
1

Algorithms I

Euclid, 300 BC

2

Agenda

Algorithm analysis
•  The algorithm concept
•  Estimation of running times
•  Big-Oh notation
•  Binary search

The Collections API
•  Common data structures
•  Applications of the data structures
•  Organization of the Collections API

3

Data and information

Data:
A formalized representation of facts or concepts suitable for
communication, interpretation, or processing by people or
automated means.

Data on its own carries no meaning.

Information:
The meaning that a human assigns to data by means of known
conventions.

4

What is an algorithm?

An algorithm is a step-by-step procedure for solving a problem

Note that it is not a requirement that an algorithm is executed
by a computer.

Input data Output dataAlgorithm

Donald Knuth:
My favorite way to describe computer science
is to say that it is the study of algorithms.

5

Origin of the algorithm concept

The word algorithm comes from the name of the 9th century
Persian Muslim mathematician Abu Abdullah Muhammad ibn Musa
Al-Khwarizmi.

The word algorism originally referred only to the rules of
performing arithmetic using Hindu-Arabic numerals but evolved via
European Latin translation of Al-Khwarizmi’s name into algorithm
by the 18th century. The use of the word evolved to include all
definite procedures for solving problems or performing tasks.

6

 • Finite:
there must be an end to it within a reasonable time

•  Definite:
precisely definable in clearly understood terms and
without ambiguities

•  Effective:
it must be possible to actually carry out the steps

•  Procedure:
the sequence of specific steps

•  Output:
unless there is something coming out of the process, the result
will remain unknown!

Formal definition of an algorithm
Donald E. Knuth (1968)

An algorithm is a finite, definite, and effective procedure,
with some output.

7

Desirable properties of an algorithm

(1) It solves the problem correctly

(2) It runs (sufficiently) fast

(3) It requires (sufficiently) little storage

(4) It is simple

The last three properties often conflict with each other.
Space-time tradeoff is a way of solving a problem faster by
using more storage, or by solving a problem in little storage
by spending a long time.

8

Technology increases speed by only a constant factor.
Much larger speed-up may often be achieved by careful algorithm design.

The need for fast algorithms

 Why bother about efficiency with today’s fast computers?

A bad algorithm on a supercomputer may run slower than a good one on an abacus.

More powerful computers allow us to solve larger problems, but ...

Suppose an algorithm runs in time proportional to the square of the problem size
(time = cn2, where c is a constant, and n is the problem size). If we buy a new
computer that has 10 times as much memory as the old one, we are able to solve
problems that are 10 times larger. However, if the new computer is “only” 10 times
faster, it will take 10 times longer to execute the algorithm.

9

Euclid’s algorithm

One of the first non-trivial algorithms was designed by
Euclid (Greek mathematician, 300 BC).

 Given Solution
24 and 32
 8 and 12
 7 and 8

The largest common divisor of two positive integers is the
largest integer that divides both of them without leaving a
remainder.

Problem: Find the largest common divisor of
two positive integers

8
4
 1

10

If gcd(u,v) denotes the greatest common divisor of u and v,
the problem may be formulated as follows:

Given two integers u ≥ 1 and v ≥ 1, find gcd(u,v).

Solution of the problem is for example relevant to the
problem of reducing fractions:

 24
32

=

24
gcd(24,32)

32
gcd(24,32)

=

24
8
32
8

=
3
4

11

Two simple algorithms

for (int d = 1; d <= u; d++)
 if (u % d == 0 && v % d == 0)
 gcd = d;

The inefficiency of these algorithms is apparent for large
values of u and v, for instance 461952 and 116298 (where
gcd is equal to 18).

int d = u < v ? u : v;
while (u % d != 0 || v % d != 0)
 d--;
gcd = d;

12

Euclid exploited the following observation to achieve a more
efficient algorithm:

If u ≥ v, and d divides both u and v, then d divides the difference
between u and v.

