Implementations II

Agenda

- Trees

Terminology
Binary trees
Tree traversal

- Binary search trees

The basic binary search tree Balanced binary search trees

AVL-trees
Red-black trees
AA-trees

- B-trees

Trees

Non-recursive definition of a tree

A tree consists of a set of nodes and a set of directed edges that connect pairs of nodes. A rooted tree has the following properties:

- One node is distinguished as the root.
- Every node c, except the root, is connected by an edge from exactly one other node p.
Node p is c 's parent, and c is one of p 's children.
- A unique path traverses from the root to each node.

The number of edges that must be followed is the path length.

Terminology

X is a parent of Y
Y is a child of X
U, V, and W are children of T
S is a grandparent of Z
S is an ancestor of Y
Y is a descendent of S
Terminal nodes (leaves): Y, Z, U, V, W
Non-terminal nodes: R, S, X, T

Height, depth, and size

figure 18.1

A tree, with height and depth information

Leaf: a node that has no children
Height of a node: length of the path from the node to the deepest leaf
Depth of a node: length of the path from the root to the node
Size of a node: Number of descendants the node has (including the node itself)

Recursive definition of a tree

Either a tree T is empty or it consists of a root and zero or more nonempty subtrees $T_{1}, T_{2}, \ldots, T_{k}$, each of whose roots are connect by an edge from the root of T.

figure 18.2
A tree viewed recursively

In certain cases (most notably, the binary trees) we may allow some subtrees to be empty.

Implementation

figure 18.3

First child/next sibling representation of the tree in Figure 18.1


```
class Node {
    Node firstChild, nextSibling;
}
```


An application: file systems

figure 18.4
A Unix directory

Listing a directory and its subdirectories

```
void listAll( int depth = 0 ) // depth is initially 0
{
        printName( depth ); // Print the name of the object
        if( isDirectory() )
            for each file c in this directory (for each child)
            c.listAll( depth + 1 );
}
```

pseudocode
printName (depth) prints the name of the object indented by depth tab characters

```
mark
    books
        dsaa
            ch1
            ch2
        ecp
            ch1
            ch2
        ipps
            ch1
            ch2
    courses
        cop3223
            syl
        cop3530
            sy1
        .login
```

figure 18.7
The Unix directory with file sizes

File size is measured in number of blocks
Typical block size: 4 KB

Calculating the total size of all files

```
int size( )
{
    int totalSize = sizeOfThisFile( );
    if( isDirectory( ) )
        for each file c in this directory (for each child)
            totalSize += c.size( );
        return totalSize;
}
```

figure 18.8
A routine for calculating the total size of all files in a directory

```
            ch1 9
            ch2 7
            dsaa }1
            ch1 4
            ch2 6
            <1-
            ipps ch2 
            books
            sy7
            cop3223
            sy
            cop3530
                4
courses2
```

```
mark
```

mark
52

```
52
```


figure 18.9

A trace of the size method

```
1 import java.io.File;
2
3 public class FileSystem extends File
    // Constructor
    public FileSystem( String name )
    {
        super( name );
    }
        // Output file name with indentation
    public void printName( int depth )
    pub
        for( int i = 0; i < depth; i++ )
            System.out.print( "\t");
        System.out.println( getName(') );
    }
        // Public driver to list all files in directory
    public void listAll( )
    {
    listAl1( 0 );
    }
        // Recursive method to list all files in directory
    private void listAll( int depth )
    {
        printName( depth );
        if( isDirectory( ) )
        String [] entries = list();
            for( String entry : entries)
            {
                FileSystem child = new FileSystem( getPath( )
                        + separatorChar + entry );
            child.listAl1( depth + 1 )
        }
        }
    }
    // Simple main to list all files in current directory
    public static void main( String [ ] args )
    {
        FileSystem f = new FileSystem( "." );
        f.ListAll( );
    }
49 }
```


figure $\mathbf{1 8 . 1 0}$

Java implementation
for a directory listing
getName, isDirectory, list, and getPath are methods in
java.io.File
separatorChar, defined in java.io.File, is the system-dependent name-
separator character

Binary trees

A binary tree is a tree in which no node has more than two children

We name the children of a node left and right

Recursively, a binary tree is either empty or consists of a root, a left binary tree, and a right binary tree.

Uses of binary trees

figure 18.11
Uses of binary trees: (a) an expression tree and (b) a Huffman coding tree

(a)

(b)

$$
a+(b-c)^{*} d
$$

a: 0
b: 100
c: 101
$\mathrm{d}: 11$

```
// BinaryNode class; stores a node in a tree
2//
3 // CONSTRUCTION: with no parameters, or an Object,
left child, and right child.
5//
6 // *******************PUBLIC OPERATIONS*********************
7 // int size( ) --> Return size of subtree at node
    8 // int height( ) --> Return height of subtree at node
    9 // void printPostOrder( ) --> Print a postorder tree traversal
    10 // void printInOrder( ) --> Print an inorder tree traversal
    11 // void printPreOrder() --> Print a preorder tree traversal
    11 // void printPreOrder( ) --> Print a preorder tree traversal
    12 // BinaryNode duplicate( )--> Return a duplicate tree
1 3
4 class BinaryNode<AnyType>
    {
    public BinaryNode( )
    { this( nul1, nul1, nul1 ); }
    public BinaryNode( AnyType theElement,
                            BinaryNode<AnyType> 1t, BinaryNode<AnyType> rt )
        { element = theElement; left = 1t; right = rt; }
    public AnyType getElement( )
        { return element; }
        public BinaryNode<AnyType> getLeft( )
        { return left; }
    public BinaryNode<AnyType> getRight( )
        { return right; }
    public void setElement(AnyType x )
        { element = x; }
        public void setLeft( BinaryNode<AnyType> t )
        { left = t; }
        public void setRight( BinaryNode<AnyType> t )
        { right = t; }
        public static <AnyType> int size( BinaryNode<AnyType> t )
        { /* Figure 18.19 */ }
        public static <AnyType> int height( BinaryNode<AnyType> t )
        { /* Figure 18.21 */ }
        public BinaryNode<AnyType> duplicate()
        {/* Figure 18.17 */}
    public void printPreOrder( )
    {/* Figure 18.22 */}
        public void printPostOrder( )
        {/* Figure 18.22*/}
        public void printInOrder(
        public void printInOrder
    private AnyType element;
    private BinaryNode<AnyType> left;
    private BinaryNode<AnyType> right;
52}
```


figure 18.12

The BinaryNode class skeleton

static methods
t may be null

figure 18.13

The BinaryTree class, except for merge

1 // BinaryTree class; stores a binary tree
2 //
3 // CONSTRUCTION: with (a) no parameters or (b) an object to
4 // be placed in the root of a one-element tree.
$5 / /$
6 // ********************PUBLIC OPERATIONS***********************
7 // Various tree traversals, size, height, isEmpty, makeEmpty.
8 // Also, the following tricky method:
9 // void merge(Object root, BinaryTree t1, BinaryTree t2)
10 //
--> Construct a new tree
11 // *******************ERRORS*********************************
12 // Error message printed for illegal merges.
13
14 public class BinaryTree<AnyType>
15 \{

```
public BinaryTree( )
    \{ root = null;
public BinaryTree( AnyType rootItem
    \{ root = new BinaryNode<AnyType>( rootItem, null, nul1 ); \}
    public BinaryNode<AnyType> getRoot( )
        \{ return root; \}
    public int size(
        \{ return BinaryNode.size( root );
    public int height( )
            \{ return BinaryNode.height( root ); \}
    public void printPreOrder( )
    \{ if( root != nul1 ) root.printPreOrder( ); \}
    public void printInOrder( )
        \{ if( root != nul1 ) root.printIn0rder( ); \}
        public void printPostOrder( )
            \{ if( root != null ) root.printPostOrder( ); \}
```

 public void makeEmpty()
 \{ root = null; \}
 public boolean isEmpty ()
 \{ return root \(==\) nul1; \}
 public void merge(AnyType rootItem,
 BinaryTree<AnyType> t1, BinaryTree<AnyType> t2)
 private BinaryNode<AnyType> root;
 45 \} t2)

$$
\{/ * \text { Figure } 18.16 * /\}
$$

private BinaryNode<AnyType> root;

Creates a new tree, with rootItem at the root, and t 1 and t 2 as left and right subtrees

Naive implementation of the merge operation

```
root = new BinaryNode(rootItem, t1.root, t2.root)
```


Result of a naive merge operation:

Nodes in $t 1$ and $t 2$'s trees are now in two trees (their original trees and the merged result). This is a problem if we want to remove or otherwise alter subtrees.

