
1

Implementations II

2

Agenda

•  Trees
 Terminology

Binary trees
Tree traversal

 • Binary search trees
The basic binary search tree
Balanced binary search trees

AVL-trees
Red-black trees
AA-trees

• B-trees

3

Trees

4

Non-recursive definition of a tree

A tree consists of a set of nodes and a set of directed edges that connect
pairs of nodes. A rooted tree has the following properties:

• One node is distinguished as the root.

• Every node c, except the root, is connected by an edge from
 exactly one other node p.
 Node p is c’s parent, and c is one of p’s children.

• A unique path traverses from the root to each node.
 The number of edges that must be followed is the path length.

 p

c

5

Terminology

Root: R
X is a parent of Y
Y is a child of X
U, V, and W are children of T
S is a grandparent of Z
S is an ancestor of Y
Y is a descendent of S
Terminal nodes (leaves): Y, Z, U, V, W
Non-terminal nodes: R, S, X, T

RootR

S

X

Y Z

T

U V W

Terminal (leaf)

Non-terminal

Level 0

Level 1

Level 2

Level 3

6

Height, depth, and size

Leaf: a node that has no children
Height of a node: length of the path from the node to the deepest leaf
Depth of a node: length of the path from the root to the node
Size of a node: Number of descendants the node has (including the node itself)

Size
 11
 3
 1
 2
 4
 1
 1
 1
 1
 1
 1

7

Recursive definition of a tree
Either a tree T is empty or it consists of a root and zero or
more nonempty subtrees T1, T2, ..., Tk, each of whose roots
are connect by an edge from the root of T.

In certain cases (most notably, the binary trees) we may allow some subtrees to be empty.

8

Implementation

class Node {
 Node firstChild, nextSibling;
}

firstChild

nextSibling

9

An application: file systems

10

Listing a directory and its subdirectories

pseudocode

printName(depth) prints the name of the object indented by depth tab characters

11

12

File size is measured in number of blocks
Typical block size: 4 KB

13

Calculating the total size of all files

14

15

getName, isDirectory, list, and
getPath are methods in
java.io.File

separatorChar, defined in
java.io.File, is the
system-dependent name-
separator character

16

Binary trees

A binary tree is a tree in which no node has more than two children

We name the children of a node left and right

Recursively, a binary tree is either empty or consists of a root, a left
binary tree, and a right binary tree.

left right

17

Uses of binary trees

a + (b – c) * d a: 0
b: 100
c: 101
d: 11

18

static methods
t may be null

left right

element

19

Creates a new tree, with rootItem
at the root, and t1 and t2 as left
and right subtrees

20

Naive implementation of the merge operation
root = new BinaryNode(rootItem, t1.root, t2.root)

Nodes in t1 and t2’s trees are now in two trees (their original trees and the
merged result). This is a problem if we want to remove or otherwise alter
subtrees.

Solution: set t1.root and t2.root to null.

== rootItem

21

t1.merge(x, t1, t2)

t1 is an alias for the current object (this).
If we execute t1.root = null, we change this.root to null, too.

Solution: check for aliasing (this == t1 and this == t2)

22

23

Copying a tree

24

Calculating the size of a tree

25

Calculating the height of a tree

26

(1) Preorder: Visit the root. Visit the left subtree. Visit the right subtree.

Recursive traversal of binary trees
P

M

S

A B

L

G

R

E

F

T

(2) Inorder: Visit the left subtree. Visit the root. Visit the right subtree.

(3) Postorder:Visit the left subtree. Visit the right subtree. Visit the root.

P M S A B L G R T E F

A S B M P L G T R F E

A B S M T F E R G L P

27

28

29

TreeIterator

abstract methods

// The binary tree to be traversed

abstract class

30

 Subclasses of TreeIterator

class PreOrder<AnyType> extends TreeIterator<AnyType>

class InOrder<AnyType> extends TreeIterator<AnyType>

class PostOrder<AnyType> extends TreeIterator<AnyType>

TreeIterator<Integer> itr = new InOrderIterator<>(theTree);
for (itr.first(); itr.isValid(); itr.advance())
 System.out.print(itr.retrieve() + " ");

Example of use:

