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Algorithms I

Euclid, 300 BC
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Agenda

Algorithm analysis
•  The algorithm concept
•  Estimation of running times
•  Big-Oh notation
•  Binary search

The Collections API
•  Common data structures
•  Applications of the data structures
•  Organization of the Collections API
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Data and information

Data:
A formalized representation of facts or concepts suitable for 
communication, interpretation, or processing by people or 
automated means.

Data on its own carries no meaning.

Information:
The meaning that a human assigns to data by means of known 
conventions. 
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What is an algorithm?

An algorithm is a step-by-step procedure for solving a problem

Note that it is not a requirement that an algorithm is executed 
by a computer.

Input data Output dataAlgorithm

Donald Knuth:           
My favorite way to describe computer science 
is to say that it is the study of algorithms.



5

Origin of the algorithm concept

The word algorithm comes from the name of the 9th century 
Persian Muslim mathematician Abu Abdullah Muhammad ibn Musa 
Al-Khwarizmi.

The word algorism originally referred only to the rules of 
performing arithmetic using Hindu-Arabic numerals but evolved via 
European Latin translation of Al-Khwarizmi’s name into algorithm 
by the 18th century. The use of the word evolved to include all 
definite procedures for solving problems or performing tasks.
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    • Finite: 
there must be an end to it within a reasonable time

•  Definite:
precisely definable in clearly understood terms and  
without ambiguities

•  Effective:
it must be possible to actually carry out the steps

•  Procedure:
the sequence of specific steps

•  Output:
unless there is something coming out of the process, the result
will remain unknown!

Formal definition of an algorithm
Donald E. Knuth (1968)

An algorithm is a finite, definite, and effective procedure,    
with some output.
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Desirable properties of an algorithm

(1) It solves the problem correctly

(2) It runs (sufficiently) fast

(3) It requires (sufficiently) little storage

(4) It is simple 

The last three properties often conflict with each other.
Space-time tradeoff is a way of solving a problem faster by 
using more storage, or by solving a problem in little storage 
by spending a long time.
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Technology increases speed by only a constant factor.
Much larger speed-up may often be achieved by careful algorithm design.

The need for fast algorithms

    Why bother about efficiency with today’s fast computers?

A bad algorithm on a supercomputer may run slower than a good one on an abacus.

More powerful computers allow us to solve larger problems, but ...

Suppose an algorithm runs in time proportional to the square of the problem size 
(time = cn2, where c is a constant, and n is the problem size). If we buy a new 
computer that has 10 times as much memory as the old one, we are able to solve 
problems that are 10 times larger. However, if the new computer is “only” 10 times 
faster, it will take 10 times longer to execute the algorithm.
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Euclid’s algorithm

One of the first non-trivial algorithms was designed by 
Euclid (Greek mathematician, 300 BC).

  Given         Solution
24 and 32
 8  and 12
 7  and  8  

The largest common divisor of two positive integers is the 
largest integer that divides both of them without leaving a 
remainder.

Problem: Find the largest common divisor of 
two positive integers

8
4
 1 
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If gcd(u,v) denotes the greatest common divisor of u and v, 
the problem may be formulated as follows:

Given two integers u ≥ 1 and v ≥ 1, find gcd(u,v).

Solution of the problem is for example relevant to the 
problem of reducing fractions:

 24
32

=

24
gcd(24,32)

32
gcd(24,32)

=

24
8
32
8

=
3
4
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Two simple algorithms

for (int d = 1; d <= u; d++)
    if (u % d == 0 && v % d == 0)
        gcd = d;

The inefficiency of these algorithms is apparent for large 
values of u and v, for instance 461952 and 116298 (where 
gcd is equal to 18).

int d = u < v ? u : v;
while (u % d != 0 || v % d != 0)
    d--;
gcd = d;
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Euclid exploited the following observation to achieve a more 
efficient algorithm:

If u ≥ v, and d divides both u and v, then d divides the difference 
between u and v.