Euclid’s algorithm

If u > v, then gcd(u,v) = gcd(u-v,v)

If u = v, the gcd(u,v) = v [= gcd(u-v,v) = gcd(0,v)]

If u < v, then we exploit that gcd(u,v) = gcd(v,u) [u and v are exchanged]

13

while (u > 0) {
 if (u < v)

 { int t = u; u = v; v = t; }
 u = u - v;
}
gcd = v;

Euclid’s algorithm (version 1) ���

 u = 461952, v = 18
 u = 461934, v = 18
 u = 461916, v = 18
 .
 .
 .
 u = 18 , v = 18
 u = 0 , v = 18

461952/18 = 25664 iterations

Example run:

14

Is it possible to improve the efficiency?
Yes. The algorithm subtracts v from u until u becomes less than v.
But this is exactly the same as diving u by v and setting u equal to
the remainder. That is, if u > v, then gcd(u,v) = gcd(u%v,v).

while (u > 0) {
 if (u < v)
 { int t = u; u = v; v = t; }
 u = u % v;
}
gcd = v;

The number of iterations for the previous example is reduced to 1.

Euclid’s algorithm (version 2)

15

Execution of version 2

 u = 461952, v = 116298
 u = 113058, v = 116298
 u = 3240, v = 113058
 u = 2898, v = 3240
 u = 342, v = 2898
 u = 162, v = 342
 u = 18, v = 162

 u = 0, v = 18

7 iterations

The algorithm is very efficient, even for large values of u and v.
Its efficiency can be determined by (advanced) algorithm analysis:

 maximum number of iterations ≈ 4.8 log10N - 0.32
 average number of iterations ≈ 1.94 log10N

 where N is max(u, v).

 [log10461952 ≈ 5.66]

16

An alternative algorithm
(prime factorization)

Any positive number u may be expressed as a product of prime factors:

A well-known method for reducing fractions:
4400
7000

= 2 ⋅2 ⋅2 ⋅2 ⋅5 ⋅5 ⋅11
2 ⋅2 ⋅2 ⋅5 ⋅5 ⋅5⋅ 7

= 2 ⋅11
5 ⋅7

= 22
35

u = 2u2 ⋅ 3u3 ⋅5u5 ⋅ 7u7 ⋅11u11 ⋅ ... = p
p is prime
∏ up

pmin(up ,vp)

p is prime
∏

Let u and v be two positive integers. Then gcd(u,v) may be determined as

Example: u = 4400 = 24 . 30 . 52 . 70 . 111,
 v =7000 = 23 . 30 . 53 . 71 . 110

gcd(u,v) = 23 . 30 . 52 . 70 . 110 = 23 . 52 = 8 . 25 = 200

17

No efficient algorithm for prime factorization is known.

This fact is exploited in cryptographic algorithms (algorithms for
information security).

Drawback of the alternative algorithm

18

What is algorithm analysis?

To analyze an algorithm is to determine the amount of
resources (such as time and storage) necessary to execute it.

Algorithm analysis is a methodology for estimating the
resource consumption of an algorithm. It allows us to
compare the relative costs of two or more algorithms for
solving the same problem.

Algorithm analysis also gives algorithm designers a tool for
estimating whether a proposed solution is likely to meet the
resource constraints for a problem.

19

The running time of an algorithm typically grows with the
input size.

Running time

Average case time is often difficult to determine.
We focus on the worst case running time.

•  Easier to analyze
•  Crucial to applications such as games and robotics

20

Experimental studies

•  Write a program implementing the
 algorithm

•  Run the program with inputs of
 varying size

•  Use a method like
System.currentTimeMillis()

 to get an accurate measure of the
 actual running time

•  Plot the results

21

•  It is necessary to implement the algorithm, which may
be difficult

•  Results may not be indicative of the running time on
inputs not included in the experiment.

