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Implementations III
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Agenda

•  Hash tables
   Implementation methods

Applications
Hashing vs. binary search trees

 • The binary heap
Properties
Logarithmic-time operations
Heap construction in linear time
Java implementation of PriorityQueue
Heapsort
External sorting
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Hashing
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Hashing���
Search by key transformation

Search in a balanced search tree requires O(log N) comparisons 
of keys.

Is O(log N) the best achievable complexity?
No.

How can we decrease the complexity?
With hashing - a technique that applies transformations 
of keys in order to be able directly look them up in a table.

With hashing O(1) complexity can be achieved.
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Basic idea

Idealistically, two different keys should map to two different indices. 
However, this is seldom possible to achieve. If two or more keys hash 
out to the same index, we have a collision. 
A collision strategy is an algorithm for handling collisions.

Store each record in a table at an index computed from the key.

A hash function is a function for computing a table index from a key.

Mathematically: A hash function h is a map from the set of possible 
keys K into an integer interval I:

h: K       I

hashing, hashes
1. To chop into pieces
2. Informal To make a mess of
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A hash function that maps names to integers from 0 to 15. 
There is a collision between keys "John Smith" and 
"Sandra Dee".

Hash function example
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Space-time tradeoff

No space limits:  
use the key as index (trivial hash function)

No time limits:        
use sequential search

If there are both space and time limits:
use hashing
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The hashing technique

Let h denote the hash function.

Insertion:             
A record with key k is stored in the table at index h(k), unless 
there already is a record at that index. In the latter case, the record 
must be stored in another way (how, depends on the collision 
strategy). 

Search:                         
When searching for a record with key k we first examine the 
table at index h(k). If it contains a record with key k, the search is 
terminated successfully. Otherwise, the search continues (how, 
depends on the collision strategy). 
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Good hash functions

•  Collision must be avoided as far as possible
The hash function should map the expected keys as    
evenly as possible to the index interval. 

•  The hash function should be computationally cheap.
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Design of hash functions���
(short keys)

Short keys (keys that fit a machine word):

Treat key k as an integer and compute

h(k) = k mod M              (in Java: k % M)

where M is the size of the table

h(k)          [0;M-1]
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Example with short keys
Four-character keys,  table size 101.

 ASCII        a       b       c       d      
hex     6   1   6   2   6   3   6   4 
bin 01100001011000100110001101100100

0x61626364 = 1633831724
16338831724 % 101 = 11

Key "abcd" hashes to 11.

0x64636261 = 1684234849
1684234849 % 101 = 57
Key "dcba" hashes to 57.

0x61626263 = 1633837667
1633837667 % 101 = 57
Key "abbc" also hashes to 57. Collision!
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Long keys (keys that do not fit a machine word):

Treat key k as integer and compute

h(k) = k mod M

where M is the size of the table

That is, in principle, as for short keys.

Design of hash functions���
(long keys)
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Example with four-character keys. But the method works for any length.  

Use Horner’s rule:

0x61626364 = 

97*2563 + 98*2562 + 99*2561 + 100 =

((97*256 + 98)*256 + 99)*256 + 100

Take modulo after each addition to avoid arithmetic overflow:

(97*256 + 98  = 24930) % 101 = 84
 (84*256 + 99  = 21603) % 101 = 90

(90*256 + 100 = 23140) % 101 = 11 

Example with long keys
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Table size

Choose table size to be a prime.
Why?

In the previous example we had         
"abcd" = 0x61626364 =
97*2563 + 98*2562 + 99*2561 + 100 

If the table size is chosen to be 256, only the last character (d) 
will contribute to the result.

A simple method for assuring that all characters contribute is to 
choose the table size to be a prime.
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ASCII characters can typically be represented in 7 bits as a number 
between 0 and 128. Unfortunately, the repeated multiplication will 
shift early characters to the left - out of the answer. Furthermore, 
the modulus computation (%) after each addition is expensive.
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hashCode in java.lang.String

final class String {
    public int hashCode() {
        if (hash != 0)
            return hash;
        for (int i = 0; i < length(); i++) 
            hash = hash * 31 + (int) charAt(i);
        return hash;
    }

    private int hash = 0;
}

1.  The constant 37 has been replaced by 31.
2.  A computed hash value is remembered (cached).
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The birthday paradox:      
How many persons should be invited to a party so that there is at least 
50% chance that at least two people have the same birthday?