31

 Traversals implemented by using a stack ���
(of nodes not yet ready to be visited)

The type of traversal is determined by how many times a node is
popped from the stack before it is visited:

Once: preorder
Twice: inorder
Thrice: postorder

class StNode<AnyType> {
 StNode(BinaryNode<AnyType> n)
 { node = n; timesPopped = 0; }

 BinaryNode<AnyType> node;
 int timesPopped;
}

1

2 3

32

A node is popped thrice before it is visited

33

34

// A node is popped thrice before it is visited

Postorder
advance

35

// A node is popped twice before it is visited

Inorder
advance

36

37

We need no longer maintain a count of the number of times an object has been popped.
Note the order: The right child is pushed onto the stack before the left child.

Preorder
advance

38

(4) Level-order: Visit the nodes starting at the root and going from top to bottom,
left to right.

Level-order traversal

P M L S G A B R T E F

Implemented using a queue of nodes.
Note that the queue can get very large! Possibly, N/2 objects.

P
M

S

A B

L

G

R

ET

F

39

40

41

A coroutine is a routine that may temporarily suspend itself.
In the meantime other coroutines may be executed.
A suspended coroutine may later be resumed at the point where it
was suspended.

This form of sequencing is called alternation.

resume(b)

resume(b) resume(a)

resume(a)

coroutine a coroutine b

 Traversals implemented by using
coroutines

42

Class Coroutine
implemented by Keld Helsgaun

public class abstract Coroutine {
 protected abstract void body();

 public static void resume(Coroutine c);
 public static void call(Coroutine c);
 public static void detach();
}

43

public class InOrderIterator<T> extends TreeIterator<T> {
 public InOrderIterator(BinaryTree<T> tree) { super(tree); }

 @Override void traverse(BinaryNode<T> t) {
 if (t != null) {
 traverse(t.left);
 current = t;
 detach();
 traverse(t.right);
 } else
 current = null;
 }
}

Recursive inorder traversal by
using coroutine sequencing

public abstract class TreeIterator<T> extends Coroutine

44

public abstract class TreeIterator<T> extends Coroutine {
 public TreeIterator(BinaryTree<T> theTree) {
 t = theTree; current = null;
 }

 abstract void traverse(BinaryNode<T> n);

 protected void body() { traverse(t.root); }

 public void first() { call(this); }

 public boolean isValid() { return current != null; }

 public void advance() {
 if (current == null)
 throw new NoSuchElementExcption();
 call(this);
 }

 public T retrieve() {
 if (current == null)
 throw new NoSuchElementExcption();
 return current.element;
 }

 protected BinaryTree<T> t;
 protected BinaryNode<T> current;
}

45

Binary search trees

46

Binary search
Requires that the input array is sorted

Algorithm:
Split the array into two parts of (almost) equal size
Determine which part may contain the search item.
Continue the search in this part in the same fashion.

Worst-case running time is O(log N).
Average-case running time is O(log N).

Example: Searching for L.

 A B D E F G H I J K L M N O P
 I J K L M N O P
 J K L
 L

47

Binary search may be described using a binary search tree:

I

E

A

B F H J L R X

G K S

M

Binary search tree

A binary search tree is a binary tree that satisfies the search
order property: for every node X in the tree, all keys in the left
subtrees are smaller than the key in X, and all keys in the right
subtree are larger than the key in X.

48

The find operation is performed by repeatedly branching either left
or right, depending on the result of the comparison.
The findMin operation is performed by following left nodes as
long as there is a left child. The findMax operation is similar.

find

49

The insert operation can be performed by inserting a node at
the point at which an unsuccessful search terminated.

insert

50

remove

If the node to be deleted is a leaf, it can be deleted immediately.
If the node has only one child, we adjust the parent’s child link to bypass the node.

51

If the node has two children, replace the item in this node with the smallest item
in the right subtree and then remove that node. The second remove is easy.

remove

52

53

overloaded

54

55

56

57

58

59

60

61

Printing the elements in sorted order

Inorder traversal of the tree

void printSorted(BinaryNode t) {
 if (t != null) {
 printSorted(t.left);
 System.out.println(t.element);
 printSorted(t.right);
 }
}

7

2

1 5

3

15

9

11

18

62

findKth

63

64

65

66

67

68

The cost of insert, find, and remove is proportional to the number
of nodes accessed. This number depends upon the structure of the tree.