•  In order to compare two algorithms, the same hardware
and software environments must be used

Limitations of experiments

22

•  Uses a high-level description of the algorithm instead of an
implementation

•  Characterizes running time as a function of the input size

•  Takes into account all possible inputs

•  Allows us to evaluate the speed of an algorithm independent
of hardware/software environment

Theoretical analysis

23

Primitive operations

•  Basic operations performed by an algorithm

•  Each one is assumed to take constant time

•  Largely independent from the programming language

Examples:
Evaluating an expression
Assigning a value to a variable
Indexing into an array
Calling a method
Returning from a method

24

Counting primitive operations

By inspecting the code or the pseudocode, we can determine the
maximum number of primitive operations executed by an
algorithm, as a function of the input size, n.

int arrayMax(int[] a) { # operations
 int currentMax = a[0]; 2
 for (int i = 1; i < a.length; i++) 1+2(n-1)+n
 if (a[i] > currentMax) 2(n-1)
 currentMax = a[i]; 2(n-1)
 return currentMax; 1
}

 Total 7n-2

25

Estimating running time for arrayMax

The algorithm arrayMax executes 7n-2 primitive operations in
the worst case.

Define:
a = Time taken by the fastest primitive operation
b = Time taken by the slowest primitive operation

Let T(n) be worst-case time of arrayMax. Then
���

a(7n-2) ≤ T(n)≤ b(7n-2)

Hence, the running time T(n) is bounded by two linear functions.
This property, in which running time essentially is directly
proportional to the amount of data, is the signature of a linear
algorithm.

26

• Changing the hardware/software environment
n  affects T(n) by a constant factor, but
n  does not alter the growth rate of T(n)

• The linear growth rate of the running time T(n) is an intrinsic property
of algorithm arrayMax.

Growth rate of running time

27

Growth rates

A cubic function is a function whose dominant term is some
constant times N3. As an example 10N3+N2+40N+80 is a cubic
function, since the term 10N3 dominates when N is large.

A quadratic function is a function whose dominant term is some
constant times N2.

A linear function is a function whose dominant term is some
constant times N.

The logarithm is a slowly growing function. For instance, the
logarithm of 1,000,000 (with the typical base 2) is only 20.

28

29

30

N log N is sometimes called linearithmic, loglinear, or quasilinear.

31

Big-Oh notation

We use Big-Oh notation to capture the most dominant term in
a function and to represent growth rate.

For instance, the running time of a quadratic algorithm is
specified as O(N2) (pronounced “order en-squared”).

Even the most clever programming tricks cannot make an
inefficient algorithm fast. Thus, before attempting to optimize
code, we need to optimize the algorithm.

32

Examples of algorithm running times

Minimum element in an array
Given an array of N elements, find the minimum element.

Closest pair of points in the plane
Given N points in the plane (that is, in the x-y coordinate
system), find the pair that are closest together.

Colinear points in the plane
Given N points in the plane, determine if any three form a
straight line.

Simple algorithms for these problems run in O(N), O(N2), and
O(N3) time, respectively. For the last two problems more
efficient algorithms have been developed.

33

The maximum contiguous
subsequence sum problem

Given (possible negative) integers A1, A2, ..., AN, find
(and identify the sequence corresponding to) the
maximum value of

The maximum contiguous subsequence sum is zero if
all the integers are negative.

Ak
k= i

j

∑

Example. If the input is (-2, 11, -4, -1, 13, -5, 2),
then the answer is 19, which represents the sum of the
contiguous subsequence (11, -4, -1, 13).

If all elements are positive, then the sequence itself is maximal.

34

An obvious O(N3) algorithm

35

Analysis of running time

Running time of the algorithm is entirely dominated by the
innermost loop (lines 14 and 15).

The number of times line 15 is executed is exactly equal to
the number of triplets (i, j, k) that satisfy 1 ≤ i ≤ k ≤ j ≤ N,
which is N(N+1)(N+2)/6.

Consequently, the algorithm runs in O(N3) time.

Note that three consecutive (nonnested) loops exhibit
linear behavior; it is nesting that leads to a combinatoric
explosion. Consequently, to improve the algorithm we need
to remove a loop.

36

An improved O(N2) algorithm

Suppose we have just calculated the sum for the
subsequence Ai, .., Aj-1. Then computing the sum for the
subsequence Ai, .., Aj should not take long because we need
only one more addition (of Aj). However, the cubic
algorithm throws away this information.

Using this observation, we obtain the following algorithm.

37

An improved O(N2) algorithm

38

Analysis of running time

Running time of the algorithm is entirely dominated by the
statement block in the innermost loop (lines 14-23).

The number of times this block is executed is N + (N-1) +
(N-2) + ... + 2 + 1 = N(N+1)/2.