 
 

Euclid’s algorithm

If u > v, then gcd(u,v) = gcd(u-v,v)

If u = v, the gcd(u,v) = v                         [ = gcd(u-v,v) = gcd(0,v)]

If u < v, then we exploit that gcd(u,v) = gcd(v,u)    [u and v are exchanged]
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while (u > 0) {
    if (u < v) 

 { int t = u; u = v; v = t; }
  u = u - v;
}
gcd = v;

Euclid’s algorithm (version 1) ���

   u = 461952, v = 18
   u = 461934, v = 18
   u = 461916, v = 18
   .
   .
   .
   u = 18    , v = 18
   u = 0     , v = 18

461952/18 = 25664 iterations

Example run:
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Is it possible to improve the efficiency?
Yes. The algorithm subtracts v from u until u becomes less than v. 
But this is exactly the same as diving u by v and setting u equal to 
the remainder. That is, if u > v, then gcd(u,v) = gcd(u%v,v).

while (u > 0) {
    if (u < v) 
      { int t = u; u = v; v = t; }
    u = u % v;
}
gcd = v;

The number of iterations for the previous example is reduced to 1.

Euclid’s algorithm (version 2)
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Execution of version 2

   u = 461952, v = 116298
   u = 113058, v = 116298
   u = 3240,   v = 113058
   u = 2898,   v = 3240
   u = 342,    v = 2898
   u = 162,    v = 342
   u = 18,     v = 162

   u = 0,      v = 18 

7 iterations

The algorithm is very efficient, even for large values of u and v. 
Its efficiency can be determined by (advanced) algorithm analysis:

  maximum number of iterations ≈ 4.8 log10N - 0.32
  average number of iterations     ≈ 1.94 log10N 

    where N is max(u, v).

             [ log10461952  ≈ 5.66 ]
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An alternative algorithm
(prime factorization)

Any positive number u may be expressed as a product of prime factors:

A well-known method for reducing fractions:
4400
7000

= 2 ⋅2 ⋅2 ⋅2 ⋅5 ⋅5 ⋅11
2 ⋅2 ⋅2 ⋅5 ⋅5 ⋅5⋅ 7

= 2 ⋅11
5 ⋅7

= 22
35

u = 2u2 ⋅ 3u3 ⋅5u5 ⋅ 7u7 ⋅11u11 ⋅ ... = p
p  is prime
∏ up

pmin(up ,vp )

p  is prime
∏

Let u and v be two positive integers. Then gcd(u,v) may be determined as
 

    
 
Example:  u = 4400 = 24 . 30 . 52 . 70 . 111, 
                      v =7000 = 23 . 30 . 53 . 71 . 110 

gcd(u,v) = 23 . 30 . 52 . 70 . 110 = 23 . 52 = 8 . 25  = 200
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No efficient algorithm for prime factorization is known.
    

This fact is exploited in cryptographic algorithms (algorithms for 
information security).  

Drawback of the alternative algorithm
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What is algorithm analysis?

To analyze an algorithm is to determine the amount of 
resources (such as time and storage) necessary to execute it.

Algorithm analysis is a methodology for estimating the 
resource consumption of an algorithm. It allows us to 
compare the relative costs of two or more algorithms for 
solving the same problem.  

Algorithm analysis also gives algorithm designers a tool for 
estimating whether a proposed solution is likely to meet the 
resource constraints for a problem.
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The running time of an algorithm typically grows with the 
input size.

Running time

Average case time is often difficult to determine.
We focus on the worst case running time.

•  Easier to analyze
•  Crucial to applications such as games and robotics
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Experimental studies

•  Write a program implementing the       
   algorithm

•  Run the program with inputs of
  varying size

•  Use a method like 
System.currentTimeMillis() 

   to get an accurate measure of the 
   actual running time

•  Plot the results
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•  It is necessary to implement the algorithm, which may 
be difficult

•  Results may not be indicative of the running time on 
inputs not included in the experiment.