Complexity

Best case
(Perfectly balanced tree)

Worst case
(Linear list)

69

The tree with root 2 is formed from either the insertion sequence (2, 3, 1) or the sequence (2, 1, 3).

70

If N elements are inserted in random order in an initially empty binary
search tree, then the average search path length is 1.38 log2N.

Note that the worst case occurs when the elements are inserted in
sorted order.

Average case complexity

71

Balanced binary search trees

Balancing is a technique that guarantees that the worst cases do
not occur.

The idea is to reorganize the tree during insertion and deletion so
that it becomes perfectly balanced (i.e., the two subtrees of every
node contains the same number of nodes), or almost perfectly
balanced.

The following presents some data structures and algorithms that
guarantee O(log N) running time for search, insertion and deletion.

72

BinaryNode buildTree(Comparable[] a, int low, int high) {
 if (low > high)
 return null;
 int mid = (low + high) / 2;
 return new BinaryNode(a[mid], buildTree(a, low, mid - 1),

 buildTree(a, mid + 1, high));
}

Building a perfectly balanced
binary search tree from an array

BinarySearchTree buildTree(Comparable[] a) {
 Arrays.sort(a);
 BinarySearchTree bst = new BinarySearchTree();
 bst.root = buildTree(a, 0, a.length - 1);
 return bst;
}

73

An AVL tree is a binary search tree that satisfies the condition:

For any node in the tree, the height of the left and right
subtrees can differ by at most 1.

AVL trees ���
(Adelson-Velskii and Landis, 1962)

74

The minimum number of nodes SH in an AVL tree of height H satisfies
SH = SH-1 + SH-2 + 1, S0 = 1, and S1 = 2.
SH = FH+3 – 1, where Fi is the i’th Fibonacci number.

SH +1≈ 1
5
(1+ 5
2

)H+3

H <1.44 log2(N + 2)−1.328

An AVL tree has logarithmic height

The worst case height is 44% more than minimum possible for binary trees.

75

Insertion into an AVL tree

SH-1

SH-2

X

H-2H-1
H

Insertion into X’s left subtree may violate the AVL balance condition.

In the following X denotes the deepest node to be balanced.

76

Insertion into an AVL tree

 A violation of might occur in four cases:

1. An insertion in the left subtree of the left child of X.

2. An insertion in the right subtree of the left child of X.

3. An insertion in the left subtree of the right child of X.

4. An insertion in the right subtree of the right child of X.
X

X

X

X

Cases 1 and 4 are symmetric with respect to X.
Cases 2 and 3 are symmetric with respect to X.

77

Case 1
left-left

A
B

C

k2

k1

X

A right rotation restores the balance.

No further rotations are needed.

A B C

k2

k1

78

A

k2

k1

X

B

C

B

A
C

k2

k1

Case 2
left-right

A right rotation does not restore the balance.

79

k3

X

D
A

k2

B

k1

C

k3

D

k1

k2

A

C
B

k3

DA CB

k2

k1

Case 2
left-right

A left-right double rotation restores the balance.

No further rotations are needed.

80

Implementation of single right rotation

BinaryNode rotateWithLeftChild(BinaryNode k2) {
 BinaryNode k1 = k2.left;
 k2.left = k1.right;
 k1.right = k2;
 return k1;
}

A
B

C

k2

k1

A B C

k2

k1

81

BinaryNode doubleRotateWithLeftChild(BinaryNode k3) {
 k3.left = rotateWithRightChild(k3.left);
 return rotateWithLeftChild(k3);
}

Implementation of double
left-right rotation

k3

D
A

k2

B

k1

C

k3

D

k1

k2

A

C
B

k3

DA CB

k2

k1

82

Height information

An extra integer field, height, is added in class BinaryNode.

height stores the height of the tree that has the current node as root.

static int height(BinaryNode t) {
 return t == null ? -1 : t.height;
}

Auxiliary method in BinaryNode:

83

Implementation of insert

BinaryNode insert(Comparable x, BinaryNode t) {
 if (t == null)
 t = new BinaryNode(x, null, null);
 else if (x.compareTo(t.element) < 0) {
 t.left = insert(x, t.left);
 if (height(t.left) - height(t.right) == 2)
 if (x.compareTo(t.left.element) < 0)
 t = rotateWithLeftChild(t); // case 1
 else
 t = doubleRotateWithLeftChild(t); // case 2
 } else if (x.compareTo(t.element) > 0) {
 ... // case 3 or 4
 } else
 throw new DuplicateItemException();
 t.height = Math.max(height(t.left), height(t.right)) + 1;
 return t;
}

84

Maintenance of height

BinaryNode RotateWithLeftChild(BinaryNode k2) {
 BinaryNode k1 = k2.left;
 k2.left = k1.right;
 k1.right = k2;
 k2.height = Math.max(height(k2.left), height(k2.right)) + 1;
 k1.height = Math.max(height(k1.left), k2.height) + 1;
 return k1;
}

A
B

C

k2

k1

X

A B C

k2

k1

85

Red-black trees

86

Problem
The damaged chessboard

A chess board with 8x8 squares can be covered by 32 domino
pieces where each domino piece covers 2 squares.

The bottom-left and top-right corners are now taken away.
Can 31 pieces cover the board?

Coloring solves the problem easily. Why?

Domino piece

87

A red-black tree is a binary search tree having the following ordering
properties:

1. Every node is colored either red or black.

2. The root is black.

3. If a node is red, its children must be black.

4. Every path from a node to a null link must contain the same
number of black nodes.

Red-black tress ���
(R. Bayer, 1972)

88

A red-black tree

0. The tree is a binary search tree.
1.  Every node is colored either red or black.
2.  The root is black.
3.  If a node is red, its children must be black. (null nodes are black)
4.  Every path from a node to a null link must contain the same number

of black nodes: 3.

30

15

10 20

5

70

60

65

85

80 90

5540

50

89

The height of red-black trees

The height H of a red-black tree satisfies

H ≤ 2 log2(N+1)

In a randomly generated tree H is very close to log2N:
1.002 log2N.

90

Insertion into a red-black tree

A new item is always inserted as a leaf in the tree.

If we color the new node black, we violate property 4, and it is
not immediately clear how this property may be restored.

If we color the new node red and its parent is black, we are done.

If its parent is red, we violate property 3.

We must see to that the new red node gets a black parent

How?

Answer: Use rotations and color changes.

91

Five cases
X: the current red node
P: X’s red parent
G: X’s grandparent (has to be black)
S: Sibling of X’s parent

Case 1: X is left child of P, P is left child of G, and S is black.

A B

C

G

P

X

S

C

G

A

B

P

X

S

rotateWithLeftChild(G)

C

G

A

B

P

X

S

Recolor P and G

92

Case 2: X is right child of P, P is left child of G, and S is black.

A

B1

C

G

P

X

S

B2 A B1

C

G

X

P

S

B2

rotateWithRightChild(P)

A B1

G

X

P

CB2

S

rotateWithLeftChild(G)

A B1

G

X

P

CB2

S

Recolor X and G

93

Case 3: X is right child of P, P is right child of G, and S is black.
Symmetric to case 1

Case 4: X is left child of P, P is right child of G, and S is black.
Symmetric to case 2

Case 5: Both P and S are red.

A B

C

G

P

X

S

Perform a color flip on P, S and G.
If G is the root, then color G black.

A B

C

G

P

X

S

94

The red coloring of G in case 5 may violate property 3
(if G’s parent is red).

This violation can be fixed by a single rotation (in cases
1 and 3), and a double rotation (in cases 2 and 4). Again,
case 5 may arise.

We could percolate this bottom-up procedure until we
reach the root. To avoid the possibility of having to
rotate up the tree, we apply a top-down procedure.
Specifically, we guarantee that when we arrive at a leaf
and insert a node, S is not red.

After a case 5 repair

95

The rotations after a type 5 repair requires access to X’s great-grandparent.
The implementation in the textbook maintain the following references:

current: the current node (X)
parent: the parent of the current node (P)
grand: the grandparent of the current node (G)
great: the great-grandparent of the current node

These references can be omitted when insertion is performed top-down.
The top-down code is given in the following.