Consequently, the algorithm runs in O(N2) time.

To move from a quadratic algorithm to a linear algorithm
we need to remove another loop.

39

A linear algorithm

The previous algorithms are exhaustive, i.e., they examine all
subsequences. The only way we can attain a subquadratic bound
is to find a clever way to eliminate from consideration a large
number of subsequences without actually computing their sum
and testing to see if that sum is a new maximum.

We may use the following two observations:

(1)  The best subsequence cannot start with a negative number.
(2)  More generally, the best subsequence cannot start with a

negative sum (Theorem 5.2).

40

Theorem 5.2
Let Ai,j be the subsequence encompassing elements from i to j,
and let Si,j be its sum.

Theorem 5.2 Let Ai,j be any subsequence with Si,j < 0.
If q > j, then Ai,q is not a maximum contiguous subsequence.

This observation by itself is not sufficient to reduce the
running time below quadratic.

41

if(thisSum < 0)
 break;

(improved using
 Theorem 5.2)

42

Theorem 5.3

Theorem 5.3 For any i, let Ai,j be the first sequence with Si,j < 0.
Then for any i ≤ p ≤ j and p ≤ q, Ap,q either is not a maximum
contiguous subsequence or is equal to an already seen maximum
contiguous subsequence.

Not maximum (by Theorem 5.2) Already seen

43

Theorem 5.3 tells us that when a negative sum is detected, not only can we
break the loop, but we can also advance i to j+1.

44

Empirical study

≈ 2281 seconds ≈ 38 minutes

≈ 2281000 seconds ≈ 26 days

45

Big-Oh and its relatives

Definition: (Big-Oh) T(N) is O(F(N)) if there are positive constants
c and N0 such that T(N) ≤ cF(N)), when N ≥ N0. ≤

Definition: (Big-Omega) T(N) is Ω(F(N)) if there are positive constants
c and N0 such that T(N) ≥ cF(N)), when N ≥ N0. ≥

Definition: (Big-Theta) T(N) is Θ(F(N)) if and only if T(N) is O(F(N))
and T(N) is Ω(F(N)) . =

Definition: (Little-Oh) T(N) is o(F(N)) if and only if T(N) is O(F(N))
and T(N) is not Θ(F(N)) . <

Definition: (Little-Omega) T(N) is ω(F(N)) if and only if T(N) is
Ω(F(N)) and T(N) is not Θ(F(N)) . >

46

Illustration of the statement
“T(N) is O(F(N))”

cF(N)

T(N)

N0 N

47

48

General Big-Oh rules

• If T(N) is a polynomial of degree d, then T(N) is O(Nd), i.e.,
1. Drop lower-order terms
2. Drop constant factors

• Use the smallest possible class of functions:
Say “2N is O(N)” instead of “2N is O(N2)

• Use the simplest expression of the class
Say “3N + 5 is O(N)” instead of “3N + 5 is O(3N)”
Say “75 + 25 is O(1)” instead of “75 + 25 is O(100)”

49

The logarithm

Definition: For any B, N > 0, logBN = K if BK = N.

In this definition, B is the base. In computer science,
when the base is omitted, it defaults to 2.

As far as Big-Oh is concerned, the base is unimportant
since all logarithm functions are proportional.

Example: log2N = c log10N, where c = 1/log102 ≈ 3.3

50

Growth of log2N

N

log2N

°
°

°
°

°

51

Answer:

Here is the ceiling function and represents the smallest integer
that is at least as large as X. Example:

The corresponding floor function represents the largest integer
that is at least as small as X. Example:

log2 N⎡⎢ ⎤⎥

X⎡⎢ ⎤⎥

X⎢⎣ ⎥⎦

3.2⎡⎢ ⎤⎥ = 4.

3.2⎢⎣ ⎥⎦ = 3.

Some uses of log2N

to be cont'd

Bits in a binary number
How many bits are required to represent N consecutive integers?

52

Repeated doubling
Starting from X=1, how many times should X be doubled before it is
at least as large as N?

Answer: log2 N⎡⎢ ⎤⎥

Repeated halving
Starting from X=N, if N is repeatedly halved, how many iterations
must be applied to make N smaller than or equal to 1.

