
1

Preliminaries I

2

Agenda

Primitive Java
•  Primitive types
•  Operators
•  Statements
•  Methods

Reference types
•  Strings
•  Arrays
•  Exception handling
•  Input and output

3

The first program

Compilation: javac FirstProgram.java

Execution: java FirstProgram

4

Three important concepts
related to languages

•  Syntax (grammar)

•  Semantics (meaning)

•  Pragmatics (use)

How are these concepts related to the sentence “I am hungry”?

5

On the need for grammar

When learning our first natural language we spend long periods
hearing the language (or noise) and seeing it in the context of
other people’s actions, and from this we learn the structure of
the language, and how it is related to what happens in the
world. We might not know the rules, but we learn how the
language machine works.

In programming, not only have we no experience of the world
we’re in; we have no experience of others operating in that
world, so we are stuck with grammar.

Alan Creak (2003)

6

Types

A type is a set of legal values

The types in Java are divided into two categories:

(1) Primitive types

(2) Reference types

A variable refers to a location in memory where a value can be stored

Each variable is associated with a type. The variable type restricts the
values that the variable may hold.

7

Primitive types

8

Constants (literals)

An integer constant may be written in
 decimal notation: 23
 octal notation: 027
 hexadecimal notation: 0x17

 Character constants are written directly between single quotes:
 'z' '\172' '\u007A'

'\n' '\t'
 '\'' '\"' '\\'

Floating-point constants are written as a decimal number with an
optional exponent part:

3.24 3.24f 3.24d
3.24e5 3.24e-5

9

Declaration and initialization

Any variable is declared by providing its type, its name, and
optionally, its initial value.

Examples:
int num1;
double minimum = 4.50;
int x = 0, num2 = 2;
int num3 = 2 * num2;

10

Basic operators

11

Arithmetic operators
Precedence and associativity

Category Operator Associativity
Unary ++ -- + - right-to-left
Multiplicative * / % left-to-right
Additive + - left-to-right
Assignment = += -= *= /= %= right-to-left

++: increment
--: decrement
% : remainder (modulus)

2 + 3 * 4 = ?

12

Type conversion

Type conversion is the conversion of values of one type to values of
another type

Explicit type conversion (casting) is to generate a temporary entity of
another type.

Replace by:
 double quotient = ((double) x) / y;

Example:
int x = 6, y = 10;

 double quotient = x / y; // Probably wrong!

13

Widening and narrowing of types

Converting a type of a smaller range to a type of a larger range is
called widening

Example:
int i = 10;
long m = 10000;
double d = Math.PI;

 i = (int) m; // narrowing (cast necessary)
 m = i; // widening
 m = (long) d; // narrowing (cast necessary)

d = m; // widening

Converting a type of a larger range to a type of a smaller range is
called narrowing

14

Statements

Expression statements (assignment expressions, method invocation,
 increment/decrement expressions)

Variable declarations
break statements
continue statements
return statements

Statement blocks (statements enclosed by a pair of braces, { })
 Selection statements (if, switch)
 Loop statements (for, while, do)
 try-catch statements

Simple statements:

Compound statements:

15

Expression statements

Examples:

x = y;
x = y = 3;
x = x + 1;
x++;
y = y + x;
y += x;
move(dx, dy);

16

Declaration statements

Example:

{
 ...
 int i; // i’s scope begins here
 i = 10;
 int j = 20; // j’s scope begins here
 i += j;
 ...
} // both i's and j’s scope end here

The placement of a declaration determines its scope (the extent of the
code in which the variable is visible, that is accessible).

17

if statements

if (Condition)
 Statement

Condition must be a boolean expression

 or

if (Condition)
 Statement1
else
 Statement2

18

Logical operators

19

switch statements

switch (Expression) {
case CaseLabel1:
 Statement1
 .
 .
 .
case CaseLabeln:
 Statementn
default:
 Statementn+1
}

Expression must be an integer or string expression.
The case labels must be constant integer or string expressions.
The default clause is optional.

20

Example of switch statement

21

Loop statements

while (Condition)
 Statement

do
 Statement
while (Condition);

for (InitExpr; Condition; UpdateExpr)
Statement

InitExpr;
while (Condition) {
 Statement
 UpdateExpr;
}

is (usually) equivalent to

for (type var : Collection)
 Statement

for-each loop

22

Use of the for statement

for (int i = 0; i < n; i++)
 statement;

The standard use of the for statement is to run a code block
a specified number of times.