Top-down insertion

96

Java implementation

In class BinaryNode we add the field

boolean color;

In class RedBlackTree we define the constants

static final boolean RED = false;
static final boolean BLACK = true;

We use a BinaryNode object in place of null links:

static BinaryNode nullNode;
static {
 nullNode = new BinaryNode(null);
 nullNode.left = nullNode.right = nullNode;
 nullNode.color = BLACK;
}

97

BinaryNode insert(Comparable x, BinaryNode t, boolean rightChild) {
 if (t == nullNode) {

 t = new BinaryNode(x, nullNode, nullNode); t.color = RED;
 } else {

 if (t.left.color == RED && t.right.color == RED) {
 t.color = RED; t.left.color = t.right.color = BLACK;

 }
 if (x.compareTo(t.element) < 0) {

 t.left = insert(x, t.left, false);
 if (rightChild && t.color == RED && t.left.color == RED)

 t = rotateWithLeftChild(t);
 if (t.left.color == RED && t.left.left.color == RED) {
 t = rotateWithLeftChild(t);
 t.color = BLACK; t.right.color = RED;

 }

 }
 else if (x.compareTo(t.element) > 0) { ... }
 else throw new DuplicateItemException(x.toString());

}
return t;

}

public void insert(Comparable x)
 { root = insert(x, root, true); root.color = BLACK; }

98

t.right = insert(x, t.right, true);
if (!rightChild && t.color == RED && t.right.color == RED)
 t = rotateWithRightChild(t);
if (t.right.color == RED && t.right.right.color == RED) {
 t = rotateWithRightChild(t);
 t.color = BLACK; t.left.color = RED;
}

Handling the symmetric case

Replace left by right
Replace right by left
Replace rightChild by !rightChild
Replace rotateWithLeftChild by rotateWithRightChild

99

30

15

10 20

5

70

60

65

85

80 90

5540

50

Insertion example

45 to be inserted:

30

15

10 20

5

70

60

65

85

80 90

5540

50

45

Flip color of 50, 40, and 55:

100

30

15

10 20

5

70

60

65

85

80 90

5540

50

45

Right rotation at 70
and color flip of 60 and
70:

30

15

10 20

5 65

60

70

85

80 90

5540

50

45
end

101

AVL trees versus red-black trees

Although the red-black tree balancing properties are slightly weaker
than the AVL tree balancing properties experiments suggest that the
number of nodes traversed during a search is almost identical.

However, updating a red-black tree requires lower overhead than AVL
trees. Insertion into an AVL tree requires (in worst case) two passes on a
path (from the root to a leaf and up again), whereas insertion into a red-
black tree can be performed in one pass.

Implementation of deletion is complicated for both AVL trees and red-
black trees.

102

AA-trees
(Arne Andersson, 1993)

An AA-tree is a red-black tree that has one extra property:

(5) A left child must not be red.

This property simplifies implementation:

(1) it eliminates half of the restructuring cases;
(2) it removes an annoying case for the deletion algorithm

103

Properties of AA-trees
 Level replaces color

The level of a node is
• 1, if the node is a leaf
•  the level of its parent, if the node is red
•  one less than the level of its parent, if the node is black

30

15

5 10 20

70

50

35 40

60

55 65

85

80 90

level 3

level 2

level 1

104

1. Horizontal links are right links
2. There may not be two consecutive horizontal links
3. Nodes at level 2 or higher must have two children
4. If a node at level 2 does not have a right horizontal link,

its two children are at the same level

Properties

30

15

5 10 20

70

50

35 40

60

55 65

85

80 90

level 3

level 2

level 1

105

Rotations can be used to maintain the ���
AA-tree properties

Case 1 (horizontal left link):

There are only 2 cases that require restructuring:

P X

A B C

BinaryNode skew(BinaryNode t) {
 if (t.left.level == t.level)
 t = rotateWithLeftChild(t);
 return t;
}

P X

A B C

106

Case 2 (two consecutive right links):

BinaryNode split(BinaryNode t) {
 if (t.right.right.level == t.level) {
 t = rotateWithRightChild(t);
 t.level++;
 }
 return t;
}

X R

A B

G X

R

A B

G

After a skew, a split may be required

107

BinaryNode insert(Comparable x, BinaryNode t) {
 if (t == nullNode)
 t = new BinaryNode(x, nullNode, nullNode);
 else if (x.compareTo(t.element) < 0)
 t.left = insert(x, t.left);
 else if (x.compareTo(t.element) > 0)
 t.right = insert(x, t.right);
 else
 throw new DuplicateItemException();
 return split(skew(t));
}

Implementation of insert

Use recursion and call skew and split on the way back.