Answer: if divisions rounds up;
 if division rounds down (as in Java).

log2 N⎡⎢ ⎤⎥
log2 N⎢⎣ ⎥⎦

53

Search is the problem of determining whether or not any of a
sequence of objects appear among a set of previously stored objects.

Search

Search is the most time consuming part of most programs.
Replacing an inefficient search algorithm with a more efficient
one will often lead to substantial increase in performance.

54

Static searching problem

Static searching problem
Given an object X and an array A, return the position of
X in A or an indication that it is not present. If X occurs
more than once, return any occurrence. The array A is
never altered.

Example: Looking up a person in the telephone book.

The efficiency of a static searching algorithm depends
on whether the array being searched is sorted.

55

Linear sequential search
Step through the array until a match is found.

public static final int NOT_FOUND = -1;

public static int sequentialSearch(Object[] a, Object x) {
 for (int i = 0; i < a.length; i++)
 if (a[i].equals(x))
 return i;
 return NOT_FOUND;
}

Worst-case running time is O(N).
Average-case running time is O(N).

56

Binary search
Requires that the input array is sorted.

Algorithm:
Split the array into two parts of (almost) equal size.
Determine which part may contain the search item.
Continue the search in this part in the same fashion.

Worst-case running time is O(log N).
Average-case running time is O(log N).

Example: Searching for L.

 A B D E F G H I J K L M N O P
 I J K L M N O P
 J K L
 L

57

Binary search (three way-comparisons)

low mid high

58

Binary search (two way-comparisons)

low mid high

59

Checking an algorithm analysis

60

While the first binary search was published in 1946, the first published
binary search without bugs did not appear until 1962.

In 1986 Jon Bentley found that 90% of the professional programmers
that followed his courses could not write an error-free version in two
hours.

Are you one of the 10% of programmers
that can write a binary search?

61

Interpolation search
One improvement that is possible to binary search is to guess where
the search key falls within the current interval of interest. In binary
search we replace mid with next, and mid = (low + high) / 2 with
next = low + (x - a[low]) / (a[high] - a[low]) *(high - low)

a[high]

a[low]

x

low next high

If the elements are uniformly distributed, the average number of comparisons
has shown to be O(log log N).
For N = 4,000,000,000, log log N is about 5.

62

Limitations of Big-Oh analysis

Big-Oh analysis is not appropriate for small amounts of input.
For small amounts of input use the simplest algorithm.

Large constants can come into play when an algorithm is
excessively complex.

The analysis assumes infinite memory, but in applications
involving large data sets, lack of sufficient memory can be a
severe problem.

For many complicated algorithms the worst-case bound is
achievable only by some bad input, but in practice it is usually
an overestimate.

63

“People who analyze algorithms have double happiness. First of all
they experience the sheer beauty of elegant mathematical patterns that
surround elegant computational procedures. Then they receive a
practical payoff when their theories make it possible to get other jobs
done more quickly and more economically.”

Donald E. Knuth

Quote

64

The Collections API

65

Data structures

Data structure: a particular way of storing and organizing
data in a computer so that it can be used efficiently.

Each data structure allows arbitrary insertion but differs in
how it allows access to items.

Some data structures allow arbitrary access and deletions,
whereas others impose restrictions, such as allowing access
to only the most recently or least recently inserted items.

Some data structures allow duplicates; others do not.

The Collections API provides a number of useful of data structures.
It also provides some generic algorithms, such as sorting.

66

A collection is an object that contains other objects, which are called the
elements of the collection.

Java Collections is a set of interfaces and classes that support storing and
retrieving elements in collections.

Collections are implemented by a variety of data structures and
algorithms (with different time-space complexities).

The Collection API frees you from reinventing the wheel. This is the
essence of reuse.

We do not need to know how something is implemented, so long as we
know what is implemented. This is the essence of data abstraction.

Collections

67

A generic protocol for collections

Many data structures tend to follow this protocol.
However, we do not use this protocol directly in any code.

68

The iterator pattern

Enumerating all elements in a collection is one of the most
common operations on any collection.