Solution: set t1.root and t 2 . root to null.

t1.merge(x, t1, t2)

figure 18.15

Aliasing problems in the merge operation; t1 is also the current object.

t1 is an alias for the current object (this).
If we execute t . root $=$ null, we change this. root to null, too.

Solution: check for aliasing (this $==t 1$ and this $==t 2$)

```
    /**
    * Merge routine for BinaryTree class.
    * Forms a new tree from rootItem, t1 and t2.
    * Does not allow t1 and t2 to be the same.
    * Correctly handles other aliasing conditions.
    */
    public void merge( AnyType rootItem,
                            BinaryTree<AnyType> t1, BinaryTree<AnyType> t2 )
    {
        if( t1.root == t2.root && t1.root != nul1 )
            throw new IllegalArgumentException( );
            // Allocate new node
        root = new BinaryNode<AnyType>( rootItem, t1.root, t2.root );
            // Ensure that every node is in one tree
        if( this != t1 )
        t1.root = nul1;
        if( this != t2 )
        t2.root = nul1;
    }
```

figure 18.16
The merge routine for the BinaryTree class

Copying a tree

```
/**
    * Return a reference to a node that is the root of a
    * duplicate of the binary tree rooted at the current node.
    */
public BinaryNode<AnyType> duplicate( )
{
    BinaryNode<AnyType> root =
            new BinaryNode<AnyType>( element, null, null );
        if( left != null ) // If there's a left subtree
        root.left = left.duplicate( ); // Duplicate; attach
    if( right != nul1 ) // If there's a right subtree
        root.right = right.duplicate( ); // Duplicate; attach
        return root; // Return resulting tree
}
```


figure $\mathbf{1 8 . 1 7}$

A routine for returning a copy of the tree rooted at the current node

Calculating the size of a tree

figure 18.18
Recursive view used to calculate the size of a tree:
$S_{T}=S_{L}+S_{R}+1$.
figure 18.19
A routine for
computing the size of a node

```
/**
    * Return the size of the binary tree rooted at t.
    */
public static <AnyType> int size( BinaryNode<AnyType> t )
{
        if( t == null )
            return 0;
        else
            return 1 + size( t.left ) + size( t.right );
}
```


Calculating the height of a tree

figure $\mathbf{1 8 . 2 0}$
Recursive view of the node height calculation:
$H_{T}=\operatorname{Max}\left(H_{L}+1, H_{R}+1\right)$

```
/**
    * Return the height of the binary tree rooted at t.
    */
public static <AnyType> int height( BinaryNode<AnyType> t )
{
    if( t == null )
    return -1;
    else
        return 1 + Math.max( height( t.left ), height( t.right ) );
}
```

figure $\mathbf{1 8 . 2 1}$
A routine for
computing the height of a node

Recursive traversal of binary trees

(1) Preorder: Visit the root. Visit the left subtree. Visit the right subtree.

$$
\begin{array}{lllllllllll}
P & M & S & A & B & L & G & R & T & E & F
\end{array}
$$

(2) Inorder: Visit the left subtree. Visit the root. Visit the right subtree.

$$
\begin{array}{ccccccccccc}
A & S & B & M & P & L & G & T & R & F & E
\end{array}
$$

(3) Postorder: Visit the left subtree. Visit the right subtree. Visit the root.

$$
\begin{array}{ccccccccccc}
A & B & S & M & T & F & E & R & G & L & P
\end{array}
$$

figure 18.22

Routines for printing nodes in preorder, postorder, and inorder

```
// Print tree rooted at current node using preorder traversal.
public void printPreOrder( )
{
    System.out.println( element ); // Node
        if( left != null )
        left.printPreOrder( ); // Left
        if( right != null )
        right.printPreOrder( ); // Right
}
// Print tree rooted at current node using postorder traversal.
public void printPostOrder( )
{
    if( left != null ) // Left
        left.printPostOrder( );
        if( right != nul1 ) // Right
        right.printPostOrder( );
        System.out.println( element ); // Node
}
    // Print tree rooted at current node using inorder traversal.
    public void printInOrder( )
{
        if( left != null ) // Left
        left.printInOrder( );
        System.out.println( element ); // Node
        if( right != nul1 )
            right.printInOrder( ); // Right
}
```

figure $\mathbf{1 8 . 2 3}$
(a) Preorder,
(b) postorder, and
(c) inorder visitation routes

(a)

(b)

(c)

```
import java.util.NoSuchElementException;
2
4 //
// TreeIterator class; maintains "current position"
TreeIterator
4//
// CONSTRUCTION: with tree to which iterator is bound
6 //
// ********************PUBLIC OPERATIONS************************
// first and advance are abstract; others are final
// boolean isValid( ) --> True if at valid position in tr
// AnyType retrieve( ) --> Return item in current position
11 // void first() }\quad\mathrm{ --> Set current posit
12 // void advance() --> Advance (prefix)
13 // ******************ERRORS***********************************
14 // Exceptions thrown for illegal access or advance
14
1 6 \text { abstract class TreeIterator<AnyType>}
{
* Construct the iterator. The current position is set to null
    * @param theTree the tree to which the iterator is bound.
    */
    public TreeIterator( BinaryTree<AnyType> theTree )
    { t = theTree; current = null; }
    /**
    * Test if current position references a valid tree item.
    * Test if current position references a valid tree item.
    */
    final public boolean isValid( )
        { return current != nul1; }
    /**
    * Return the item stored in the current position.
    * @return the stored item.
    * @exception NoSuchElementException if the current position is invalid.
    */
    final public AnyType retrieve( )
    {
        if( current == null )
            throw new NoSuchElementException();
        return current.getElement( );
    }
    abstract public void first( );
    abstract public void advance( );
    protected BinaryTree<AnyType> t; // The tree root // The binary tree to be traversed
    protected BinaryNode<AnyType> current; // The current position
49}
```


figure 18.24

The tree iterator abstract base class

Subclasses of TreeIterator

```
class PreOrder<AnyType> extends TreeIterator<AnyType>
class InOrder<AnyType> extends TreeIterator<AnyType>
class PostOrder<AnyType> extends TreeIterator<AnyType>
```

Example of use:

```
TreeIterator<Integer> itr = new InOrderIterator<>(theTree);
for (itr.first(); itr.isValid(); itr.advance())
    System.out.print(itr.retrieve() + " ");
```


Traversals implemented by using a stack

(of nodes not yet ready to be visited)
The type of traversal is determined by how many times a node is popped from the stack before it is visited:

Once: preorder
Twice: inorder
Thrice: postorder


```
class StNode<AnyType> {
    StNode(BinaryNode<AnyType> n)
        { node = n; timesPopped = 0; }
    BinaryNode<AnyType> node;
    int timesPopped;
}
```


figure $\mathbf{1 8 . 2 5}$

Stack states during postorder traversal

A node is popped thrice before it is visited

```
1 import weiss.nonstandard.Stack;
2 import weiss.nonstandard.ArrayStack;
4 // PostOrder class; maintains "current position"
5 // according to a postorder traversal
6 //
7 // CONSTRUCTION: with tree to which iterator is bound
8 //
8 // ********************PUBLIC OPERATIONS***********************
10 // boolean isValid( ) --> True if at valid position in tree
1 // AnyType retrieve( ) --> Return item in current position
2 // void first( ) --> Set current position to first
13 // void advance( ) --> Advance (prefix)
14 // *******************ERRORS**********************************
15 // Exceptions thrown for illegal access or advance
15
16
class PostOrder<AnyType> extends TreeIterator<AnyType>
18 {
    protected static class StNode<AnyType>
    {
    StNode( BinaryNode<AnyType> n )
        { node = n; timesPopped = 0; }
        BinaryNode<AnyType> node;
        int timesPopped;
    }
    /**
    * Construct the iterator. The current position is set to null
    */
    public PostOrder( BinaryTree<AnyType> theTree )
    {
        super( theTree );
        s = new ArrayStack<StNode<AnyType>>( );
        s.push( new StNode<AnyType>( t.getRoot( ) ) );
    }
    /**
    * Set the current position to the first item.
    */
    public void first()
    s.makeEmpty( );
        if( t.getRoot(') != nul1 )
        {
            s.push( new StNode<AnyType>( t.getRoot( ) ) );
            advance( );
        }
    }
protected Stack<StNode<AnyType>> s; // The stack of StNode objects
51 }
```

```
/**
* Advance the current position to the next node in the tree,
    according to the postorder traversal scheme.
    * @throws NoSuchElementException if the current position is null.
    public void advance( )
    {
        if( s.isEmpty( ) )
        {
            if( current == nul1 )
            throw new NoSuchElementException( );
            current = nul1;
            return;
    }
    StNode<AnyType> cnode;
    for( ; ; )
    {
        cnode = s.topAndPop( );
        if( ++cnode.timesPopped == 3)
        {
            current = cnode.node;
            return;
        }
            s.push( cnode );
            if( cnode.timesPopped == 1 )
            {
            if( cnode.node.getLeft( ) != nul1 )
                s.push( new StNode<AnyType>( cnode.node.getLeft( ) ) );
        }
        else // cnode.timesPopped == 2
            { if( cnode.node.getRight( ) != nul1 )
                s.push( new StNode<AnyType>( cnode.node.getRight( ) ) );
        }
    }
}
The advance routine for the Post0rder iterator class
```


figure $\mathbf{1 8 . 2 7}$

```
// InOrder class; maintains "current position"
// according to an inorder traversal
// CONSTRUCTION: with tree to which iterator is bound
5 //
6 //
******************PUBLIC OPERATIONS**********************
// Same as TreeIterator 
8 // ******************ERRORS*************************
9
11 class InOrder<AnyType> extends PostOrder<AnyType>
12 {
public InOrder( BinaryTree<AnyType> theTree)
    { super( theTree ); }
    /**
        * Advance the current position to the next node in the tree,
            according to the inorder traversal scheme.
        * @throws NoSuchElementException if iteration has
        been exhausted prior to the call.
    */
    public void advance( )
    {
        if( s.isEmpty() )
        {
            if( current == null )
            throw new NoSuchElementException( );
        current = nul1;
        return;
        }
        StNode<AnyType> cnode;
        for( ; ; )
        {
            cnode = s.topAndPop( );
            if( ++cnode.timesPopped == 2 ) // A node is popped twice before it is visited
            {
                current = cnode.node;
                    if( cnode.node.getRight( ) != null )
                            s.push( new StNode<AnyType>( cnode.node.getRight( ) ) );
            }
                    // First time through
            s.push( cnode );
            if( cnode.node.getLeft() != nul1 )
                s.push( new StNode<AnyType>( cnode.node.getLeft( ) ) );
            }
    }
50}
```

figure 18.28
The complete InOrder iterator class

```
/ PreOrder class; maintains "current position"
//
// CONSTRUCTION: with tree to which iterator is bound
4 //
// *******************PUBLIC OPERATIONS***********************
6 // boolean isValid( ) --> True if at valid position in tree
7 // AnyType retrieve( ) --> Return item in current position
// void first( ) --> Set current position to first
// void advance( ) --> Advance (prefix)
0 // *******************ERRORS***********************************
// Exceptions thrown for illegal access or advance
class PreOrder<AnyType> extends TreeIterator<AnyType>
4 \text { \{}
    * Construct the iterator. The current position is set to null.
    */
    public PreOrder( BinaryTree<AnyType> theTree )
    {
        super( theTree );
        s = new ArrayStack<BinaryNode<AnyType>>( );
        s.push( t.getRoot( ) );
    }
    /**
        * Set the current position to the first item, according
        * to the preorder traversal scheme.
        */
    public void first( )
    {
        s.makeEmpty( );
        if( t.getRoot() != null )
        {
            s.push( t.getRoot( ) );
            advance( );
        }
    }
    public void advance( )
        {/* Figure 18.30 */ }
    private Stack<BinaryNode<AnyType>> s; // Stack of BinaryNode objects
43
4 \{
    /**
```


figure 18.29

The PreOrder class
skeleton and all members except
advance

figure $\mathbf{1 8 . 3 0}$

The PreOrder iterator class advance routine

```
/**
    * Advance the current position to the next node in the tree,
    * according to the preorder traversal scheme.
    * @throws NoSuchElementException if iteration has
    * been exhausted prior to the call.
    */
public void advance( )
{
        if( s.isEmpty( ) )
        {
            if( current == null )
            throw new NoSuchElementException( );
            current = nul1;
            return;
        }
        current = s.topAndPop( );
        if( current.getRight( ) != nul1 )
        s.push( current.getRight( ) );
        if( current.getLeft( ) != null )
            s.push( current.getLeft( ) );
}
```

We need no longer maintain a count of the number of times an object has been popped. Note the order: The right child is pushed onto the stack before the left child.

Level-order traversal

(4) Level-order: Visit the nodes starting at the root and going from top to bottom, left to right.

$$
\begin{array}{lllllllllll}
P & M & L & S & G & A & B & R & T & E & F
\end{array}
$$

Implemented using a queue of nodes.
Note that the queue can get very large! Possibly, $N / 2$ objects.
{

```
```