•  In order to compare two algorithms, the same hardware 
and software environments must be used

Limitations of experiments
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•  Uses a high-level description of the algorithm instead of an 
implementation

•  Characterizes running time as a function of the input size

•  Takes into account all possible inputs

•  Allows us to evaluate the speed of an algorithm independent 
of hardware/software environment

Theoretical analysis
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Primitive operations

•  Basic operations performed by an algorithm

•  Each one is assumed to take constant time

•  Largely independent from the programming language

Examples:
Evaluating an expression
Assigning a value to a variable
Indexing into an array
Calling a method
Returning from a method
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Counting primitive operations

By inspecting the code or the pseudocode, we can determine the 
maximum number of primitive operations executed by an 
algorithm, as a function of the input size, n.

int arrayMax(int[] a) {    # operations
    int currentMax = a[0];        2
    for (int i = 1; i < a.length; i++)  1+2(n-1)+n
        if (a[i] > currentMax)    2(n-1)
            currentMax = a[i];    2(n-1)
    return currentMax;    1
}

    Total       7n-2   
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Estimating running time for arrayMax

The algorithm arrayMax executes 7n-2 primitive operations in 
the worst case.  

Define:
a = Time taken by the fastest primitive operation
b = Time taken by the slowest primitive operation

Let T(n) be worst-case time of arrayMax. Then
���

a(7n-2) ≤ T(n)≤ b(7n-2)

Hence, the running time T(n) is bounded by two linear functions. 
This property, in which running time essentially is directly 
proportional to the amount of data, is the signature of a linear 
algorithm.
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• Changing the hardware/software environment 
n  affects T(n) by a constant factor, but
n  does not alter the growth rate of T(n)

• The linear growth rate of the running time T(n) is an intrinsic property 
of algorithm arrayMax. 

Growth rate of running time 
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Growth rates

A cubic function is a function whose dominant term is some 
constant times N3. As an example 10N3+N2+40N+80 is a cubic 
function, since the term 10N3 dominates when N is large.

A quadratic function is a function whose dominant term is some 
constant times N2. 

A linear function is a function whose dominant term is some 
constant times N. 

The logarithm is a slowly growing function. For instance, the 
logarithm of 1,000,000 (with the typical base 2) is only 20.
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N log N is sometimes called linearithmic, loglinear, or quasilinear.
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Big-Oh notation

We use Big-Oh notation to capture the most dominant term in 
a function and to represent growth rate.

For instance, the running time of a quadratic algorithm is 
specified as O(N2) (pronounced “order en-squared”).

Even the most clever programming tricks cannot make an 
inefficient algorithm fast. Thus, before attempting to optimize 
code, we need to optimize the algorithm. 
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Examples of algorithm running times

Minimum element in an array       
Given an array of N elements, find the minimum element.

Closest pair of points in the plane        
Given N points in the plane (that is, in the x-y coordinate 
system), find the pair that are closest together.

Colinear points in the plane              
Given N points in the plane, determine if any three form a 
straight line.

Simple algorithms for these problems run in O(N), O(N2), and      
O(N3) time, respectively. For the last two problems more 
efficient algorithms have been developed.  
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The maximum contiguous
subsequence sum problem 

Given (possible negative) integers A1, A2, ..., AN, find 
(and identify the sequence corresponding to) the 
maximum value of        

The maximum contiguous subsequence sum is zero if 
all the integers are negative.

Ak
k= i

j

∑

Example. If the input is (-2, 11, -4, -1, 13, -5, 2), 
then the answer is 19, which represents the sum of the 
contiguous subsequence (11, -4, -1, 13). 

If all elements are positive, then the sequence itself is maximal.
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An obvious O(N3) algorithm
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Analysis of running time

Running time of the algorithm is entirely dominated by the 
innermost loop (lines 14 and 15).

The number of times line 15 is executed is exactly equal to 
the number of triplets (i, j, k) that satisfy 1 ≤ i ≤ k ≤ j ≤ N, 
which is N(N+1)(N+2)/6.

Consequently, the algorithm runs in O(N3) time.

Note that three consecutive (nonnested) loops exhibit 
linear behavior; it is nesting that leads to a combinatoric 
explosion. Consequently, to improve the algorithm we need 
to remove a loop.
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An improved O(N2) algorithm

Suppose we have just calculated the sum for the 
subsequence Ai, .., Aj-1. Then computing the sum for the 
subsequence Ai, .., Aj should not take long because we need 
only one more addition (of Aj). However, the cubic 
algorithm throws away this information.

Using this observation, we obtain the following algorithm.
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An improved O(N2) algorithm
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Analysis of running time

Running time of the algorithm is entirely dominated by the 
statement block in the innermost loop (lines 14-23).

