LKH
User Guide

Version 1.3 (July 2002)

by
Keld Helsgaun
E-mail: keld@ruc.dk

1. Introduction

The Lin-Kernighan heuristic [1] is generally considered to be one of the most successful
methods for generating optimal or near-optimal solutions for the symmetric traveling sales-
man problem.

LKH is an implementation of a modified Lin-Kernighan heuristic. The new heuristic differs
in many details from the original one. The most notable difference is found in the search
strategy. The new heuristic uses larger (and more complex) search steps than the original one.
Also new is the use of sensitivity analysis to direct and restrict the search. For a detailed de-
scription of the modified heuristic, see [2][3].

Computational experiments have shown that LKH is highly effective. Even though the algo-
rithm is approximate, optimal solutions are produced with an impressively high frequency.
LKH has produced optimal solutions for all solved problems we have been able to obtain, in-
cluding a 15112-city problem (at the time of writing, the largest nontrivial problem solved to
optimality). Furthermore, the algorithm has improved the best known solutions for a series of
large-scale problems with unknown optima, among these an 85900-city problem.

2. Installation

LKH has been implemented in the programming language C. The software, approximately
4000 lines of code, is entirely written in ANSI C and portable across a number of computer
platforms and C compilers.

The code is distributed for research use. The author reserves all rights to the code.

The code is available at the internet at:

http://homer.ruc.dk/~keld/public _html/research/LKH

The software is available in two formats:

LKH-1.3.tgz (gzipped tar file, 5.9 MB)
LKH-1.3.sit (Stuffit archive, 4.6 MB)

If a UNIX machine is used, download the software in the first format. Next execute the fol-
lowing UNIX commands:

gzip -d LKH-1.3.tgz
tar xvf LKH-1.3.tar
cd LKH-1.3

make

An executable file called LKH.UNIX is now available in the directory LKH-1.3.

If a MacOSX or a Windows machine is used, download the software in the second format.
Next unstuff it with Stufflt Expander™ (freeware available at http://www.aladdinsys.com).

On a MacOSX machine the following files and folders can be found in the folder LKH-1.3.
Similar files and directories can be found on a Windows machine and on a UNIX machine.

006 [F LKH-1.3 =
a W= AN
- Sl : !! [v 3
Back View Computer Home Favorites Applications
README
DoC SRC TOURS TSPLIB PI_FILES
A
LKH.MacOSsX LKH.Win.exe
g g
5 =
LKH.Mac.mcp LKH.Win.mcp Makefile
g g i
=l =] /B
Par.Mac Par.Win Par.UNIX

The README file contains instructions for installing the software.

The DOC folder contains the following documentation:

(1) LKH_GUIDE.pdf, this user guide, (2) LKH_REPORT.pdf, a report that describes the
implementation and performance of the sofware, (3) ADDENDUM. pd£, an addendum to the
report, and (4) TSPLIB_DOC.PS, a description of the publicly available library of problem
instances TSPLIB.

The SRC folder contains source code.

The TSPLIB folder contains the symmetric, asymmetric and Hamiltonian tour problems of
TSPLIB.

The TOURS folder contains optimum and best known tours for these problems.

The PI_FILES folder contains penalties produced by the ascent of the algorithm (see the
report in the DOC folder).

The files LKH.Mac .mcp and LKH.Win.mpc are Metrowerks projects. They can be used to
recompile the source files on a MacOSX machine and a Windows machine, respectively.

The file Makefile is used by the command make on a UNIX machine.

The files LKH.MacOSX and LKH.Win.exe are used to run the LKH program on a
MacOSX machine and a Windows machine, respectively.

The files ParMac, ParWin and ParUNIX are files that can be used to test the installation of
the software.

To verify that the software has been installed correctly, run the LKH program (LKH.UNIX on
a UNIX machine, LKH.Mac0SX on a MacOSX machine, and LKH.Win on a Windows ma-
chine).