// Leve10rder class; maintains "current position"

```
```

// Leve10rder class; maintains "current position"
// according to a level-order traversal
// according to a level-order traversal
//
//
// CONSTRUCTION: with tree to which iterator is bound
// CONSTRUCTION: with tree to which iterator is bound
5 //
5 //
// *******************PUBLIC OPERATIONS***********************
// *******************PUBLIC OPERATIONS***********************
// boolean isValid() --> True if at valid position in tree
// boolean isValid() --> True if at valid position in tree
// AnyType retrieve() --> Return item in current position
// AnyType retrieve() --> Return item in current position
// void first() --> Set current position to first
// void first() --> Set current position to first
// void advance() --> Advance (prefix)
// void advance() --> Advance (prefix)
// ******************ERRORS**********************************
// ******************ERRORS**********************************
// Exceptions thrown for illegal access or advance
// Exceptions thrown for illegal access or advance
class Leve1Order<AnyType> extends TreeIterator<AnyType>
class Leve1Order<AnyType> extends TreeIterator<AnyType>
/**
/**
* Construct the iterator.
* Construct the iterator.
*/
*/
public Leve1Order(BinaryTree<AnyType> theTree)
public Leve1Order(BinaryTree<AnyType> theTree)
{
{
super(theTree);
super(theTree);
q = new ArrayQueue<BinaryNode<AnyType>>();
q = new ArrayQueue<BinaryNode<AnyType>>();
q.enqueue(t.getRoot());
q.enqueue(t.getRoot());
}
}
public void first()
public void first()
{ /* Figure 18.32 */ }
{ /* Figure 18.32 */ }
public void advance()
public void advance()
{ /* Figure 18.32 */ }
{ /* Figure 18.32 */ }
private Queue<BinaryNode<AnyType>> q; // Queue of BinaryNode objects
private Queue<BinaryNode<AnyType>> q; // Queue of BinaryNode objects
}

```
```

}

```
```

The Leve 10 rde iterator class skeleton

figure $\mathbf{1 8 . 3 2}$

The first and advance routines for the Leve10rder iterator class

```
/**
    * Set the current position to the first item, according
    * to the level-order traversal scheme.
    */
public void first()
{
        q.makeEmpty();
        if( t.getRoot() != nul1 )
        {
            q.enqueue( t.getRoot( ) );
            advance( );
        }
}
    /**
    * Advance the current position to the next node in the tree,
        according to the level-order traversal scheme.
    * @throws NoSuchElementException if iteration has
    * been exhausted prior to the call.
    */
    public void advance( )
    {
    if( q.isEmpty( ) )
    {
        if( current == nul1 )
            throw new NoSuchElementException( );
        current = nul1;
        return;
    }
    current = q.dequeue( );
    if( current.getLeft( ) != null )
        q.enqueue( current.getLeft() );
    if( current.getRight( ) != null )
        q.enqueue( current.getRight( ) );
}
```


Traversals implemented by using coroutines

A coroutine is a routine that may temporarily suspend itself. In the meantime other coroutines may be executed.
A suspended coroutine may later be resumed at the point where it was suspended.

This form of sequencing is called alternation.

Class Coroutine

implemented by Keld Helsgaun

```
public class abstract Coroutine {
    protected abstract void body();
    public static void resume(Coroutine c);
    public static void call(Coroutine c);
    public static void detach();
}
```


Recursive inorder traversal by using coroutine sequencing

```
public class InOrderIterator<T> extends TreeIterator<T> {
    public InOrderIterator(BinaryTree<T> tree) { super(tree); }
    @Override void traverse(BinaryNode<T> t) {
            if (t != null) {
                traverse(t.left);
                current = t;
                detach();
                traverse(t.right);
            } else
                current = null;
    }
}
```

public abstract class TreeIterator $\langle T>$ extends Coroutine

```
public abstract class TreeIterator <T> extends Coroutine {
    public TreeIterator(BinaryTree<T> theTree) {
        t = theTree; current = null;
    }
    abstract void traverse(BinaryNode<T> n);
    protected void body() { traverse(t.root); }
    public void first() { call(this); }
    public boolean isValid() { return current != null; }
    public void advance() {
        if (current == null)
            throw new NoSuchElementExcption();
        call(this);
    }
    public T retrieve() {
        if (current == null)
            throw new NoSuchElementExcption();
        return current.element;
    }
    protected BinaryTree<T> t;
    protected BinaryNode<T> current;
}
```


Binary search trees

Binary search

Requires that the input array is sorted
Algorithm:
Split the array into two parts of (almost) equal size
Determine which part may contain the search item.
Continue the search in this part in the same fashion.
Example: Searching for \mathbf{L}.

Worst-case running time is $O(\log N)$.
Average-case running time is $O(\log N)$.

Binary search tree

Binary search may be described using a binary search tree:

A binary search tree is a binary tree that satisfies the search order property: for every node X in the tree, all keys in the left subtrees are smaller than the key in X, and all keys in the right subtree are larger than the key in X.

find

figure 19.1

Two binary trees: (a) a search tree; (b) not a search tree

(a)

(b)

The find operation is performed by repeatedly branching either left or right, depending on the result of the comparison.
The findMin operation is performed by following left nodes as long as there is a left child. The findMax operation is similar.

insert

(a)

(b)
figure 19.2
Binary search trees (a) before and (b) after the insertion of 6

The insert operation can be performed by inserting a node at the point at which an unsuccessful search terminated.

remove

(a)

(b)
figure 19.3
Deletion of node 5 with one child:
(a) before and
(b) after

If the node to be deleted is a leaf, it can be deleted immediately.
If the node has only one child, we adjust the parent's child link to bypass the node.

remove

figure 19.4

Deletion of node 2 with two children: (a) before and (b) after

(a)

(b)

If the node has two children, replace the item in this node with the smallest item in the right subtree and then remove that node. The second remove is easy.

```
```

```
package weiss.nonstandard;
```

```
```

package weiss.nonstandard;

```
```

```
package weiss.nonstandard;
// Basic node stored in unbalanced binary search trees
// Basic node stored in unbalanced binary search trees
// Basic node stored in unbalanced binary search trees
// Note that this class is not accessible outside
// Note that this class is not accessible outside
// Note that this class is not accessible outside
// this package.
// this package.
// this package.
class BinaryNode<AnyType>
class BinaryNode<AnyType>
class BinaryNode<AnyType>
{
{
{
// Constructor
// Constructor
// Constructor
    BinaryNode( AnyType theElement )
    BinaryNode( AnyType theElement )
    BinaryNode( AnyType theElement )
    {
    {
    {
            element = theElement;
            element = theElement;
            element = theElement;
        left = right = null;
        left = right = null;
        left = right = null;
        }
        }
        }
            // Data; accessible by other package routines
            // Data; accessible by other package routines
            // Data; accessible by other package routines
        AnyType element; // The data in the node
        AnyType element; // The data in the node
        AnyType element; // The data in the node
        BinaryNode<AnyType> left; // Left child
        BinaryNode<AnyType> left; // Left child
        BinaryNode<AnyType> left; // Left child
        BinaryNode<AnyType> right; // Right child
```

```
        BinaryNode<AnyType> right; // Right child
```

```
        BinaryNode<AnyType> right; // Right child
```

```
```

//

```
//
```

//
f

```
    f
```

 f
    ```
\(20\}\)

\section*{figure 19.5}

The BinaryNode class for the binary search tree
6
10
11
12
13
14
15
16
17
18
19
```

package weiss.nonstandard;
// BinarySearchTree class
//
// CONSTRUCTION: with no initializer
//
// ******************PUBLIC OPERATIONS*********************
// void insert(x) --> Insert x
// void remove(x) --> Remove x
// void removeMin() --> Remove minimum item
// Comparable find(x) --> Return item that matches x
// Comparable findMin() --> Return smallest item
// Comparable findMax() --> Return largest item
// boolean isEmpty() --> Return true if empty; else false
// void makeEmpty() --> Remove all items
// ******************ERRORS********************************
// Exceptions are thrown by insert, remove, and removeMin if warranted
public class BinarySearchTree<AnyType extends Comparable<? super AnyType>>
{
public BinarySearchTree()
{ root = null; }
public void insert(AnyType x)
{ root = insert(x, root); }