108

30

15

5 10 20

70

50

35 40

60

55 65

85

80 90

Insertion example

45

30

15

5 10 20

70

50

35 40

60

55 65

85

80 90

45 to be inserted:

109

40

30

15

5 10 20

70

50

35 45

60

55 65

85

80 90

45

30

15

5 10 20

70

50

35 40

60

55 65

85

80 90

split at 35:

skew at 50: 30

15

5 10 20

70

35 45

60

55 65

85

80 90

40 50

110

40

30

15

5 10 20

70

50

35 45

60

55 65

85

80 90

40

30

15

5 10 20

70
50

35 45

60

55 65

85

80 90

30

15

5 10 20

7050

40

35 45

60

55 65

85

80 90

split at 40:

skew at 70:

111

30

15

5 10 20

7050

40

35 45

60

55 65

85

80 90

split at 30:

30

15

5 10 20

70

50

40

35 45

60

55 65

85

80 90

112

BinaryNode remove(Comparable x, BinaryNode t) {
 if (t == nullNode)
 return nullNode;
 lastNode = t;
 if (x.compareTo(t.element) < 0)
 t.left = remove(x, t.left);
 else {
 deletedNode = t;
 t.right = remove(x, t.right);
 }
 if (t == lastNode) { // at level 1
 if (deletedNode == nullNode ||
 x.compareTo(deletedNode.element) != 0)
 throw new ItemNotFoundException();
 deletedNode.element = t.element;
 t = t.right;
 } else {

 /* see next slide */
 }
 return t;
}

Implementation of remove
Use recursion and call skew and split on the way back.

113

if (t.left.level < t.level - 1 ||
 t.right.level < t.level - 1) {
 t.level--;
 if (t.right.level > t.level)
 t.right.level = t.level;
 t = skew(t);
 t.right = skew(t.right);
 t.right.right = skew(t.right.right);
 t = split(t);
 t.right = split(t.right);
}

Maintaining the AA-tree properties

See the textbook for an explanation

114

2

1

5

3 4 6 7

Deletion example

1 to be deleted:

t.level--:

2 5

3 4 6 7

nullNode

t

t.right.level--:

2

5

3 4 6 7
t

6 72 5
3 4

t

115

6 72 5
3 4

t = skew(t):

t.right = skew(t.right):

no effect

t.right.right = skew(t.right.right):

t

6 752 43
t

6 72 53
4

t

116

t = split(t):

t.right = split(t.right):

2 3 6 754

2

3

6 754

t

2

3

6 74

5
t

117

Insertion of 10,000,000 different integers into an initially empty tree,
followed by deletion of each element, in random order.
2.8 GHz MacBook Pro.

Red-black tree (java.util.TreeSet) 57.9 seconds
AA-tree (weiss.util.TreeSet) 65.0 seconds

Red-black trees versus AA-trees
Experimental results

java -Xmx1G

118

B-tree���
a data structure for external search ���

(Bayer and McCraight, 1970)

Suppose 10,000,000 records must be stored on a disk in
such a way that search time is minimized.

An ordinary binary search tree:
Average case: 1.38*log2(10,000,000) ≈ 32 disk accesses
Worst case: 10,000,000 disk accesses!

Perfectly balanced search tree: log2(10,000,000) ≈ 24 accesses

This in unacceptable. We want to reduce the number of disk
accesses to a very small number, such as three or four.
Use a B-tree – a balanced M-ary search tree. A B-tree allows
M-way branching in a tree, which has a height that is roughly
logMN.