The iterator design pattern makes this possible without
exposing the underlying data structure.

An iterator is an object that allows traversal of all elements in a
collection, regardless of its specific implementation. Thus, if the
implementation changes, code that uses the iterator does not
need to be changed. This is an example of abstract coupling.

69

main for design 1

70

MyContainer for design 1
(array-based collection)

71

MyContainerIterator
for design 1

72

Drawback of design 1

Change from an array-based collection to something else requires
that we change all declarations of the iterator.

For instance, in the main method we need to change the line:

MyContainerIterator itr = ...

This drawback may be removed by defining an interface,
Iterator, that is an abstraction of the capabilities of iterators.

Clients (in this case, main) will deal only with the abstract
iterator and need no knowledge about the concrete iterator.

73

MyContainer for design 2

74

The Iterator interface
for design 2

75

MyContainerIterator
for design 2

76

main for design 2

Programming to an interface

77

A sample specification of
Iterator

78

Printing the contents of any
Collection

The enhanced for loop is simply a compiler substitution.

79

Abstract collections

A set is an unordered collection of elements.
No duplicates are allowed.

A list is an ordered collection of elements.
Duplicates are allowed.
Lists are also known an sequences.

A map is an unordered collection of key-value pairs.
The keys must be unique.
Maps are also known as dictionaries.

80

Map

SortedMap

SortedSet

Collection

Set List

Interfaces for collections
java.util.*

81

Concrete collections

ArrayList LinkedList

Map

SortedMap

TreeMap

HashMap

Collection

Set List

SortedSet

HashSetTreeSet

82

83

boolean add(E o)
boolean addAll(Collection<? extends E> c)
void clear()
boolean contains(Object o)
boolean containsAll(Collection<?> c)
boolean isEmpty()
Iterator<E> iterator()
boolean remove(Object o)
boolean removeAll(Collection<?> c)
boolean retainAll(Collection<?> c)
int size()
Object[] toArray()
<T> T[] toArray(T[] a)

interface Collection<E>

84

interface Set<E> extends Collection<E>

boolean add(E o)
boolean addAll(Collection<? extends E> c)

No new methods are introduced. However, the contracts for

are changed owing to the “no duplicates” restriction of sets
(checked by calls to equals).

85

Example of using Set

Set<String> set = new HashSet<String>();
set.add("cat");
set.add("dog");
int n = set.size();
System.out.println("The set contains " + n + " elements");
if (set.contains("dog"))

System.out.println("dog is in the set");

Type inference. The diamond operator:
In Java 7, you can write

Set<String> set = new HashSet<>();

86

interface List<E> extends Collection<E>

void add(int index, E element)
E get(int index)
int indexOf(Object o)
int lastIndexOf(Object o)
ListIterator<E> listIterator()
ListIterator<E> listIterator(int index)
E remove(int index)
E set(int index, E element)
List subList(int fromIndex, int toIndex)

New methods:

The contracts of add(o) and addAll(c) are changed because
of the ordering imposed on lists.

87

88

89

90

Example of using List

List<String> list = new ArrayList<String>();
list.add("cat");
list.add("dog");
list.add("cat");
for (String s : list)
 System.out.println(s);
System.out.println("The first element is " + list.get(0));

91

interface Map<K,V>

V put(K key, V value)
V get(Object key)
V remove(Object key)

void clear()
boolean containsKey(Object key)
boolean containsValue(Object value)
boolean isEmpty()
void putAll(Map<? extends K,? extends V>> map)
int size()

Set<K> keySet()
Collection<V> values()
Set<Map.Entry<K,V>> entrySet()

92

Map<String,String> map = new HashMap<String,String>();
map.put("cat", "kat");
map.put("dog", "hund");
String val = map.get("dog"); // val is "hund"
map.remove("cat");
map.put("dog", "køter");
val = map.get("dog"); // val is "køter"

Example of using Map

93

phone1.get("Jane Doe"): unlisted

The map is:
phone1:
Holly Doe: 213-555-1212
Jane Doe: unlisted
John Doe: 212-555-1212
Susan Doe: 617-555-1212