The initializer and updater expressions may be comma-separated
lists of expressions:

 for (int i = 0, j = 2 * n; i < n; i++, j -= 3)

23

Typical use of the do statement

do {
 prompt user;
 read value;
} while (value is no good);

24

Use of break in loops

while (...) {
 ...
 if (something)
 break;
 ...
}

outerLoop:
while (...) {
 while (...) {
 if (disaster)
 break outerLoop;
 }
}

25

Use of continue in loops

for (int i = 1; i <= 100; i++) {
 if (i % 10 == 0)
 continue;
 System.out.println(i);
}

26

The conditional operator ?:

 max_ab = a > b ? a : b;

is equivalent to

 if (a > b)
 max_ab = a;
 else
 max_ab = b;

27

Method declarations and calls

28

Parameter passing

In Java, all parameters are passed by value. In other words, modifications
to parameters inside a method will be made to copies of the actual
parameters and will have no effect on the actual parameters themselves.

void inc(int i) {
 i++;
}

int i = 0;
inc(i);
// i is still zero

29

Overloading of method names

Java allows methods to share the same name.
The name is said to be overloaded with multiple implementations.

The legality of overloading depends on the signature of the
method. The signature of a method consists of its name and a list
of the types of the parameters.

Note that the return type and parameter names are not part of the
signature.

30

Signatures

 Method Signature
String toString() toString()
void move(int dx, int dy) move(int, int)
void paint(Graphics g) paint(Graphics)

Two methods in the same class can be overloaded if they have
different signatures.

31

Overloading example

int max(int a, int b) { ... }

int max(int a, int b, int c) { ... }

Overloading is allowed if the compiler can deduce which of the
intended meanings should be applied based on the actual
argument types or number of arguments.

32

Reference types

A reference variable is a variable that somehow stores the memory
address where an object or an array is located.*

A reference variable may also hold a special value, null, which
indicates that no object or array is being referenced.

* Arrays are actually objects too.

33

Objects

In Java, an object is an instance of any of the non-primitive types.

Reference variables store references to objects. The actual object is
stored somewhere in memory, and the reference variable stores the
object’s memory address. Thus, a reference variable simply
represents the name for that part of the memory.

34

Illustration of references

class Point {
 int x, y;
}

Point point1, point2, point3;

35

x = 5
y = 12

p: Point
Garbage-collected

heap of objects

Primitive versus reference types

int i;

i = 123; 123

Point p;

p = new Point(5, 12);

36

The assignment operator for
reference variables

37

The dot operator

The dot operator (.) is used to select a method that is applied to an
object.

double theArea = theCircle.area();

The dot operator operator can also be used to access individual
components of an object, provided arrangement has been made to
allow internal components to be viewable.

double r = theCircle.radius;

38

Declaration of reference variables

Button b; // b may reference a Button object
b = new Button(); // Now b refers to an allocated object
b.setLabel("No"); // The button’s label is set to "No"
p.add(b); // and the button is added to panel p

It happens that the Button object can be constructed with a String
that specifies the label:

Button b = new Button("No");
p.add(b); // Add it to panel p

Or, if the Button reference is not needed:

p.add(new Button("No"));

39

Button yesButton = new Button("Yes");
clearButton(yesButton);

public void clearButton(Button b) {
 b.setLabel("No");
 b = null;
}

Parameter passing

40

The meaning of ==

For primitive types, a == b is true if the values of a and b are identical.

For reference types, r1 == r2 is true if r1 and r2 reference the same object.

That is, r1 == r2 tests the identity of two references, not the equality of the
states of the objects referred to by them. To test the equality (of the states) of two
objects, the equals() method should be used, such as r1.equals(r2).

41

Strings

Java provides three classes to support strings:

(1) String: immutable (that is, constant) strings

(2) StringBuffer: mutable strings

(3) StringBuilder: mutable strings (more efficient than
 StringBuffer, but not thread-safe)

A string is a sequence of characters

42

Basics of string manipulation

Declaration and initialization:

String empty = "";
String message = "Hello";
String repeat = message;

String concatenation:

"this" + " that"// Generates "this that"
"abc" + 5 // Generates "abc5"
5 + "abc" // Generates "5abc"
"a" + "b" + "c" // Generates "abc"
"a" + 1 + 2 // Generates "a12"
1 + 2 + "a" // Generates "3a"
1 + (2 + "a") // Generates "12a"

43

String operations

s.length()
s.charAt(i)
s.indexOf(c)
s.indexOf(c, i)
s1.indexOf(s2)
s1.indexOf(s2, i)
s.substring(i)
s.substring(i, j)

s.toLowerCase()
s.toUpperCase()
s.toCharArray()
s.trim()
s1.endsWith(s2)
s1.startsWith(s2)
s1.equals(s2)
s1.equalsIgnoreCase(s2)
s1.compareTo(s2)
s.intern()
s.split(regex)

44

Converting other types to strings

String concatenation provides a lazy way to convert any
primitive type to a string. For instance, "" + 45.3
returns a newly constructed String "45.3".