Answer: 23. 

πM /2

Let M be the table size. How many insertions until the first collision?

        M
       100       12
       365       23
     1000       40
   10000     125

        100000      396
      1000000    2353

Frequency of collisions
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Collision strategies
Number of keys: N
Table size: M

Option 1 (open addressing):
Keep N < M:
    Put keys somewhere in the table.

Option 2 (separate chaining): 
Allow N > M: 

Put keys that hash to the same index in a list
(about N/M keys per list).
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Open addressing���
Linear probing

Open addressing:         
No links. Everything is kept in the table. 

Linear probing:        
Start linear search at hash position (stop when an 
empty position is hit).

Constant time if table is sparse.
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interface HashTable<K,V> {
    void put(K key, V value);
    V get(K key);
    void remove(K key);
}

A hash table interface
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Implementation of open addressing

abstract class ProbingHashTable<K,V> implements HashTable<K,V> {
    ProbingHashTable() 
      { array = new HashEntry[DEFAULT_TABLE_SIZE]; }

    void put(K key, V value) { ... }
    V get(K key) { ... }
    void remove(K key) { ... }

    protected abstract int findPos(K key);
   
    protected HashEntry[] array;
    private int currentSize; 
    private static final int DEFAULT_TABLE_SIZE = 101;
}
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V get(K key) {
    int pos = findPos(key);
    if (array[pos] == null || !array[pos].isActive)
        return null;
    return (V) array[pos].value; 
}

class HashEntry {
    HashEntry(Object k, Object v) 
      { key = k; value = v; }
    Object key, value;
    boolean isActive = true;
}

void remove(K key) {
    int pos = findPos(key);
    if (array[pos] != null)
        array[pos].isActive = false;
}
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void put(K key, V value) {
    int pos = findPos(key);
    array[pos] = new HashEntry(key, value);
    if (++currentSize < array.length / 2)
        return;
    // rehash
    HashEntry[] oldArray = array;
    array = new HashEntry[nextPrime(2 * oldArray.length)];
    currentSize = 0;
    for (int i = 0; i < oldArray.length; i++)
        if (oldArray[i] != null && oldArray[i].IsActive)
            put((K) oldArray[i].key, (V) oldArray[i].value);
}

Simple copying when rehashing does not work.

Running time for nextPrime is O( n logn).
int nextPrime(int n) {
    if (n % 2 == 0)
        n++;
    while (!isPrime(n))
        n += 2;
    return n;
}
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class LinearProbingHashTable<K,V> extends ProbingHashTable<K,V> {
    protected int findPos(K key) {
        int pos = Math.abs(key.hashCode()) % array.length;
        while (array[pos] != null && !array[pos].key.equals(key))
            if (++pos >= array.length)
                pos = 0; 
        return pos;
    }    
}

Class LinearProbingHashTable
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Efficiency of linear probing

Linear probing uses less than 5 probes for 
searching a hash table that is less than 2/3 full.

The precise expressions are

probes on average for an unsuccessful search, and

probes on average for a successful search, where α = N/M 
denotes the load factor. 

1
2
+

1
2(1−α )

1
2
+

1
2(1−α )2
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Efficiency curves for linear probing

Unsuccessful search Successful search

1
2
+

1
2(1 −α )

1
2
+

1
2(1 −α )2

αα

probes probes
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Clustering

Bad phenomenon: records clumps together.

Long clusters tend to get longer.

Average search cost grows to M as the table is filled.

Linear probing is too slow when the table is 70-80% full.
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Argument for clustering tendency

Then the chance that a new record is stored at position j+1 is equal to the 
chance that its key hashes to one of the values in [i:j+1]. 

For the new record to be stored at position j+2 its key must hash to 
exactly j+2.

i-1 j+1 j+2

Suppose all positions [i:j] store records, whereas i-1, j+1, and j+2 are empty. 



32

Quadratic probing���
(reduces the risk of clustering)

Probing sequence:
    Linear probing:   pos, pos+1,  pos+2, pos+3, ...
    Quadratic probing: pos, pos+12, pos+22, pos+32, ...

