityQueue<Path>();
7
8 Vertex start = vertexMap.get(startName);
9 if(start == null)
10 throw new NoSuchElementException("Start vertex not found");
11
12 clearAl11();
13 pq.add(new Path(start, 0)); start.dist = 0;
14
15 int nodesSeen = 0;
16 while(!pq.isEmpty() && nodesSeen < vertexMap.size())
17 {
18 Path vrec = pq.remove();
19 Vertex v = vrec.dest;
20 if(v.scratch !'= 0) // already processed v
21 continue;
22
23 v.scratch = 1;
24 nodesSeen++;
25
26 for(Edge e : v.adj)
27 {
28 Vertex w = e.dest;
29 double cvw = e.cost;
30
31 if(cw < 0)
32 throw new GraphException("Graph has negative edges");
33
34 if(w.dist > v.dist + cvww)
35 {
36 w.dist = v.dist + cvw;
37 w.prev = v;
38 pg.add(new Path(w, w.dist));
39 }
40 }
41 }
42 }
figure 14.27

A positive-weighted, shortest-path algorithm: Dijkstra’s algorithm

Time complexity:
O(IEl1ogIV1)

122

Negative-weighted shortest path

(The Bellman-Ford algorithm, 1958)

clearAll();

for (int i =

void bellmanFord(Vertex startVertex) {

startVertex.dist = 0;
Collection<Vertex> vertices = vertexMap.values();

1l; i < vertices.size(); i++) {

for (Vertex v : vertices) {

for (Edge e : v.adj) {
Vertex w = e

if (v.dist + e.cost < w.dist) {

.dest;

v.dist + e.cost;
vy

w.dist
W.prev

Iteration i finds all shortest paths from startvVertex that uses i or fewer edges.

Time complexity: O(IEIIV1)

123

Bellman-Ford example

124

figure 14.28

A graph with a
negative-cost cycle

Check for negative-cost cycles (add this code after the loop):

for (Vertex v : vertices) {
for (Edge e : v.adj) {
Vertex w = e.dest;
if (v.dist + e.cost < w.dist)
error ("Negative-cost cycle detected");

125

1 /**

2 * Single-source negative-weighted shortest-path algorithm.

3 */

4 pubTic void negative(String startName)

5

6 clearA11();

7

8 Vertex start = vertexMap.get(startName);

9 if(start == null)

10 throw new NoSuchElementException("Start vertex not found");
11

12 Queue<Vertex> q = new LinkedList<Vertex>();

13 g.add(start); start.dist = 0; start.scratch++;

14

15 while(!q.isEmpty())

16

17 Vertex v = q.removeFirst();

18 if(v.scratch++ > 2 * vertexMap.size())

19 throw new GraphException("Negative cycle detected");
20
21 for(Edge e : v.adj)
22 {
23 Vertex w = e.dest;
24 double cvw = e.cost;
25
26 if(w.dist > v.dist + cvw)
27 {
28 w.dist = v.dist + cvw;
29 w.prev = v;

30 // Enqueue only if not already on the queue
31 if(w.scratch++ % 2 == 0)

32 q.add(w);

33 else

34 w.scratch--; // undo the enqueue increment
35 }

36 }

37 }

38 }

v.scratch is odd when
vertex v is on the queue.
v.scratch/2 tells us
how many times v has
left the queue.

An edge can dequeue at
most O(IV1) times.
Time complexity: O(IEIIVI)

figure 14.29

A negative-weighted, shortest-path algorithm: Negative edges are allowed.

126

DAGS

An oriented graph without cycles is called a DAG

(Directed Acyclic Graph).

A DAG may, for instance, be used for modeling an activity
network. Directed edges are used to specify that some
activities must be finished before an activity can start.

Activity-B
8 (412

Activity-D

Activity-A /

538 \\\\\Q

Activity-C
8(5)13

13(3)16
Activity-F
20 (4) 24
Activity-E

13(7) 20

T

Campletion lime

Durstion

Siart ime

127

Topological sorting

The vertices of a DAG can be ordered so that if there is a path from u
to v, then v appears after u in the ordering. This is called a topological
sort of the graph.

a DAG a topological ordering

Topological ordering: All directed edges point from left to right
[not necessarily unique |

128

A topological sorting algorithm

(1) Create an empty queue
(2) Choose a vertex without any ingoing edges

(3) Insert the vertex in the queue. Remove the vertex and all its
outgoing edges from the graph.

(4) Repeat (2) and (3) while the graph is not empty

Now the queue contains the vertices in topological order

129

figure 14.30

Atopological sort. The
conventions are the
same as those in
Figure 14.21.

V,Vy V, VsV, V, Vs

130

Java implementation

List<Vertex> tologicalOrder() {
Collection<Vertex> vertices = vertexMap.values();
for (Vertex v : vertices)
v.scratch = 0; // v's indegree = 0
for (Vertex v : vertices)
for (Edge e : v.adj)
e.dest.scratch++;
Queue<Vertex> q = new LinkedList<>();
for (Vertex v : vertices)
if (v.scratch == 0)
g.add(v);
List<Vertex> result = new ArrayList<>();
int iterations = 0;
while (!q.isEmpty() && +t+iterations <= vertices.size())
Vertex v = g.remove();
result.add(v);
for (Edge e : v.adj)
if (--e.dest.scratch == 0)
g.add(e.dest);
}

return iterations == vertices.size() ? result : null;

{

131

figure 14.31

The sta?es of aC}I/_cI
graph algorithm. The
conventions are the

Shortest path for a
DAG

same as those in
Figure 14.21.