The program asks for a filename

PARAMETER_FILE =

On a MacOSX machine type Par.Mac. On a Windows machine type Par.wWin. On a
UNIX machine type Par.UNIX. Then press return.

The program should now solve a problem with 532 cities (the problem att532.tsp in
TSPLIB). The output should be similar to the following (produced by a 550 MHz Power-
Book G4):

PARAMETER_FILE

PARAMETER FILE
ASCENT CANDIDA!
BACKTRACK MOVE
CANDIDATE FILE
EXCESS
INITIAL PERIOD
INITIAL_STEP_S
INITIAL TOUR_F
INPUT TOUR FIL
MAX_CANDIDATES
MAX_SWAPS
MAX TRIALS
MERGE_TOUR_FIL
MERGE_TOUR_FIL
MOVE TYPE = 5
OPTIMUM
PI_FILE
PRECISION
PROBLEM_FILE

_TYPE

Par.Mac

TES

Par.Mac
50

0

0.001880

266
IZE = 1
ILE
E

5

532
532

E 1
E_2

27686
:PI_FILES:att532.pi
100

:TSPLIB:att532.tsp

RESTRICTED_SEARCH = YES

RUNS = 10

SEED =1

SUBGRADIENT = YES

TOUR_FILE =

TRACE_LEVEL = 1

Lower bound = 27415.7, Gap = 1.0%, Ascent time
Preprocessing time = 5 sec.

* 1l: Cost = 27706, Time = 0 sec.

* 11: Cost = 27693, Time = 1 sec.

* 35: Cost = 27686, Time = 2 sec.
Cost = 27686, Seed = 1, Time = 2 sec.
* 1: Cost = 27857, Time = 1 sec.

* 2: Cost = 27705, Time = 1 sec.

* 7: Cost = 27693, Time = 2 sec.

* 18: Cost = 27686, Time = 3 sec.
Cost = 27686, Seed = 2, Time = 3 sec.
* 1l: Cost = 27706, Time = 0 sec.

* 22: Cost = 27693, Time = 2 sec.

* 25: Cost = 27686, Time = 2 sec.
Cost = 27686, Seed = 3, Time = 2 sec.
* 1: Cost = 27686, Time = 0 sec.

Cost = 27686, Seed = 4, Time = 0 sec.
* 1l: Cost = 27705, Time = 1 sec.

* 10: Cost = 27693, Time = 1 sec.

* 19: Cost = 27686, Time = 2 sec.
Cost = 27686, Seed = 5, Time = 2 sec.
* 1: Cost = 27712, Time = 0 sec.

* 9: Cost = 27705, Time = 1 sec.

* 95: Cost = 27703, Time = 4 sec.

* 109: Cost = 27693, Time = 4 sec.

* 149: Cost = 27686, Time = 7 sec.
Cost = 27686, Seed = 6, Time = 7 sec.
* 1: Cost = 27693, Time = 0 sec.

* 21: Cost = 27686, Time = 2 sec.
Cost = 27686, Seed = 7, Time = 2 sec.
* 1: Cost = 27870, Time = 1 sec.

* 6: Cost = 27837, Time = 1 sec.

* 35: Cost = 27725, Time = 2 sec.

* 38: Cost = 27712, Time = 2 sec.

* 44: Cost = 27707, Time = 3 sec.

* 48: Cost = 27693, Time = 3 sec.

* 62: Cost = 27686, Time = 4 sec.
Cost = 27686, Seed = 8, Time = 4 sec.
* 1l: Cost = 27718, Time = 1 sec.

* 2: Cost = 27714, Time = 1 sec.

* 6: Cost = 27704, Time = 1 sec.

* 42: Cost = 27703, Time = 3 sec.

* 91: Cost = 27686, Time = 4 sec.
Cost = 27686, Seed = 9, Time = 5 sec.
* 1l: Cost = 27693, Time = 0 sec.