```
figure 19.6a
The BinarySearchTree class skeleton (continues)
```

public void remove(AnyType x)
{ root = remove(x, root); }
public void removeMin()
{ root = removeMin(root); }
public AnyType findMin()
{ return elementAt(findMin(root)); }
public AnyType findMax()
{ return elementAt(findMax(root)); }
public AnyType find(AnyType x)
{ return elementAt(find(}x,\mathrm{ root)); }
public void makeEmpty()
{ root = null; }
public boolean isEmpty()
{ return root == null; }
private AnyType elementAt(BinaryNode<AnyType> t)
{ /* Figure 19.7 */ }
private BinaryNode<AnyType> find(AnyType x, BinaryNode<AnyType> t)
{ /* Figure 19.8 */ }
protected BinaryNode<AnyType> findMin(BinaryNode<AnyType> t)
{ /* Figure 19.9 */ }
private BinaryNode<AnyType> findMax(BinaryNode<AnyType> t)
{ /* Figure 19.9 */ }
protected BinaryNode<AnyType> insert(AnyType x, BinaryNode<AnyType> t)
{ /* Figure 19.10 */ }
protected BinaryNode<AnyType> removeMin(BinaryNode<AnyType> t)
{ /* Figure 19.11 */ }
protected BinaryNode<AnyType> remove(AnyType x, BinaryNode<AnyType> t)
{ /* Figure 19.12 */ }
protected BinaryNode<AnyType> root;

```
figure 19.6b
The BinarySearchTree class skeleton (continued)
```

/**
* Internal method to get element field.
* @param t the node.
* @return the element field or null if t is null.
*/
private AnyType elementAt(BinaryNode<AnyType> t)
{
return t == null ? null : t.element;
}

```
figure 19.7
The elementAt method
```

/**
* Internal method to find an item in a subtree.
* @param x is item to search for.
* @param t the node that roots the tree.
* @return node containing the matched item.
*/
private BinaryNode<AnyType> find(AnyType x, BinaryNode<AnyType> t)
{
while(t != null)
{
if(x.compareTo(t.element) < 0)
t = t.left;
else if(x.compareTo(t.element) > 0)
t = t.right;
else
return t; // Match
}
return nul1; // Not found
}

```
figure 19.8
The find operation for binary search trees

\section*{figure 19.9}

The findMin and findMax methods for binary search trees
```

```
/**
```

```
/**
    * Internal method to find the smallest item in a subtree.
    * Internal method to find the smallest item in a subtree.
    * @param t the node that roots the tree.
    * @param t the node that roots the tree.
    * @return node containing the smallest item.
    * @return node containing the smallest item.
    */
    */
protected BinaryNode<AnyType> findMin( BinaryNode<AnyType> t )
protected BinaryNode<AnyType> findMin( BinaryNode<AnyType> t )
{
{
        if( t != null )
        if( t != null )
            while( t.left != null )
            while( t.left != null )
                    t = t.left;
                    t = t.left;
        return t;
        return t;
}
}
/**
/**
    * Internal method to find the largest item in a subtree.
    * Internal method to find the largest item in a subtree.
    * @param t the node that roots the tree.
    * @param t the node that roots the tree.
    * @return node containing the largest item.
    * @return node containing the largest item.
    */
    */
    private BinaryNode<AnyType> findMax( BinaryNode<AnyType> t )
    private BinaryNode<AnyType> findMax( BinaryNode<AnyType> t )
    {
    {
        if( t != null )
        if( t != null )
            while( t.right != null )
            while( t.right != null )
                    t = t.right;
                    t = t.right;
        return t;
        return t;
}
```

```
}
```

```
```

/**
* Internal method to insert into a subtree.
* @param x the item to insert.
* @param t the node that roots the tree.
* @return the new root.
* @throws DuplicateItemException if x is already present.
*/
protected BinaryNode<AnyType> insert(AnyType x, BinaryNode<AnyType> t)
{
if(t == null)
t = new BinaryNode<AnyType>(x);
else if(x.compareTo(t.element) < 0)
t.left = insert(x, t.left);
else if(x.compareTo(t.element) > 0)
t.right = insert(x, t.right);
else
throw new DuplicateItemException(x.toString()); // Duplicate
return t;
}

```
figure \(\mathbf{1 9 . 1 0}\)
The recursive insert for the BinarySearchTree class
figure 19.11
The removeMin method for the BinarySearchTree class
```

/**
* Internal method to remove minimum item from a subtree.
* @param t the node that roots the tree.
* @return the new root.
* @throws ItemNotFoundException if t is empty.
*/
protected BinaryNode<AnyType> removeMin(BinaryNode<AnyType> t)
{
if(t == nul1)
throw new ItemNotFoundException();
else if(t.left != null)
{
t.left = removeMin(t.left);
return t;
}
else
return t.right;
}

```
```

/**
* Internal method to remove from a subtree.
* @param x the item to remove.
* @param t the node that roots the tree.
* @return the new root.
* @throws ItemNotFoundException if x is not found.
*/
protected BinaryNode<AnyType> remove(AnyType x, BinaryNode<AnyType> t)
{
if(t == null)
throw new ItemNotFoundException(x.toString());
if(x.compareTo(t.element) < 0)
t.left = remove(x, t.left);
else if(x.compareTo(t.element) > 0)
t.right = remove(x, t.right);
else if(t.left != null \&\& t.right != null) // Two children
{
t.element = findMin(t.right).element;
t.right = removeMin(t.right);
}
else
t = (t.left != null) ? t.left : t.right;
return t;
}

```
figure 19.12
The remove method for the BinarySearchTree class

\section*{Printing the elements in sorted order}


Inorder traversal of the tree
```

void printSorted(BinaryNode t) {
if (t != null) {
printSorted(t.left);
System.out.println(t.element);
printSorted(t.right);
}
}

```

\section*{findKth}
figure 19.13
Using the size data member to implement findKth

```

package weiss.nonstandard;
// BinarySearchTreeWithRank class
4 //
5 // CONSTRUCTION: with no initializer
6 //
||******************PUBLIC OPERATIONS**********************
8 // Comparable findKth(k)--> Return kth smallest item
9 // All other operations are inherited
0 // ******************ERRORS********************************
1 // IllegalArgumentException thrown if k is out of bounds
12
3 public class BinarySearchTreeWithRank<AnyType extends Comparable<? super AnyType>>
extends BinarySearchTree<AnyType>
{
private static class BinaryNodeWithSize<AnyType> extends BinaryNode<AnyType>
{
BinaryNodeWithSize(AnyType x)
{ super(x); size = 0; }
int size;
}
/**
* Find the kth smallest item in the tree.
* @param k the desired rank (1 is the smallest item).
* @return the kth smallest item in the tree.
* @throws IllegalArgumentException if k is less
* than 1 or more than the size of the subtree.
*/
public AnyType findKth(int k)
{ return findKth(k, root).element; }
protected BinaryNode<AnyType> findKth(int k, BinaryNode<AnyType> t)
{/* Figure 19.15 */ }
protected BinaryNode<AnyType> insert(AnyType x, BinaryNode<AnyType> tt)
{ /* Figure 19.16 */ }
protected BinaryNode<AnyType> remove(AnyType x, BinaryNode<AnyType> tt)
{/* Figure 19.18 */ }
protected BinaryNode<AnyType> removeMin(BinaryNode<AnyType> tt)
{ /* Figure 19.17 */ }