Visit order:
Vo,Vo ViV V, Ve Vs

132

£ 3

{

NS WN -

51 }

* Single-source negative-weighted acyclic-graph shortest-path algorithm.
*

pubTic void acyclic(String startName)

Vertex start = vertexMap.get(startName);
if(start == null)

throw new NoSuchElementException("Start vertex not found");

clearAl1();
Queue<Vertex> q = new LinkedList<Vertex>();
start.dist = 0;

// Compute the indegrees
Collection<Vertex> vertexSet = vertexMap.values();
for(Vertex v : vertexSet)
for(Edge e : v.adj)
e.dest.scratch++;

// Enqueue vertices of indegree zero
for(Vertex v : vertexSet)
if(v.scratch == 0)
q.add(v);

int iterations;
for(iterations = 0; !q.isEmpty(); iterations++)

Vertex v = g.remove();
for(Edge e : v.adj)
{

Vertex w = e.dest;
double cvw = e.cost;

if(--w.scratch == 0)
g.add(w);

if(v.dist == INFINITY)
continue;

v.dist + cww)

v

if(w.dist
{

w.dist
w.prev

v.dist + cww;
Vi

}

if(iterations != vertexMap.size())

throw new GraphException("Graph has a cycle!");

figure 14.32

A shortest-path algorithm for acyclic graphs

Uses topological sort

Time complexity: O(IE)

133

Complexity of shortest path algorithms

Type of Graph Problem
Unweighted

Weighted, no negative edges
Weighted, negative edges

Weighted, acyclic

Running Time
O(|El)
O(|E|log|V])
O(|El - V)
O(|El)

Comments
Breadth-first search
Dijkstra’s algorithm
Bellman—Ford algorithm

Uses topological sort

figure 14.38

Worst-case running
times of various graph
algorithms

134

figure 14.33

An activity-node
graph

figure 14.34

An event-node graph

135

figure 14.35

Earliest completion
times

figure 14.36

Latest completion
times

136

slack
figure 14.37

Earliest completion
time, latest
completion time, and
slack (additional edge
item)

Some activities have zero slack. These are critical activities that must be

finished on schedule. A path consisting entirely of zero-slack edges is a
critical path.

137

Problem complexity

138

Problem complexity

For a large class of important problems no fast solution algorithms are
known.

An efficient algorithm: running time is limited by some polynomial

[O(n°) |

A problem that can be solved by a efficient algorithm is said to be easy.

An inefficient algorithm: running time grows at least exponentially

[(c")]

A problem is said to be hard or intractable if there does not exist a
polynomial-time algorithm for solving the problem.

139

Examples of hard problems

The traveling salesman problem
A salesman must visit N cities. Find a travel route
that minimizes his costs.

Job scheduling

A number of jobs of varying duration are to be
executed on two identical machines before a given
deadline. Is it possible to meet the deadline?

Satisfiability

Is it possible to determine if the variables in a
Boolean expression can be assigned in such a way
as to make the expression evaluate to true?

(avb)A(—avb)

140

More examples of hard problems

Longest path
Find the longest simple path between two vertices of a graph.

Partitioning

Given at set of integers. Is it possible to partition the set into
two subsets so that the sum of the elements in each of the two
subsets is the same?

3-coloring
Is it possible to color the vertices of a graph by only three colors
such that no two adjacent vertices have the same color?

141

NP-complete problems

For none of these problems do we know an algorithm that solves the
problem in polynomial time.

All experts are convinced that such algorithms do not exist. However,
this has not yet been proved.

The problems belong to the class of problems called NP-complete
problems.

142

NP-completeness

An NP-complete problem is a problem that can be solved in polynomial
time on a nondeterministic machine.

A nondeterministic machine has the wonderful ability to make the correct
choice in any situation where a choice is to be made.

A usual deterministic machine may be used to simulate correct choices in
exponential time by trying each possible choice.

If only one NP-complete problem can be solved in polynomial time, every
NP-complete problem can be solved in polynomial time.

143

Decidability

Undecidable problems are decision problems which no algorithm
can decide.

Examples:
® Prove that an algorithm always terminates (the stop problem)
¢ Decide if a formula in the predicate logic is valid

® Decide if two syntax descriptions define the same language

144

(a)

(b)

Termination?

while (x != 1)
X = X - 2;

while (x != 1)
if (x % 2 == 0)
x / 2;

X
else
X =3 *x + 1;

Collatz sequences:
12,6,3,10,5,16,8,4,2,1
9,28,14,7,22,11,34,17,52,26,13,40,20,10,5,16,8 42,1

Collatz conjecture (1937): No matter what number you start

with, you will always eventually reach 1.
The conjecture has still not been proven!

145

Termination?

(continued)
(c)
for (int x = 3; ; xt++)
for (int a = 1; a <= x; at+)
for (int b = 1; b <= x; b++)
for (int ¢ = 1; c <= x; c++)
for (int n = 3; n <= x; nt++)
if (Math.pow(a,n) + Math.pow(b,n) == Math.pow(c,n))
System.exit(0);

The program terminates, if and only if Fermat's last theorem 1s false.

For n = 3, no three positive integers a, b, and c¢ can satisfy a"+ b" = c".

P. de Fermat (1601-65)

The theorem was proven in 1995

146

The halting problem

It is impossible to design an algorithm that for any algorithm
can decide if it terminates.

Proof (by contradiction):
Assume there exists a method terminates (p), which for

any method p returns true if p terminates; otherwise, false.

Now define:

void p() {
while (terminates(p)) /* do nothing */;

}

What is the result of the call terminates(p)?

147

(@ CAUTION @

YOU HAVE REACHED THE

LAST PAGE

OF THE INTERNET

|

TURN OFF YOUR BROWSER AND GO BACK TO WORK
THERE'S NOTHING ELSE TO SEE HERE

|

148