The keys are:
Holly Doe Jane Doe John Doe Susan Doe

The values are:
213-555-1212 unlisted 212-555-1212 617-555-1212
After John Doe and 1 unlisted are removed

The map is
phone1:
Holly Doe: 213-555-1212
Susan Doe: 617-555-1212

94

public static void listDuplicates(List<String> coll) {
 Map<String,Integer> count = new TreeMap<String,Integer>();

for (String word : coll) {
 Integer occurs = count.get(word);
 if (occurs == null)
 count.put(word, 1);
 else
 count.put(word, occurs + 1);
 }

 for (Map.Entry<String,Integer> e : count.entrySet())
 if (e.getValue() >= 2)
 System.out.println(e.getKey() + " (" +
 e.getValue() + ")");
}

A typical use of Map

95

Ordering and sorting

There are two ways to define ordering of objects:

(1)  Each class can define a natural order among its instances by
implementing the Comparable interface.

(2) Arbitrary orders among different objects can be defined by
comparators, or classes that implement the Comparator
interface.

96

The Comparator interface

97

98

99

interface SortedSet<E> extends Set<E>

E first()
E last()
SortedSet<E> headSet(E toElement) <
SortedSet<E> tailSet(E fromElement) >=
SortedSet<E> subSet(E fromElement, E toElement) >=, <
Comparator<? super E> comparator()

A concrete implementation, for instance TreeSet, provides at
least two constructors: one without parameters, and one with a
Comparator parameter.

New methods:

100

interface SortedMap<K,V> extends Set

K first()
K last()
SortedMap<K,V> headSet(E toElement)
SortedMap<K,V> tailSet(E fromElement)
SortedMap<K,V> subMap(E fromElement, E toElement)
Comparator<? super K> comparator()

A concrete implementation, for instance TreeMap, provides at
least two constructors: one without parameters, and one with a
Comparator parameter.

New methods:

101

The class Collections

public class Collections {
public static void sort(List l);
public static void sort(List l, Comparator comp);

 public static int binarySearch(List l, Object key);
public static int binarySearch(List l, Object key,
 Comparator comp);

 public static Object min(Collection c);
public static Object min(Collection c, Comparator c);
public static Object max(Collection c);
public static Object max(Collection c, Comparator c);

public static void reverse(List l);
public static void shuffle(List l);

public static Comparator reverseOrder();
}

102

The class Arrays
public class Arrays {

public static<T> List<T> asList(T... a);

public static void sort(type[] a);
public static<T> void sort(T[] a, Comparator comp)
public static void sort(type[] a, int from, int to);
public static<T> void sort(T[] a, int from, int to,
 Comparator<? super T> comp);

public static int binarySearch(type[] a, type key);
public static int binarySearch(Object[] a, Object key,
 Comparator<? super T> comp);

public static void fill(type[] a, type value);
public static void fill(type[] a, int from, int to, type value);

public static boolean equals(type[] a, type[] a2);
public static boolean deepEquals(Object[], Object[] a2);

}

103

Choosing an implementation for Set

If the elements should maintain a certain order, then TreeSet
should be used; otherwise, HashSet.

The HashSet implementation requires that the equals and
hashCode methods are defined properly in the class of the
elements.

Think of hashCode as providing a hint of where the items are
stored in an array. If two objects are equal according to the
equals method, they must return the same hash code. On the
other hand, it is not required that two objects that are not equal
return different hash codes.

104

Output:
b.equals(c): true
a.equals(b): true
b.equals(a): false

105

106

107

All items are printed, but the order that the items are
printed is unknown.

108

Choosing an implementation for List

If indices are used often to access the elements and the size of
the list does not vary much, then ArrayList should be used;
otherwise LinkedList.

109

Choosing an implementation for Map

If the keys should maintain a certain order, then TreeMap
should be used; otherwise, HashMap.

The HashMap implementation requires that the equals and
hashCode methods defined properly in the class of the keys.

110

New collections in Java 5

ArrayList LinkedList

Collection

Set List

SortedSet

HashSetTreeSet

Queue

PriorityQueue

111

112

113

114

Output:
minPQ:
3
4
5

115

116

Stack

May be implemented using ArrayList or LinkedList

117