Let Hi-1 be the most recently computed probe (H0 is 
the original hash position) and Hi be the probe we 
are trying to compute. Then we have

Hi-1 = pos + (i - 1)2 =          
     pos + i2 - 2i + 1 = Hi - 2i + 1

and obtain Hi = Hi-1 + 2i - 1.

Squaring of the step number can be avoided:
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It has been proven that

If the table size is prime and the table is at least half empty, then a new 
element can always be inserted, and no cell is probed twice.

Implementation of quadratic probing

class QuadraticProbingTable<K,V> extends ProbingHashTable<K,V> {
    protected int findPos(K key) {
        int pos = Math.abs(key.hashCode()) % array.length;
        int i = 0;
        while (array[pos] != null &&
               !array[pos].element.equals(key)) {
            if ((pos = pos + 2 * ++i - 1) >= array.length)
                pos = 0; 
        return pos;
    }    
}
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Double hashing

Reduces the risk of clustering by using a second hash 
function.

The strategy is the same as for linear probing; the only 
difference is that, in stead of examining each successive 
table position following a collision, we use a second hash 
function to get a fixed increment to use for the probe 
sequence.

By this means the chance of finding empty cells during 
insertion is increased.
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Implementation of double hashing

class DoubleHashTable<K,V> extends ProbingHashTable<K,V> {
    protected int findPos(K key) {
        int pos = Math.abs(key.hashCode()) % array.length;
        int k = Math.abs(key.h2());
        while (array[pos] != null &&
               !array[pos].element.equals(key))
            pos = (pos + k) % array.length; 
        return pos;
    }    
}
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Requirements for the���
second hash function

•  It must never return 0.

•  It must always return values that are relatively prime to M.
This can be achieved by choosing M as prime and letting
h2(k) < M for every k.

•  It must differ from the first hash function. 

A simple and fast method is
                                              

h2(k) = 8 - k % 8 (k % 8 is equal to the last 3 bits of k)
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Efficiency of double hashing

Double hashing uses fewer probes on average than linear 
probing. Less than 5 probes in a table that is 80% full, and less 
than 5 probes for a successful search in a table that is 99% full.

The precise expressions are

probes on average for an unsuccessful search, and

probes on average for a successful search, where α = N/M 
denotes the load factor. 

1
1−α

− ln(1−α )
α
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Double hashing versus linear probing

αα

−
ln(1 −α )
α

1
1 −α

Unsuccessful search Successful search

Double hashing

Mislykket søgning Succesfuld søgning

αα

Linear 
probing
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Simple, practical and widely used.
Method: M linked lists, one for each table slot.

   0: *
  1: L A W *
  2: M X *
  3: N C *
  4: *
  5: E P * (M = 11)
  6: * (N = 14)
  7: G R *
  8: H S *
  9: I *

 10: *

Cuts search time by a factor of M over sequential search.

Separate chaining hashing
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Implementation of separate���
chaining hashing

public class SeparateChainingHashTable<K,V> implements 
             HashTable<K,V> {
    private HashEntry[] array;
    ...   
}

interface HashTable<K,V> {
    void put(K key, V value);
    V get(K key);
    void remove(K key);
}
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class HashEntry {
    HashEntry(Object k, Object v, HashEntry n) 
      { key = k; value = v; next = n; }

    Object key, value;
    HashEntry next;
}
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void put(K key, V value) {
    int pos = Math.abs(key.hashCode()) % array.length;
    for (HashEntry e = array[pos]; e != null; e = e.next)
        if (key.equals(e.key)) {
            e.value = value;
            return;
        }
    array[pos] = new HashEntry(key, value, array[pos]);    
}

V get(K key) {
    int pos = Math.abs(key.hashCode()) % array.length;
    for (HashEntry e = array[pos]; e != null; e = e.next)
        if (key.equals(e.key))
            return e.value;
    return null;
}
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void remove(K key) {
    int pos = Math.abs(key.hashCode()) % array.length;
    HashEntry prev = null;
    for (HashEntry e = array[pos]; e != null; prev = e, e = e.next)
        if (key.equals(e.key)) {
            if (prev != null)
                prev.next = e.next;
            else
                array[pos] = e.next;
            return;
        }
    }
}

prev e e.next
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Average search cost (successful): N/M/2 
Average search cost (unsuccessful): N/M
Insertion cost:                                           N/M
Worst case ("probabilistically" unlikely):     N 

If the lists are kept sorted:
   Cuts average unsuccessful search time to N/M/2.