```
    2 \}

\section*{figure 19.14}

The BinarySearchTreeWithRank class skeleton
```

/**
* Internal method to find kth smallest item in a subtree.
* @param k the desired rank (1 is the smallest item).
* @return the node containing the kth smallest item in the subtree.
* @throws IllegalArgumentException if k is less
* than 1 or more than the size of the subtree.
*/
protected BinaryNode<AnyType> findKth(int k, BinaryNode<AnyType> t)
{
if(t == null)
throw new IllegalArgumentException();
int leftSize = (t.left != null) ?
((BinaryNodeWithSize<AnyType>) t.left).size : 0;
if(k <= leftSize)
return findKth(k, t.left);
if(k == leftSize + 1)
return t;
return findKth(k - leftSize - 1, t.right);
}

```

\section*{figure 19.15}

The findKth operation for a search tree with order statistics
```

/**
* Internal method to insert into a subtree.
* @param x the item to insert.
* @param tt the node that roots the tree.
* @return the new root.
* @throws DuplicateItemException if x is already present.
*/
protected BinaryNode<AnyType> insert(AnyType x, BinaryNode<AnyType> tt)
{
BinaryNodeWithSize<AnyType> t = (BinaryNodeWithSize<AnyType>) tt;
if(t == nul1)
t = new BinaryNodeWithSize<AnyType>(x);
else if(x.compareTo(t.element) < 0)
t.left = insert(x, t.left);
else if(x.compareTo(t.element) > 0)
t.right = insert(x, t.right);
else
throw new DuplicateItemException(x.toString());
t.size++;
return t;

```
22 \}
figure 19.16
The insert operation for a search tree with order statistics
```

/**
Internal method to remove the smallest item from a subtree,
adjusting size fields as appropriate.
@param t the node that roots the tree.
@return the new root.
* @throws ItemNotFoundException if the subtree is empty.
*/
protected BinaryNode<AnyType> removeMin(BinaryNode<AnyType> tt)
{
BinaryNodeWithSize<AnyType> t = (BinaryNodeWithSize<AnyType>) tt;
if(t == nul1)
throw new ItemNotFoundException();
if(t.left == null)
return t.right;
t.left = removeMin(t.left);
t.size--;
return t;
}

```
figure 19.17
The removeMin operation for a search tree with order statistics
```

1
* Internal method to remove from a subtree.
* @param x the item to remove.
* @param t the node that roots the tree.
* @return the new root.
* @throws ItemNotFoundException if x is not found.
*/
protected BinaryNode<AnyType> remove(AnyType x, BinaryNode<AnyType> tt)
{
BinaryNodeWithSize<AnyType> t = (BinaryNodeWithSize<AnyType>) tt;
if(t == nul1)
throw new ItemNotFoundException(x.toString());
if(x.compareTo(t.element) < 0)
t.left = remove(x, t.left);
else if(x.compareTo(t.element) > 0)
t.right = remove(x, t.right);
else if(t.left != null \&\& t.right != null) // Two children
{
t.element = findMin(t.right).element;
t.right = removeMin(t.right);
}
else
return (t.left != null) ? t.left : t.right;
t.size--;
return t;

```
figure 19.18
The remove operation for a search tree with order statistics

\section*{Complexity}

The cost of insert, find, and remove is proportional to the number of nodes accessed. This number depends upon the structure of the tree.

figure 19.19
(a) The balanced tree has a depth of \(\lfloor\log N]\); (b) the unbalanced tree has a depth of \(N-1\).

Best case
(Perfectly balanced tree)

Worst case
(Linear list)

(a)

(b)

(c)

(d)

(e)

\section*{figure 19.20}

Binary search trees that can result from inserting a permutation 1,2 , and 3 ; the balanced tree shown in part (c) is twice as likely to result as any of the others.

The tree with root 2 is formed from either the insertion sequence \((2,3,1)\) or the sequence \((2,1,3)\).

\section*{Average case complexity}

If \(N\) elements are inserted in random order in an initially empty binary search tree, then the average search path length is \(1.38 \log _{2} N\).

Note that the worst case occurs when the elements are inserted in sorted order.

\section*{Balanced binary search trees}


Balancing is a technique that guarantees that the worst cases do not occur.

The idea is to reorganize the tree during insertion and deletion so that it becomes perfectly balanced (i.e., the two subtrees of every node contains the same number of nodes), or almost perfectly balanced.

The following presents some data structures and algorithms that guarantee \(O(\log N)\) running time for search, insertion and deletion.

\section*{Building a perfectly balanced binary search tree from an array}
```

BinarySearchTree buildTree(Comparable[] a) {
Arrays.sort(a);
BinarySearchTree bst = new BinarySearchTree();
bst.root = buildTree(a, 0, a.length - 1);
return bst;
}

```
```

BinaryNode buildTree(Comparable[] a, int low, int high) {
if (low > high)
return null;
int mid = (low + high) / 2;
return new BinaryNode(a[mid], buildTree(a, low, mid - 1),
buildTree(a, mid + 1, high));
}

```

\section*{AVL trees}
(Adelson-Velskii and Landis, 1962)
An AVL tree is a binary search tree that satisfies the condition:

For any node in the tree, the height of the left and right subtrees can differ by at most 1 .

(b)
figure 19.21
Two binary search trees: (a) an AVL tree; (b) not an AVL tree (unbalanced nodes are darkened)

\section*{An AVL tree has logarithmic height}


Minimum tree of height \(H\)

The minimum number of nodes \(S_{H}\) in an AVL tree of height \(H\) satisfies
\(S_{H}=S_{H-1}+S_{H-2}+1, S_{0}=1\), and \(S_{1}=2\).
\(S_{H}=F_{H+3}-1\), where \(F_{i}\) is the \(i\) 'th Fibonacci number.
\(S_{H}+1 \approx \frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{H+3}\)
\(H<1.44 \log _{2}(N+2)-1.328\)
The worst case height is \(44 \%\) more than minimum possible for binary trees.

\section*{Insertion into an AVL tree}


Insertion into \(X\) 's left subtree may violate the AVL balance condition.

In the following \(X\) denotes the deepest node to be balanced.

\section*{Insertion into an AVL tree}

A violation of might occur in four cases:
1. An insertion in the left subtree of the left child of \(X\).
2. An insertion in the right subtree of the left child of \(X\).
3. An insertion in the left subtree of the right child of \(X\).
4. An insertion in the right subtree of the right child of \(X\).


Cases 1 and 4 are symmetric with respect to \(X\).
Cases 2 and 3 are symmetric with respect to \(X\).

\section*{Case 1}

\author{
left-left
}


A right rotation restores the balance.
No further rotations are needed.

\section*{Case 2}
left-right


A right rotation does not restore the balance.

\section*{Case 2}
left-right


A left-right double rotation restores the balance.
No further rotations are needed.

\section*{Implementation of single right rotation}

```

BinaryNode rotateWithLeftChild(BinaryNode k2) {
BinaryNode k1 = k2.left;
k2.left = k1.right;
k1.right = k2;
return k1;
}

```

\section*{Implementation of double left-right rotation}

```

BinaryNode doubleRotateWithLeftChild(BinaryNode k3)
k3.left = rotateWithRightChild(k3.left);
return rotateWithLeftChild(k3);
}

```

\section*{Height information}

An extra integer field, height, is added in class BinaryNode.
height stores the height of the tree that has the current node as root.