The number of times this block is executed is N + (N-1) + 
(N-2) + ... + 2 + 1 = N(N+1)/2.

Consequently, the algorithm runs in O(N2) time.

To move from a quadratic algorithm to a linear algorithm 
we need to remove another loop.
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A linear algorithm

The previous algorithms are exhaustive, i.e., they examine all 
subsequences. The only way we can attain a subquadratic bound 
is to find a clever way to eliminate from consideration a large 
number of subsequences without actually computing their sum 
and testing to see if that sum is a new maximum.

We may use the following two observations:

(1)  The best subsequence cannot start with a negative number.
(2)  More generally, the best subsequence cannot start with a 

negative sum (Theorem 5.2).
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Theorem 5.2
Let Ai,j be the subsequence encompassing elements from i to j, 
and let Si,j be its sum.

Theorem 5.2 Let Ai,j be any subsequence with Si,j < 0.                 
If q > j, then Ai,q is not a maximum contiguous subsequence.

This observation by itself is not sufficient to reduce the 
running time below quadratic.
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if( thisSum < 0)
    break;

(improved using 
 Theorem 5.2) 
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Theorem 5.3

Theorem 5.3 For any i, let Ai,j be the first sequence with Si,j < 0. 
Then for any i ≤ p ≤ j and p ≤ q, Ap,q either is not a maximum 
contiguous subsequence or is equal to an already seen maximum 
contiguous subsequence.

Not maximum (by Theorem 5.2) Already seen
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Theorem 5.3 tells us that when a negative sum is detected, not only can we 
break the loop, but we can also advance i to j+1.
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Empirical study

≈ 2281 seconds ≈ 38 minutes 

≈ 2281000 seconds ≈ 26 days 
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Big-Oh and its relatives

Definition: (Big-Oh) T(N) is O(F(N)) if there are positive constants      
c and N0 such that T(N) ≤ cF(N)), when N ≥ N0. ≤

Definition: (Big-Omega) T(N) is Ω(F(N)) if there are positive constants 
c and N0 such that T(N) ≥ cF(N)), when N ≥ N0. ≥

Definition: (Big-Theta) T(N) is Θ(F(N)) if and only if T(N) is O(F(N)) 
and T(N) is Ω(F(N)) . =

Definition: (Little-Oh) T(N) is o(F(N)) if and only if T(N) is O(F(N)) 
and T(N) is not Θ(F(N)) . <

Definition: (Little-Omega) T(N) is ω(F(N)) if and only if T(N) is           
Ω(F(N)) and T(N) is not Θ(F(N)) . >
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Illustration of the statement 
“T(N) is O(F(N))”

cF(N)

T(N)

N0 N
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General Big-Oh rules

• If T(N) is a polynomial of degree d, then T(N) is O(Nd), i.e.,
1. Drop lower-order terms
2. Drop constant factors

• Use the smallest possible class of functions:
Say “2N is O(N)” instead of “2N is O(N2)

• Use the simplest expression of the class
Say “3N + 5 is O(N)” instead of “3N + 5 is O(3N)”
Say “75 + 25 is O(1)” instead of “75 + 25 is O(100)”
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The logarithm

Definition: For any B, N > 0, logBN = K if BK = N.

In this definition, B is the base. In computer science, 
when the base is omitted, it defaults to 2.

As far as Big-Oh is concerned, the base is unimportant 
since all logarithm functions are proportional.

Example: log2N = c log10N, where c = 1/log102 ≈ 3.3
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Growth of log2N

N

log2N

°
°

°
°

°
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Answer:              

Here          is the ceiling function and represents the smallest integer 
that is at least as large as X. Example: 

The corresponding floor function         represents the largest integer 
that is at least as small as X. Example: 

log2 N⎡⎢ ⎤⎥

X⎡⎢ ⎤⎥

X⎢⎣ ⎥⎦

3.2⎡⎢ ⎤⎥ = 4.

3.2⎢⎣ ⎥⎦ = 3.

Some uses of log2N

to be cont'd

Bits in a binary number
How many bits are required to represent N consecutive integers?
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Repeated doubling
Starting from X=1, how many times should X be doubled before it is 
at least as large as N?