Cuts average insertion time to N/M/2.

Efficiency of separate 
chaining hashing
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Advantages of separate chaining hashing

•  Idiot proof (doesn’t break down)

•  Deletion is simple
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Reasons not to use hashing

Hashing allows search and insertion to run in constant time.

Why use other methods?

•  There is no performance guarantee

•  Too much arithmetic if keys are long

•  Takes extra space

•  Does not support sorting
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Insertion of 10,000,000 different integers into an initially empty set, 
followed by deletion of each element, in random order.
2.8 GHz MacBook Pro. 

Red-black tree (java.util.TreeSet) 57.9 seconds
AA-tree (weiss.util.TreeSet) 65.0 seconds
Hash set (java.util.HashSet) 45.2 seconds

Hash tables versus binary search trees 
Experimental results

java -Xmx1G
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Priority queues
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Priority queues

A priority queue is an abstract data type that supports the following 
two operations:

insert(x): add the element x to the priority queue with an 
associated priority

     deleteMin:   remove the element with the lowest priority, 
and return it.

Ordinary queues and stacks are special cases of priority queues.
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Applications of priority queues

• operating systems

•  graph search

•  file compression

•  discrete event simulation

•  sorting
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Specification in Java

Sometimes it is appropriate to add futher operations, e.g.:

  boolean isEmpty(): 
          return true if the priority queue contains no elements 
  Comparable getMin(): 
          return the element with the lowest priority  
  void merge(PriorityQueue pq): 
          merge this priority queue with another one (pq).

interface PriorityQueue {
    void insert(Comparable x);
    Comparable deleteMin(); 
}
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Implementation using an unordered array
class ArrayPriorityQueue implements PriorityQueue {
    private Comparable[] array;
    private int currentSize;

    ArrayPriorityQueue() 
        { array = new Comparable[DEFAULT_CAPACITY]; }
        
    public void insert(Comparable x) 
      { checkSize(); array[currentSize++] = x; }

    public Comparable deleteMin() {
        if (currentSize == 0)
            throw new UnderflowException(); 

     int min = 0; 
     for (int i = 1; i < currentSize; i++)

            if (array[i].compareTo(array[min]) < 0) 
                min = i;
        swapReferences(array, min, currentSize - 1);
        return array[--currentSize];
    }
} 

O(1)

O(N)
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The array is kept sorted in decreasing order

Other implementations: unordered lists, ordered lists.

void insert(Comparable x) {
    checkSize(); 
    int i = currentSize;
    while (i > 0 && array[i - 1].compareTo(x) < 0) 
        { a[i] = a[i - 1]; i--; }
    array[i] = x; currentSize++;
}

Comparable deleteMin() {
    if (currentSize == 0)
        throw new UnderflowException();
    return array[--currentSize]; 
}   

Implementation using an ordered array

O(1)

O(N)
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Sorting an array a in increasing order:

Sorting using a priority queue

If the priority queue is implemented using an unordered array, 
the algorithm corresponds to selection sort.

If the priority queue is implemented using an ordered array, 
the algorithm corresponds to insertion sort.

PriorityQueue pq = new TypePriorityQueue();
for (int i = 0; i < a.length; i++)
    pq.insert(a[i]);
for (int i = 0; i < a.length; i++)
    a[i] = pq.deleteMin();
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void insert(Comparable x) {
    searchTree.insert(x);
}

Comparable deleteMin() {
    return searchTree.removeMin();
}

If the search tree is kept balanced, running time for both 
operations is O(log N).

However, implementation is difficult (particularly removeMin). 

Implementation using a search tree
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Binary heap

We can conclude that the smallest key is in the root.

Complete tree: All levels are filled, with the possible exception 
of the bottom level, which is filled from left to right. 