Auxiliary method in BinaryNode:
```

static int height(BinaryNode t) {
return t == null ? -1 : t.height;
}

```

\section*{Implementation of insert}
```

BinaryNode insert(Comparable x, BinaryNode t) {
if (t == null)
t = new BinaryNode(x, null, null);
else if (x.compareTo(t.element) < 0) {
t.left = insert(x, t.left);
if (height(t.left) - height(t.right) == 2)
if (x.compareTo(t.left.element) < 0)
t = rotateWithLeftChild(t); // case 1
else
t = doubleRotateWithLeftChild(t); // case 2
} else if (x.compareTo(t.element) > 0) {
... // case 3 or 4
} else
throw new DuplicateItemException();
t.height = Math.max(height(t.left), height(t.right)) + 1;
return t;
}

```

\section*{Maintenance of height}


\section*{Red-black trees}


\section*{Problem}

The damaged chessboard
A chess board with 8 x 8 squares can be covered by 32 domino pieces where each domino piece covers 2 squares.

The bottom-left and top-right corners are now taken away. Can 31 pieces cover the board?


Coloring solves the problem easily. Why?

\section*{Red-black tress}
(R. Bayer, 1972)

A red-black tree is a binary search tree having the following ordering properties:
1. Every node is colored either red or black.
2. The root is black.
3. If a node is red, its children must be black.
4. Every path from a node to a null link must contain the same number of black nodes.

\section*{A red-black tree}


0 . The tree is a binary search tree.
1. Every node is colored either red or black.
2. The root is black.
3. If a node is red, its children must be black. (null nodes are black)
4. Every path from a node to a null link must contain the same number of black nodes: 3 .

\section*{The height of red-black trees}

The height \(H\) of a red-black tree satisfies
\[
H \leq 2 \log _{2}(N+1)
\]

In a randomly generated tree \(H\) is very close to \(\log _{2} N\) : \(1.002 \log _{2} N\).

\section*{Insertion into a red-black tree}

A new item is always inserted as a leaf in the tree.
If we color the new node black, we violate property 4 , and it is not immediately clear how this property may be restored.

If we color the new node red and its parent is black, we are done.
If its parent is red, we violate property 3 .

We must see to that the new red node gets a black parent
How?
Answer: Use rotations and color changes.

\section*{Five cases}
\(X\) : the current red node
\(P: X\) 's red parent
\(G\) : X's grandparent (has to be black)
\(S\) : Sibling of \(X\) 's parent
Case 1: \(X\) is left child of \(P, P\) is left child of \(G\), and \(S\) is black.

rotateWithLeftChild(G)


Recolor \(P\) and \(G\)

Case 2: \(X\) is right child of \(P, P\) is left child of \(G\), and \(S\) is black.


Case 3: \(X\) is right child of \(P, P\) is right child of \(G\), and \(S\) is black. Symmetric to case 1

Case 4: \(X\) is left child of \(P, P\) is right child of \(G\), and \(S\) is black. Symmetric to case 2

Case 5: Both \(P\) and \(S\) are red.


Perform a color flip on \(P, S\) and \(G\). If \(G\) is the root, then color \(G\) black.

\section*{After a case 5 repair}

The red coloring of \(G\) in case 5 may violate property 3 (if \(G\) 's parent is red).

This violation can be fixed by a single rotation (in cases 1 and 3), and a double rotation (in cases 2 and 4). Again, case 5 may arise.

We could percolate this bottom-up procedure until we reach the root. To avoid the possibility of having to rotate up the tree, we apply a top-down procedure. Specifically, we guarantee that when we arrive at a leaf and insert a node, \(S\) is not red.

\section*{Top-down insertion}

The rotations after a type 5 repair requires access to \(X\) 's great-grandparent. The implementation in the textbook maintain the following references:
```

current: the current node (}X\mathrm{)
parent: the parent of the current node (P)
grand: the grandparent of the current node (G)
great: the great-grandparent of the current node

```

These references can be omitted when insertion is performed top-down. The top-down code is given in the following.

\section*{Java implementation}

In class BinaryNode we add the field
```

boolean color;

```

In class RedBlackTree we define the constants
```

static final boolean RED = false;
static final boolean BLACK = true;

```

We use a BinaryNode object in place of null links:
```

static BinaryNode nullNode;
static {
nullNode = new BinaryNode(null);
nullNode.left = nullNode.right = nullNode;
nullNode.color = BLACK;
}

```
```

public void insert(Comparable x)
{ root = insert(x, root, true); root.color = BLACK; }

```
```

BinaryNode insert(Comparable x, BinaryNode t, boolean rightChild) {
if (t == nullNode) {
t = new BinaryNode(x, nullNode, nullNode); t.color = RED;
} else {
if (t.left.color == RED \&\& t.right.color == RED) {
t.color = RED; t.left.color = t.right.color = BLACK;
}
if (x.compareTo(t.element) < 0) {
t.left = insert(x, t.left, false);
if (rightChild \&\& t.color == RED \&\& t.left.color == RED)
t = rotateWithLeftChild(t);
if (t.left.color == RED \&\& t.left.left.color == RED) {
t = rotateWithLeftChild(t);
t.color = BLACK; t.right.color = RED;
}
}
else if (x.compareTo(t.element) > 0) { ... }
else throw new DuplicateItemException(x.toString());
}
return t;
}

```

\section*{Handling the symmetric case}

Replace left by right
Replace right by left
Replace rightChild by !rightChild
Replace rotateWithLeftChild by rotateWithRightChild
```

t.right = insert(x, t.right, true);
if (!rightChild \&\& t.color == RED \&\& t.right.color == RED)
t = rotateWithRightChild(t);
if (t.right.color == RED \&\& t.right.right.color == RED) {
t = rotateWithRightChild(t);
t.color = BLACK; t.left.color = RED;
}

```

\section*{Insertion example}



\section*{AVL trees versus red-black trees}

Although the red-black tree balancing properties are slightly weaker than the AVL tree balancing properties experiments suggest that the number of nodes traversed during a search is almost identical.

However, updating a red-black tree requires lower overhead than AVL trees. Insertion into an AVL tree requires (in worst case) two passes on a path (from the root to a leaf and up again), whereas insertion into a redblack tree can be performed in one pass.

Implementation of deletion is complicated for both AVL trees and redblack trees.

\section*{AA-trees}
(Arne Andersson, 1993)

An AA-tree is a red-black tree that has one extra property:
(5) A left child must not be red.

This property simplifies implementation:
(1) it eliminates half of the restructuring cases;
(2) it removes an annoying case for the deletion algorithm

\section*{Properties of AA-trees}

\section*{Level replaces color}

The level of a node is
- 1 , if the node is a leaf
- the level of its parent, if the node is red
- one less than the level of its parent, if the node is black


\section*{Properties}

1. Horizontal links are right links
2. There may not be two consecutive horizontal links
3. Nodes at level 2 or higher must have two children
4. If a node at level 2 does not have a right horizontal link, its two children are at the same level

\section*{Rotations can be used to maintain the AA-tree properties}

There are only 2 cases that require restructuring:
Case 1 (horizontal left link):

```

BinaryNode skew(BinaryNode t) {
if (t.left.level == t.level)
t = rotateWithLeftChild(t);
return t;
}

```

Case 2 (two consecutive right links):

```

BinaryNode split(BinaryNode t) {
if (t.right.right.level == t.level) {
t = rotateWithRightChild(t);
t.level++;
}
return t;
}

```

After a skew, a split may be required

\section*{Implementation of insert}

Use recursion and call skew and split on the way back.
```

BinaryNode insert(Comparable x, BinaryNode t) {
if (t == nullNode)
t = new BinaryNode(x, nullNode, nullNode);
else if (x.compareTo(t.element) < 0)
t.left = insert(x, t.left);
else if (x.compareTo(t.element) > 0)
t.right = insert(x, t.right);
else
throw new DuplicateItemException();
return split(skew(t));
}