Answer:               log2 N⎡⎢ ⎤⎥

Repeated halving
Starting from X=N, if N is repeatedly halved, how many iterations 
must be applied to make N smaller than or equal to 1.

Answer:                 if divisions rounds up; 
                           if division rounds down (as in Java).

log2 N⎡⎢ ⎤⎥
log2 N⎢⎣ ⎥⎦
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Search is the problem of determining whether or not any of a 
sequence of objects appear among a set of previously stored objects. 

Search

Search is the most time consuming part of most programs. 
Replacing an inefficient search algorithm with a more efficient 
one will often lead to substantial increase in performance.
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Static searching problem

Static searching problem
Given an object X and an array A, return the position of 
X in A or an indication that it is not present. If X occurs 
more than once, return any occurrence. The array A is 
never altered.

Example: Looking up a person in the telephone book.

The efficiency of a static searching algorithm depends 
on whether the array being searched is sorted.
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Linear sequential search
Step through the array until a match is found.

public static final int NOT_FOUND = -1;

public static int sequentialSearch(Object[] a, Object x) {
    for (int i = 0; i < a.length; i++)
        if (a[i].equals(x))
            return i;
    return NOT_FOUND;
}

Worst-case running time is O(N).
Average-case running time is O(N).
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Binary search
Requires that the input array is sorted.

Algorithm:     
Split the array into two parts of (almost) equal size.
Determine which part may contain the search item.
Continue the search in this part in the same fashion.

Worst-case running time is O(log N).
Average-case running time is O(log N).

Example: Searching for L.

  A B D E F G H I J K L M N O P
                I J K L M N O P
                  J K L
                      L
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Binary search (three way-comparisons)

low mid high
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Binary search (two way-comparisons)

low mid high
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Checking an algorithm analysis
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While the first binary search was published in 1946, the first published 
binary search without bugs did not appear until 1962.

In 1986 Jon Bentley found that 90% of the professional programmers 
that followed his courses could not write an error-free version in two 
hours.

Are you one of the 10% of programmers 
that can write a binary search?
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Interpolation search
One improvement that is possible to binary search is to guess where 
the search key falls within the current interval of interest. In binary 
search we replace mid with next, and mid = (low + high) / 2 with 
next = low + (x - a[low]) / (a[high] - a[low]) *(high - low)

a[high]

a[low]

x

low next high

If the elements are uniformly distributed, the average number of comparisons 
has shown to be O(log log N). 
For N = 4,000,000,000, log log N is about 5. 
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Limitations of Big-Oh analysis

Big-Oh analysis is not appropriate for small amounts of input. 
For small amounts of input use the simplest algorithm.

Large constants can come into play when an algorithm is 
excessively complex.

The analysis assumes infinite memory, but in applications 
involving large data sets, lack of sufficient memory can be a 
severe problem.

For many complicated algorithms the worst-case bound is 
achievable only by some bad input, but in practice it is usually 
an overestimate. 
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“People who analyze algorithms have double happiness. First of all 
they experience the sheer beauty of elegant mathematical patterns that 
surround elegant computational procedures. Then they receive a 
practical payoff when their theories make it possible to get other jobs 
done more quickly and more economically.”

Donald E. Knuth 

Quote
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The Collections API
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Data structures

Data structure: a particular way of storing and organizing 
data in a computer so that it can be used efficiently.

Each data structure allows arbitrary insertion but differs in 
how it allows access to items. 

Some data structures allow arbitrary access and deletions, 
whereas others impose restrictions, such as allowing access 
to only the most recently or least recently inserted items. 

Some data structures allow duplicates; others do not.

The Collections API provides a number of useful of data structures.  
It also provides some generic algorithms, such as sorting.
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A collection is an object that contains other objects, which are called the 
elements of the collection.

Java Collections is a set of interfaces and classes that support storing and 
retrieving elements in collections.

Collections are implemented by a variety of data structures and 
algorithms (with different time-space complexities).

The Collection API frees you from reinventing the wheel. This is the 
essence of reuse.

We do not need to know how something is implemented, so long as we 
know what is implemented. This is the essence of data abstraction.

Collections
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A generic protocol for collections

Many data structures tend to follow this protocol. 
However, we do not use this protocol directly in any code.   
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The iterator pattern

Enumerating all elements in a collection is one of the most 
common operations on any collection.