* 27: Cost = 27686, Time = 3 sec.
Cost = 27686, Seed = 10, Time = 3 sec.
Successes/Runs = 10/10

Cost.min = 27686, Cost.avg = 27686.0, Cost.max
Gap.min = 0.000%, Gap.avg = 0.000%, Gap.max =
MinTrials = 1, Trials.avg. = 44.8
Time.min = 0 sec., Time.avg. = 3.0 sec.

0 sec.

27686

0.000%

3. User interface
The software includes code both for reading problem instances and for printing solutions.
Input is given in two separate files:

(1) the problem file and
(2) the parameter file.

The problem file contains a specification of the problem instance to be solved. The file format
is the same as used in TSPLIB [4], a publicly available library of sample instances for the
TSP The library may be downloaded from

http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/TSPLIB95/TSPLIB

The current version of the software allows specification of symmetric, asymmetric, as well as
Hamiltonian tour problems.

Distances (costs, weights) may be given either explicitly in matrix form (in a full or triangular
matrix), or implicitly by associating a 2- or 3-dimensional coordinate with each node. In the
latter case distances may be computed by either a Euclidean, Manhattan, maximum, geo-
graphical or pseudo-Euclidean distance function. See the TSPLIB DOC. PS file for details.
At present, all distances must be integral.

Problems may be specified on a complete or sparse graph, and there is an option to require
that certain edges must appear in the solution of the problem.

The parameter file contains control parameters for the solution process. The solution process
is typically carried out using default values for the parameters. The default values have proven
to be adequate in many applications. Actually, almost all computational tests reported in this
paper have been made using these default settings. The only information that cannot be left
out is the name of the problem file.

The format is as follows:

PROBLEM_FILE = <string>
Specifies the name of the problem file.

Additional control information may be supplied in the following format:

ASCENT_CANDIDATES = <integer>

The number of candidate edges to be associated with each node during the ascent.
The candidate set is complemented such that every candidate edge is associated
with both its two end nodes.

Default: 50.

BACKTRACK_MOVE_TYPE = <integer>

Specifies the backtrack move type to be used in local search.

A backtrack move allows for backtracking up to a certain level of the local search.

A value of 2, 3, 4 or 5 signifies that a backtrack 2-opt, 3-opt, 4-opt or 5-opt move is to be used as
the first move in the search. The value O signifies that no backtracking is to be used.

Default: 0.

CANDIDATE_FILE = <string>

Specifies the name of a file to which the candidate sets are to be written.

If the file already exists, and the PI_FILE exists, the candidate edges are read from the file.

Each line contains a node number, the number of the dad of the node in the minimum spanning tree
(0, if the node has no dad), the number of candidate edges emanating from the node, followed by these
candidate edges. For each candidate edge its end node number and o.-value are given.

5

COMMENT : <string>
A comment.

EOF
Terminates the input data. The entry is optional.

EXCESS = <real>
The maximum a-value allowed for any candidate edge is set to EXCESS times the absolute value of

the lower bound of a solution tour (determined by the ascent).
Default: 1.0/DIMENSION.

INITIAL_PERIOD = <integer>
The length of the first period in the ascent.
Default: DIMENSION/2 (but at least 100).

INITIAL_STEP_SIZE = <integer>
The initial step size used in the ascent.
Default: 1.

INITIAL_TOUR_FILE = <string>

Specifies the name of a file containing a tour to be used as the initial tour in the search.

The tour is given by a list of integers giving the sequence in which the nodes are visited in the tour.
The tour is terminated by a -1.

INPUT_TOUR_FILE = <string>

Specifies the name of a file containing a tour. The tour is given by a list of integers giving the se-
quence in which the nodes are visited in the tour. The tour is terminated by a -1. The tour is used to
limit the search (the last edge to be removed in a non-gainful move must not belong to the tour). In
addition, the Alpha field of its edges is set to zero.