All reference types provide an implementation of the
method toString that gives a string representation of
their objects.

The int value that is represented by a String can be
obtained by calling the method Integer.parseInt.
The method generates an exception if the String does
not represent an int.

int x = Integer.parseInt("75");
double y = Double.parseDouble("3.14");

45

Arrays

An array is a basic mechanism for storing a collection
of identically typed entities.

The number of items that can be stored in an array a can be
obtained by a.length. Note there are no parentheses.
A typical array loop would use

for (int i = 0; i < a.length; i++)

Each entity in the array can be accessed via the array
indexing operator []. In Java, arrays are always
indexed starting at zero. Thus an array a of three items
stores a[0], a[1], and a[2].

46

One-dimensional arrays

Declaration

Type[] Identifier Ex. int[] a;

Creation with new:

new Type[n] Ex. int[] a = new int[10];

Point[] p = new Point[20];

or with an initializer list:

 { v0, v1, ..., vn-1 } Ex. int[] a = { 7, 9, 13 };

47

Simple demonstration of arrays

Output when
DIFF_NUMBERS = 10:
1: 99631
2: 99883
3: 100027
4: 99932
5: 100181
6: 99946
7: 99801
8: 100528
9: 100209
10: 99862

48

Dynamic array expansion

Suppose we want to read a sequence of numbers and store them in
an array for processing. If we have no idea how many numbers to
expect, then it is difficult to make a reasonable choice of array size.

The following slide shows how to expand arrays if the initial size is
too small.

Suppose we have made the declaration

int[] arr = new int[10];

but we find out that we really need 12 ints instead of 10.

49

int[] original = arr; // 1. Save reference to arr
arr = new int[12]; // 2. Have arr reference more memory
for (int = 0; i < 10; i++) // 3. Copy the old data over
 arr[i] = original[i];
original = null; // 4. Unreference original array

50

51

52

ArrayList

The array expansion technique is so common that the Java library
contains an ArrayList type with built-in functionality to mimic it.

The add method is used to add an element to the ArrayList.
This is trivial if capacity has not been reached. If it has, the capacity
is automatically expanded.

The get method is used to access an object at a given index.

53

for (String s : getStrings())
 System.out.println(s);

54

Multidimensional arrays ���
(array of arrays)

Declaration

Type[]...[] Identifier Ex. int[][] a

Creation with new:

new Type[n1][n2]...[nk] Ex. int[][] a = new int[2][3];
Point[][] p = new Point[4][5];

or with an initializer list:

 { I0, I1, ..., Ik-1 } Ex. int[][] a = {{3, 1, 7}, {6, 3, 2}};

55

56

Command-line arguments

Command-line arguments are available by examining the parameter
to main (the String array args).

For instance when the program is invoked

java Echo this that

args[0] references the string "this" and args[1] references the
string "that".

57

58

The enhanced for loop
(The for-each loop)

Java 5 adds new syntax that allows you access each element in an
array or ArrayList.

For instance, to print out the elements in arr, which has type
String[], you can write

for (String val : arr)
 System.out.println(val);

59

Exceptions

An exception represents an unexpected condition in a program.
The Java exception-handling mechanism facilitates recovery from
unexpected conditions or failures.

The location at which an exception usually occurs is not where it can be
reasonably dealt with. Java enables you to separate error-handling code
from “regular” code.

Exceptions are objects that store information and are transmitted outside the
normal return sequence. They are propagated back through the calling
sequence until some method catches the exception. At that point the
information stored in the object can be extracted to provide error handling.

60

Exception example program

61

Advantage of using exceptions

void processFile() {
 openTheFile();
 while (fileHasMoreLines) {
 readNextLineFromTheFile();
 printTheLine();
 }
 closeTheFile();
}

1.  What will happen if the file does not exist?
2.  What will happen if the file cannot be opened?
3.  What will happen if reading a line fails?
4.  What will happen if the file cannot be closed?