The iterator design pattern makes this possible without 
exposing the underlying data structure.

An iterator is an object that allows traversal of all elements in a 
collection, regardless of its specific implementation. Thus, if the 
implementation changes, code that uses the iterator does not 
need to be changed. This is an example of abstract coupling.
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main for design 1 
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MyContainer for design 1 
(array-based collection)



71

MyContainerIterator  
for design 1
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Drawback of design 1

Change from an array-based collection to something else requires 
that we change all declarations of the iterator. 

For instance, in the main method we need to change the line:

MyContainerIterator itr = ... 

This drawback may be removed by defining an interface, 
Iterator, that is an abstraction of the capabilities of iterators.

Clients (in this case, main) will deal only with the abstract 
iterator and need no knowledge about the concrete iterator.
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MyContainer for design 2
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The Iterator interface     
for design 2



75

MyContainerIterator  
for design 2
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main for design 2 

Programming to an interface
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A sample specification of 
Iterator
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Printing the contents of any 
Collection

The enhanced for loop is simply a compiler substitution.
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Abstract collections

A set is an unordered collection of elements.                          
No duplicates are allowed.

A list is an ordered collection of elements.                    
Duplicates are allowed.                                                         
Lists are also known an sequences. 

A map is an unordered collection of key-value pairs.            
The keys must be unique.                                                    
Maps are also known as dictionaries. 
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Map

SortedMap

SortedSet

Collection

Set List

Interfaces for collections
java.util.*
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Concrete collections

ArrayList LinkedList

Map

SortedMap

TreeMap

HashMap

Collection

Set List

SortedSet

HashSetTreeSet
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boolean add(E o)
boolean addAll(Collection<? extends E> c)
void clear()
boolean contains(Object o)
boolean containsAll(Collection<?> c)
boolean isEmpty()
Iterator<E> iterator()
boolean remove(Object o)
boolean removeAll(Collection<?> c)
boolean retainAll(Collection<?> c)
int size()
Object[] toArray()
<T> T[] toArray(T[] a)

interface Collection<E>
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interface Set<E> extends Collection<E>

boolean add(E o)
boolean addAll(Collection<? extends E> c)

No new methods are introduced. However, the contracts for

are changed owing to the “no duplicates” restriction of sets 
(checked by calls to equals).
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Example of using Set 

Set<String> set = new HashSet<String>();
set.add("cat");                        
set.add("dog");
int n = set.size();
System.out.println("The set contains " + n + " elements");
if (set.contains("dog"))  

System.out.println("dog is in the set");

Type inference. The diamond operator:
In Java 7, you can write

Set<String> set = new HashSet<>();
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interface List<E> extends Collection<E>

void add(int index, E element)
E get(int index)
int indexOf(Object o)
int lastIndexOf(Object o)
ListIterator<E> listIterator()
ListIterator<E> listIterator(int index)
E remove(int index)
E set(int index, E element)
List subList(int fromIndex, int toIndex)

New methods:

The contracts of add(o) and addAll(c) are changed because 
of the ordering imposed on lists. 
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Example of using List 

List<String> list = new ArrayList<String>();
list.add("cat");                           
list.add("dog");                
list.add("cat");
for (String s : list)
    System.out.println(s);
System.out.println("The first element is " + list.get(0));
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interface Map<K,V>

V put(K key, V value)
V get(Object key)
V remove(Object key)

void clear()
boolean containsKey(Object key)
boolean containsValue(Object value)
boolean isEmpty()
void putAll(Map<? extends K,? extends V>> map)
int size()

Set<K> keySet()
Collection<V> values()
Set<Map.Entry<K,V>> entrySet()
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Map<String,String> map = new HashMap<String,String>();
map.put("cat", "kat");                 
map.put("dog", "hund");
String val = map.get("dog"); // val is "hund"
map.remove("cat");
map.put("dog", "køter");
val = map.get("dog");    // val is "køter"

Example of using Map 
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phone1.get("Jane Doe"): unlisted

The map is: 
phone1:
Holly Doe: 213-555-1212
Jane Doe: unlisted
John Doe: 212-555-1212
Susan Doe: 617-555-1212