A binary heap is a complete binary tree (structure property) in 
which the key in every node is less than or equal to the keys of 
its children (heap-order property).
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Heap representation

A heap can be represented in an array (no explicit links needed):
root: array[1]
children of root: array[2] and array[3]
children of i: array[2*i] and array[2*i+1]
parent of i: array[i/2]

i:     0  1  2  3  4  5  6  7  8  9 10         
array:   13 21 16 24 31 19 68 65 26 32

13

21

31 19 68

16

322665

24

(level order, implicit representation)

1

2 3

4

8 10

5 6 7

9
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 Insertion

Insert the element as the last one in the heap. This does not 
violate the structure property.

13

21

31 19 68

16

322665

24

14

Insertion of 14

13

14

21 19 68

16

322665

24

31

Maintain the heap order property by exchanging the new node with 
its parent as long as the heap-order property is violated.
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Implementation of insert

void insert(Comparable x) {
   checkSize();
   array[++currentSize] = x;
   percolateUp(currentSize);
}

void percolateUp(int hole) {
    Comparable x = array[hole];
    array[0] = x;
    for ( ; x.compareTo(array[hole / 2]) < 0; hole /= 2)
       array[hole] = array[hole / 2];
    array[hole] = x; 
}

Time complexity: O(log N)
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Deletion of the root element
Replace the root by the last element of the heap. 

13

14

21 19 68

16

322665

24

31

Deletion of 13

14

21

31 19 68

16

322665

24

Maintain the heap order property by exchanging this 
node by the smallest of its children as long as the 
heap-order property is violated.
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Comparable deleteMin() {
    if (isEmpty())
        throw new UnderflowException();
    Comparable minItem = array[1];
    array[1] = array[currentSize--]; 
    percolateDown(1);
    return minItem;
}

Implementation of deleteMin
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void percolateDown(int hole) {
    int child;
    Comparable tmp = array[hole];
    for ( ; hole * 2 <= currentSize; hole = child) {
        child = 2 * hole;
        if (child != currentSize && 
            array[child + 1].compareTo(array[child]) < 0)
            child++;
        if (array[child].compareTo(tmp) < 0)
            array[hole] = array[child];
        else
            break;
    }
    array[hole] = tmp;
}

child?

hole

2 * hole + 12 * hole

Time complexity: O(log N)
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Heap construction

Problem: Given an array array[1:N] of elements in arbitrary 
order, rearrange the elements so that the array is a heap.

Induction hypothesis (top-down): array[1:i] is a heap.
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for (int i = 2; i <= N; i++)
    percolateUp(i);

Top-down heap construction

O( log i)
i=2..N
∑ = O(N logN )

Time complexity:
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Induction hypothesis (bottom-up): All the trees represented by 
array[i:N] are heaps.

for (int i = N / 2; i >= 1; i--)
percolateDown(i);

array[N/2+1:N] represent heaps (they are leaves in the final heap).

O( log(N / i))
i=1..N /2
∑ = O(N )

Time complexity:
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Heapsort ���
(using a max-heap)

•   Time complexity of heapsort is O(N logN).
•   No extra space needed. 

void heapsort(Comparable[] a) {
    for (int i = a.length / 2 - 1; i >= 0; i--)
        percDown(a, i, a.length);
    for (int i = a.length - 1; i > 0; i--) {
        swapReferences(a, 0, i);
        percDown(a, 0, i);
    }  
}

O(N)

O(NlogN)

root: a[0]
current heap size: i
children of i: array[2*i+1] and array[2*i+2]
parent of i: array[(i-1)/2]

heap 
construction
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private static <AnyType extends Comparable<? super AnyType>> 
void percDown(AnyType[] a, int index, int size) {
    int child;
    AnyType tmp;

    for (tmp = a[index]; 2 * index + 1 < size; index = child) {
        child = 2 * index + 1;
        if (child + 1 < size && a[child].compareTo(a[child + 1]) < 0)
            child++;
        if (tmp.compareTo(a[child]) < 0)
            a[index] = a[child];
        else
            break;
    }
    a[index] = tmp;
}

Implementation of percDown ���
(solution of Exercise 21.23)
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Heapsort example

59   26   58   21   41   97   21   16   26   53

Construct max-heap:

97   53   59   26   41   58   31   16   21   36

59   53   58   26   41   36   31   16   21   97

58   53   36   26   41   21   31   16   59   97

53   41   36   26   16   21   31   58   59   97

41   31   36   26   16   21   53   58   59   97

to be continued

97

53

26 41 58

59

31

16 21 36
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41   31   36   26   16   21   53   58   59   97

36   31   21   26   16   41   53   58   59   97

31   26   21   16   36   41   53   58   59   97

26   16   21   31   36   41   53   58   59   97

21   16   26   31   36   41   53   58   59   97

16   21   26   31   36   41   53   58   59   97

end

41

31

26 16

36

21
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Animation of heapsort���
(heap construction phase)



82

Animation of heapsort���
(sorting phase)
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External sorting
(sorting of data on external memory)

Special considerations:

(1) It is very time consuming to access a data element

(2) There can be restrictions on how data can be accessed, 
e.g.,  data on a magnetic tape can only be read 
sequentially.  
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Distribute and merge

Distribute:
Divide the file to be sorted into blocks, each of size 
equal to the internal memory. 
Sort each block and distribute them to two or more 
temporary files. 

Merge:
Merge the sorted blocks (runs) into longer sorted blocks.
Continue in this way until the original file is one sorted block.
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Balanced multiway merge
Example: 3-way sorting of 81 records

Sorted blocks (number of records)

1  9 (3) 0 1 (27) 0
2  9 (3) 0 1 (27) 0
3  9 (3) 0 1 (27) 0
4  0  3 (9) 0 1 (81)
5  0 3 (9) 0 
6  0 3 (9) 0

It takes 3 passes to sort 81 records 

The merging may be performed by a priority queue.



86

N:  number of records
M: size of internal memory (measured in number of records) 

Use half of the 2k files as input files, the rest as output files. 

Pass 0: divide the file into blocks of size M, sort each block 
and distribute the sorted blocks to files 1, 2, ..., k.

Pass 1: k-merge the blocks from files 1, 2, ..., k into blocks of 
size kM and write them to files k+1, k+2, ..., 2k. 

Pass 2: k-merge the blocks from files k+1, k+2, ..., 2k into 
blocks of size k2M and write them to files 1, 2, ..., k .

...     
Pass p: k-merge the blocks from the input files to one block of 

size kpM and write it to one of the output files.

Balanced k-way merge
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The file is sorted when
 kpM ≥ N

i.e, after
p = logk(N/M) passes. 

Examples:
file size (N) 109 records
memory size (M) 106 records

number of temporary files (2k) 4
number of passes (p)  log2103 ≈      10

number of temporary files (2k)       20
number of passes (p)  log10103 =  3

The file is sorted in a time that is 4-11 times longer than 
the time is takes to read or write it.
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Polyphase merge

Reduces the number of temporary files to about the half the 
number of temporary files needed for balanced multiway merge. 

Principle: 
Always use k-1 input files and 1 output file.

Algorithm:
Merge from the k-1 input files to the output file, until the end 
of one of the input files is reached. 
Use the latter file as new output file for merging from the 
other k-1 files.
Continue in this way until the file is sorted.  
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Run distribution for polyphase merge

Distribute the runs on k-1 files such that the last merge causes 
the end to be reached on all input files simultaneously.

The initial run distribution can be determined using generalized 
Fibonacci numbers.

1 21 8 0 5 3 1 0 1
2 13 0 8 3 0 2 1 0
3   0   13 5 0 2 0 1 0

3 files, 34 runs, 7 passes

Fk(N) = Fk(N-1) + Fk(N-2) + ... + Fk(N-k)
Fk(0 ≤ N ≤ k-2) = 0, Fk(k-1) = 1
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Replacement selection
A technique that produces initial runs of average length 2M if the input is 
randomly distributed.

Read M records into a priority queue.

Delete the smallest record from the priority queue and write it out. 

Read a record from the input file. If the new element is smaller than the 
last one output, it cannot become part of the current run. Mark it as 
belonging to the next run and treat it as greater than all the unmarked 
elements in the queue.

Terminate the run when a marked element reaches the top of the queue.

Organize the marked records as priority queue.
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M = 3
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