119

A 5-ary tree

120

B-tree of order 5

records

keys

When all records are stored at the leaf level, the data structure is called a B+-tree.

121

Definition of B-tree

A B-tree of order M is a M-ary tree with the following properties:
1. The data items are stored at leaves.
2. The nonleaf nodes store as many as M-1 keys to guide the searching;
 key i represents the smallest key in subtree i + 1.
3. The root is either a leaf or has between 2 and M children.

M / 2⎡⎢ ⎤⎥ and M children.4. All nonleaf nodes (except the root) have between
5. All leaves are at the same depth and have between and L data

 items, for some L.
L / 2⎡⎢ ⎤⎥

122

B-tree example

Assume
•  each of 10,000,000 records uses 256 bytes
•  each key uses 32 bytes
•  each branch uses 4 bytes
•  each block holds 8,192 bytes

Choose M as large as possible: (M-1)*32 + M*4 ≤ 8192. So we
choose M = 228.
Each nonleaf node has at least M/2 = 114 children.

Choose L as large as possible: L = 8192/256 = 32.

Number of leaves: At most 10,000,000/(L/2) = 10,000,000/16 =
625,000.

Height of the tree: log114(625,000) ≈ 3.4. If the root is in RAM,
only 3 disk accesses are required to find a record.

123

Insertion into a B-tree
simple case

124

Insertion into a B-tree
node splitting

125

Insertion into a B-tree
extra node splitting

126

Deletion in a B-tree
combining two nodes

127

Sketch of a B-tree
implementation

public class BTree {
 private int M, height;
 private Node root;
 private class Node {...}
 private class Entry {...}

 public BPTree(int order) { M = order; }

 public Object find(Comparable key) {...}
 public void insert(Comparable key, Object data) {...}
 public boolean remove(Comparable key) {...}
}

128

class Entry {
 Comparable key;
 Object pointer;
 Entry(Comparable k, Object p)
 { key = k; pointer = p; }
}

class Node {
 Entry[] entry = new Entry[M + 1];
 int size;

 Object find(Comparable key, int ht) {...}
 Node insert(Comparable key, Object pointer, int ht) {...}
 Node split() { ... }
}

129

Object find(Comparable key) {
 return root != null ? root.find(key, height) : null;
}

Object find(Comparable key, int ht) {
 if (ht == 0) {
 for (int i = 0; i < size; i++)
 if (key.compareTo(entry[i].key) == 0)

 return entry[i].pointer;
 } else
 for (int i = 0; i < size; i++)
 if (i + 1 == size || key.compareTo(entry[i + 1].key) < 0)
 return ((Node) entry[i].pointer).find(key, ht - 1);
 return null;
}

find

130

void insert(Comparable key, Object data) {
 if (root == null)
 root = new Node();
 Node t = root.insert(key, data, height);
 if (t != null) { // split root
 Node newRoot = new Node();
 newRoot.entry[0] = new Entry(root.entry[0].key, root);
 newRoot.entry[1] = new Entry(t.entry[0].key, t);
 root = newRoot;
 root.size = 2;
 height++;
 }
}

131

Node insert(Comparable key, Object data, int ht) {
 Entry newEntry = new Entry(key, pointer);
 int i;
 if (ht == 0) {
 for (i = 0; i < size; i++)
 if (key.compareTo(entry[i].key) < 0)
 break;
 } else
 for (i = 0; i < size; i++)
 if (i + 1 == size || key.compareTo(entry[i + 1].key) < 0) {
 Node t = ((Node) entry[i++].pointer).
 insert(key, data, ht - 1);
 if (t == null)
 return null;
 newEntry.key = t.entry[0].key;
 newEntry.pointer = t;
 break;
 }
 for (int j = size; j > i; j--)
 entry[j] = entry[j - 1];
 entry[i] = newEntry;
 return ++size <= M ? null : split();
}

132

Node split() {
 Node t = new Node();
 for (int i = 0, j = M / 2; j <= M; i++, j++)
 t.entry[i] = entry[j];
 t.size = M - M / 2 + 1;
 size = M / 2;
 return t;
}

133

“You think you know when you learn,
are more sure when you can write,
even more when you can teach,
but certain when you can program.”

Quote

Alan J. Perlis