62

Error handling without exceptions
int processFile() {
 int errorCode = 0;
 int openFileErrorCode = openTheFile();
 if (openFileErrorCode == 0 {
 while (fileHasMoreLines) {
 int readLineErrorCode = readNextLineFromTheFile();
 if (readLineErrorCode == 0)
 printTheLine();
 else {
 errorCode = -4;
 break;
 }
 }
 int closeFileErrorCode = CloseTheFile();
 if (closeFileErrorCode != 0 && errorCode == 0)
 errorCode = -3;
 } else if (openFileErrorCode == -1)
 errorCode = -1;
 else if (openFileErrorCode == -2)
 errorCode = -2;
 return errorCode;
}

63

Error handling with exceptions

void processFile() {
 try {
 openTheFile();
 while (fileHasMoreLines) {
 readNextLineFromTheFile();
 printTheLine();
 }
 }
 catch (FileNotFoundException e) {
 doSomething();
 }
 catch (IOException e) {
 doSomethingElse();
 }
 finally {
 closeTheFile();
 }
}

Exceptions don’t save us the effort in finding and processing errors but give us a
more elegant, short, clear and efficient way to do it.

64

Standard runtime exceptions

A runtime exception need not be handled

65

Standard checked exceptions

A checked exception must be caught or
explicitly propagated back to the calling
method (using the throws clause)

66

Illustration of the throws clause

67

The Scanner class

package java.util;

public class Scanner {
 public Scanner(File source);
 public Scanner(String source);

 public boolean hasNext();
 public boolean hasNextLine();
 public boolean hasNexttype();

 public String next();
 public String nextLine();
 public type nexttype();

 public void useDelimiter(String pattern);
}

68

import java.util.Scanner;

class MaxTestA {
 public static void main(String[] args) {
 Scanner in = new Scanner(System.in);
 System.out.println("Enter 2 ints: ");
 if (in.hasNextInt()) {
 int x = in.nextInt();
 if (in.hasNextInt()) {
 int y = in.nextInt();
 System.out.println("Max: " + Math.max(x, y));
 return;
 }
 }
 System.err.println("Error: need two ints");
 }
}

Read two integers and output maximum
using Scanner and no exceptions

69

import java.util.Scanner;

class MaxTestA {
 public static void main(String[] args) {
 Scanner in = new Scanner(System.in);
 System.out.println("Enter 2 ints: ");
 try {
 int x = in.nextInt();
 int y = in.nextInt();
 System.out.println("Max: " + Math.max(x, y));
 } catch (NoSuchElementException e) {
 System.err.println("Error: need two ints");
 }
 }
}

Read two integers and output maximum
using Scanner and exceptions

70

import java.util.Scanner;

class MaxTestA {
 public static void main(String[] args) {
 Scanner in = new Scanner(System.in);
 System.out.println("Enter 2 ints: ");
 try {
 String oneLine = in.nextLine();
 Scanner str = new Scanner(oneLine);
 int x = str.nextInt();
 int y = str.nextInt();
 System.out.println("Max: " + Math.max(x, y));
 } catch (NoSuchElementException e) {
 System.err.println("Error: need two ints");
 }
 }
}

Read exactly two integers from the same line
and output maximum using two Scanners

71

Program to list the contents of text files
import java.util.Scanner;
import java.io.File;
import java.io.IOException;

public class ListFiles {
 public static void main(String[] args) {
 if (args.length == 0)
 System.out.println("No files specified");
 for (String fileName : args)
 listFile(fileName);
 }

 public static void listFile(String fileName) {
 Scanner fileIn = null;
 System.out.println("FILE: " + fileName);
 try {
 fileIn = new Scanner(new File(fileName));
 while (fileIn.hasNextLine())
 System.out.println(fileIn.nextLine());
 } catch (IOException e) {
 System.out.println(e);
 } finally {
 if (fileIn != null)
 fileIn.close();
 }
 }
}

72

Program to double-space text files
import java.util.Scanner;
import java.io.File;
import java.io.PrintWriter;
import java.io.IOException;

public class DoubleSpace {
 public static void main(String[] args) {
 for (String fileName : args)
 doubleSpace(fileName);
 }

 public static void doubleSpace(String fileName) {
 PrintWriter fileOut = null;
 Scanner fileIn = null;
 try {
 fileIn = new Scanner(new File(fileName));
 fileOut = new PrintWriter(new File(fileName + ".ds"));
 while (fileIn.hasNextLine()
 fileOut.println(fileIn.nextLine() + "\n");
 } catch (IOException e) {
 e.printStackTrace();
 } finally {
 if (fileOut != null) fileOut.close();
 if (fileIn != null) fileIn.close();
 }
 }
}

73