MAX_CANDIDATES = <integer> { SYMMETRIC }

The maximum number of candidate edges to be associated with each node.

The integer may be followed by the keyword SYMMETRIC, signifying that the candidate set is to
be complemented such that every candidate edge is associated with both its two end nodes.

Default: 5.

MAX_SWAPS = <integer>
Specifies the maximum number of swaps (flips) in any search for a tour improvement.
Default: DIMENSION.

MAX_TRIALS = <integer>
The maximum number of trials in each run.
Default: number of nodes (DIMENSION, given in the problem file).

MERGE_TOUR_FILE_1 = <string>
Specifies the name of a tour to be merged. The edges of the tour are added to the candidate sets with
a-values equal to 0.

MERGE_TOUR_FILE 2 = <string>
Specifies the name of a tour to be merged. The edges of the tour are added to the candidate sets with
a--values equal to 0.

MOVE_TYPE = <integer>

Specifies the move type to be used in local search. The value can be 2, 3, 4 or 5 and signifies
whether 2-opt, 3-opt, 4-opt or 5-opt move is to be used.

Default: 5.

OPTIMUM = <real>
Known optimal tour length. A run will be terminated as soon as a tour length less than or equal to
optimum is achieved.
Default: -DBL._MAX.

PI_FILE = <string>

Specifies the name of a file to which penalties (;t-values determined by the ascent) are to be written.
If the file already exits, the penalties are read from the file, and the ascent is skipped. Each line of the
file is of the form <integer> <integer>, where the first integer is a node number, and the second inte-
ger is the m-value associated with the node.

PRECISION = <integer>

The internal precision in the representation of transformed distances:
dij = PRECISION*Cij + 7 + T, where dij, Cijs T and T, are all integral.
Default: 100 (which corresponds to 2 decimal places).

RESTRICTED_SEARCH: [YES I NO]

Specifies whether the following search pruning technique is to be used:

The first edge to be broken in a move must not belong to the currently best solution tour.
When no solution tour is known, then it must not belong to the minimum spanning 1-tree.
Default: YES.

RUNS = <integer>
The total number of runs.
Default: 10.

SEED = <integer>
Specifies the initial seed for random number generation.
Default: 1.

SUBGRADIENT: [YESINO]
Specifies whether the mt-values should be determined by subgradient optimization.
Default: YES.

TOUR_FILE = <string>
Specifies the name of a file to which the best tour is to be written.

TRACE_LEVEL = <integer>

Specifies the level of detail of the output given during the solution process.
The value O signifies a minimum amount of output. The higher the value is the
more information is given.

Default: 1.

During the solution process information about the progress being made is written to standard
output. The user may control the level of detail of this information (by the value of the
TRACE_LEVEL parameter).

Before the program terminates, a summary of key statistics is written to standard output, and,
if specified by the TOUR_FILE parameter, the best tour found is written to a file (in TSPLIB
format).

The user interface is somewhat primitive, but it is convenient for many applications. It is sim-
ple and requires no programming in C by the user. However, the current implementation is
modular, and an alternative user interface may be implemented by rewriting a few modules. A
new user interface might, for example, enable graphical animation of the solution process.

References

[1] S. Lin & B. W. Kernighan,
“An Effective Heuristic Algorithm for the Traveling-Salesman Problem”,
Oper. Res. 21, 498-516 (1973).

2] K. Helsgaun,
“An Effective Implementation of the Lin-Kernighan Traveling Salesman Heuristic”,
Datalogiske Skrifter 81, Roskilde University (1998).

[3] K. Helsgaun,
“An Effective Implementation of the Lin-Kernighan Traveling Salesman Heuristic”,
European Journal of Operational Research 126 (1), 106-130 (2000).

[4] G. Reinelt,
“TSPLIB - A Traveling Salesman Problem Library”,
ORSA J. Comput. 3-4, 376-385 (1991).