```

\section*{Insertion example}


45 to be inserted:


split at 35:



split at 30:


\section*{Implementation of remove}

Use recursion and call skew and split on the way back.
```

BinaryNode remove(Comparable x, BinaryNode t) {
if (t == nullNode)
return nullNode;
lastNode = t;
if (x.compareTo(t.element) < 0)
t.left = remove(x, t.left);
else {
deletedNode = t;
t.right = remove(x, t.right);
}
if (t == lastNode) { // at level 1
if (deletedNode == nullNode ||
x.compareTo(deletedNode.element) != 0)
throw new ItemNotFoundException();
deletedNode.element = t.element;
t = t.right;
} else {
/* see next slide */
}
return t;
}

```

\section*{Maintaining the AA-tree properties}
```

if (t.left.level
< t.level

- 1
t.right.level < t.level - 1) {
t.level--;
if (t.right.level > t.level)
t.right.level = t.level;
t = skew(t);
t.right = skew(t.right);
t.right.right = skew(t.right.right);
t = split(t);
t.right = split(t.right);
}

```

See the textbook for an explanation

\section*{Deletion example}

\[
\begin{aligned}
& \text { (2) } \xrightarrow[(3) \rightarrow(4)]{t} \rightarrow(6) \\
& t=\text { skew }(t): \\
& \text { no effect } \\
& \text { t.right = skew(t.right): } \\
& \text { (2) } \rightarrow \text { (3) } \rightarrow \text { (4) } \rightarrow \text { ( } 5 \text { ) } \\
& \text { t.right.right }=\text { skew(t.right.right): }
\end{aligned}
\]


\section*{Red-black trees versus AA-trees}

\section*{Experimental results}

Insertion of \(10,000,000\) different integers into an initially empty tree, followed by deletion of each element, in random order. 2.8 GHz MacBook Pro.
```

Red-black tree (java.util.TreeSet) 57.9 seconds
AA-tree (weiss.util.TreeSet) 65.0 seconds

```
java -Xmx1G

\section*{B-tree}
a data structure for external search
(Bayer and McCraight, 1970)
Suppose \(10,000,000\) records must be stored on a disk in such a way that search time is minimized.

An ordinary binary search tree:
Average case: \(1.38 * \log _{2}(10,000,000) \approx 32\) disk accesses
Worst case: \(10,000,000\) disk accesses!
Perfectly balanced search tree: \(\log _{2}(10,000,000) \approx 24\) accesses
This in unacceptable. We want to reduce the number of disk accesses to a very small number, such as three or four. Use a B-tree - a balanced \(M\)-ary search tree. A B-tree allows \(M\)-way branching in a tree, which has a height that is roughly \(\log _{M} N\).

\section*{A 5-ary tree}

figure 19.83
A 5-ary tree of 31
nodes has only three levels

\section*{B-tree of order 5}


When all records are stored at the leaf level, the data structure is called a \(\mathrm{B}^{+}\)-tree.

\section*{Definition of B-tree}


A B-tree of order \(M\) is a \(M\)-ary tree with the following properties:
1. The data items are stored at leaves.
2. The nonleaf nodes store as many as \(M-1\) keys to guide the searching; key \(i\) represents the smallest key in subtree \(i+1\).
3. The root is either a leaf or has between 2 and \(M\) children.
4. All nonleaf nodes (except the root) have between \(\lceil M / 2\rceil\) and \(M\) children.
5. All leaves are at the same depth and have between \(\lceil L / 2\rceil\) and \(L\) data items, for some L.

\section*{B-tree example}

Assume
- each of \(10,000,000\) records uses 256 bytes
- each key uses 32 bytes
- each branch uses 4 bytes
- each block holds 8,192 bytes

Choose \(M\) as large as possible: \((M-1) * 32+M^{*} 4 \leq 8192\). So we choose \(M=228\).
Each nonleaf node has at least \(M / 2=114\) children.
Choose \(L\) as large as possible: \(L=8192 / 256=32\).
Number of leaves: At most \(10,000,000 /(L / 2)=10,000,000 / 16=\) 625,000.

Height of the tree: \(\log _{114}(625,000) \approx 3.4\). If the root is in RAM, only \(\mathbf{3}\) disk accesses are required to find a record.

\section*{Insertion into a B-tree}

\section*{simple case}

figure 19.85
The B-tree after insertion of 57 in the tree shown in Figure 19.84.

\section*{Insertion into a B-tree node splitting}

figure 19.86
Insertion of 55 in the B-tree shown in Figure 19.85 causes a split into two leaves.

\section*{Insertion into a B-tree}

\section*{extra node splitting}

figure 19.87
Insertion of 40 in the B-tree shown in Figure 19.86 causes a split into two leaves and then a split of the parent node.

\section*{Deletion in a B-tree}

\section*{combining two nodes}

figure 19.88
The B-tree after deletion of 99 from the tree shown in Figure 19.87.

\section*{Sketch of a B-tree implementation}
```

public class BTree {
private int M, height;
private Node root;
private class Node {...}
private class Entry {...}
public BPTree(int order) { M = order; }
public Object find(Comparable key) {...}
public void insert(Comparable key, Object data) {...}
public boolean remove(Comparable key) {...}
}

```
```

class Node {
Entry[] entry = new Entry[M + 1];
int size;
Object find(Comparable key, int ht) {...}
Node insert(Comparable key, Object pointer, int ht) {...}
Node split() { ... }
}

```
class Entry \{
    Comparable key;
    Object pointer;
    Entry (Comparable k, Object p)
        \{ key \(=k\); pointer \(=p ;\}\)
\}

\section*{find}
```

Object find(Comparable key) {
return root != null ? root.find(key, height) : null;
}

```
Object find(Comparable key, int ht) \{
    if (ht == 0) \{
        for (int \(i=0 ; i<s i z e ; ~ i++)\)
            if (key.compareTo(entry[i].key) == 0)
            return entry[i].pointer;
    \} else
            for (int \(i=0 ; i<s i z e ; ~ i++)\)
            if (i + 1 == size || key.compareTo(entry[i + 1].key) < 0)
                        return ((Node) entry[i].pointer).find(key, ht - 1);
    return null;
\}
```

void insert(Comparable key, Object data) {
if (root == null)
root = new Node();
Node t = root.insert(key, data, height);
if (t != null) { // split root
Node newRoot = new Node();
newRoot.entry[0] = new Entry(root.entry[0].key, root);
newRoot.entry[1] = new Entry(t.entry[0].key, t);
root = newRoot;
root.size = 2;
height++;
}
}

```
```

Node insert(Comparable key, Object data, int ht) {
Entry newEntry = new Entry(key, pointer);
int i;
if (ht == 0) {
for (i = 0; i < size; i++)
if (key.compareTo(entry[i].key) < 0)
break;
} else
for (i = 0; i < size; i++)
if (i + 1 == size || key.compareTo(entry[i + 1].key) < 0) {
Node t = ((Node) entry[i++].pointer).
insert(key, data, ht - 1);
if (t == null)
return null;
newEntry.key = t.entry[0].key;
newEntry.pointer = t;
break;
}
for (int j = size; j > i; j--)
entry[j] = entry[j - 1];
entry[i] = newEntry;
return ++size <= M ? null : split();
}

```
```

Node split() {
Node t = new Node();
for (int i = 0, j = M / 2; j <= M; i++, j++)
t.entry[i] = entry[j];
t.size = M - M / 2 + 1;
size = M / 2;
return t;
}

```

\section*{Quote}
"You think you know when you learn, are more sure when you can write, even more when you can teach, but certain when you can program."```