The keys are: 
Holly Doe Jane Doe John Doe Susan Doe 

The values are: 
213-555-1212 unlisted 212-555-1212 617-555-1212 
After John Doe and 1 unlisted are removed

The map is
phone1:
Holly Doe: 213-555-1212
Susan Doe: 617-555-1212
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public static void listDuplicates(List<String> coll) {        
    Map<String,Integer> count = new TreeMap<String,Integer>();
        

for (String word : coll) {            
        Integer occurs = count.get(word);           
        if (occurs == null)                
            count.put(word, 1);            
        else                
            count.put(word, occurs + 1);        
    }
        
    for (Map.Entry<String,Integer> e : count.entrySet())            
        if (e.getValue() >= 2)               
            System.out.println(e.getKey() + " (" + 
                               e.getValue() + ")");    
}

A typical use of Map 
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Ordering and sorting

There are two ways to define ordering of objects:

(1)  Each class can define a natural order among its instances by 
implementing the Comparable interface.

(2) Arbitrary orders among different objects can be defined by 
comparators, or classes that implement the Comparator 
interface.
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The Comparator interface
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interface SortedSet<E> extends Set<E>

E first()
E last()
SortedSet<E> headSet(E toElement)  <
SortedSet<E> tailSet(E fromElement) >= 
SortedSet<E> subSet(E fromElement, E toElement) >=, <
Comparator<? super E> comparator()

A concrete implementation, for instance TreeSet, provides at 
least two constructors: one without parameters, and one with a 
Comparator parameter.

New methods:
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interface SortedMap<K,V> extends Set

K first()
K last()
SortedMap<K,V> headSet(E toElement)  
SortedMap<K,V> tailSet(E fromElement) 
SortedMap<K,V> subMap(E fromElement, E toElement)
Comparator<? super K> comparator()

A concrete implementation, for instance TreeMap, provides at 
least two constructors: one without parameters, and one with a 
Comparator parameter.

New methods:
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The class Collections

public class Collections {          
public static void sort(List l);
public static void sort(List l, Comparator comp);

   public static int binarySearch(List l, Object key);
public static int binarySearch(List l, Object key, 
  Comparator comp);

 public static Object min(Collection c);    
public static Object min(Collection c, Comparator c);
public static Object max(Collection c);
public static Object max(Collection c, Comparator c);

public static void reverse(List l);
public static void shuffle(List l);

public static Comparator reverseOrder();                   
}
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The class Arrays
public class Arrays {  

public static<T> List<T> asList(T... a);

public static void sort(type[] a);      
public static<T> void sort(T[] a, Comparator comp)
public static void sort(type[] a, int from, int to);  
public static<T> void sort(T[] a, int from, int to,           
                           Comparator<? super T> comp);

public static int binarySearch(type[] a, type key); 
public static int binarySearch(Object[] a, Object key,          
  Comparator<? super T> comp);

public static void fill(type[] a, type value);
public static void fill(type[] a, int from, int to, type value);

public static boolean equals(type[] a, type[] a2); 
public static boolean deepEquals(Object[], Object[] a2);               

}
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Choosing an implementation for Set

If the elements should maintain a certain order, then TreeSet 
should be used; otherwise, HashSet.

The HashSet implementation requires that the equals and 
hashCode methods are defined properly in the class of the 
elements. 

Think of hashCode as providing a hint of where the items are 
stored in an array. If two objects are equal according to the 
equals method, they must return the same hash code. On the 
other hand, it is not required that two objects that are not equal 
return different hash codes. 
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Output:
b.equals(c): true
a.equals(b): true
b.equals(a): false
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All items are printed, but the order that the items are 
printed is unknown.
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Choosing an implementation for List

If indices are used often to access the elements and the size of 
the list does not vary much, then ArrayList should be used; 
otherwise LinkedList.
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Choosing an implementation for Map

If the keys should maintain a certain order, then TreeMap 
should be used; otherwise, HashMap.

The HashMap implementation requires that the equals and 
hashCode methods defined properly in the class of the keys. 
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New collections in Java 5

ArrayList LinkedList

Collection

Set List

SortedSet

HashSetTreeSet

Queue

PriorityQueue
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Output:
minPQ:
3
4
5
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Stack

May be implemented using ArrayList or LinkedList
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