
1

User’s guide to javaCoroutine

This guide describes javaCoroutine, a Java package for coroutine se-
quencing. The package provides coroutine facilities similar to those provided
by SIMULA [1][2]. The development of the package is described in [3].

Coroutines can be used to describe the solutions of algorithmic problems that
are otherwise hard to describe [4]. Coroutines provide the means to organize
the execution of a program as several sequential processes.

A coroutine may temporarily suspend its execution and another coroutine may
be executed. A suspended coroutine may later be resumed at the point where
it was suspended. This form of sequencing is called alternation. The figure
below shows a simple example of alternation between two coroutines.

A coroutine program is composed of a collection of coroutines, which run in
quasi-parallel with one another. Each coroutine is an object with its own exe-
cution-state, so that it may be suspended and resumed. A coroutine object
provides the execution context for a method, called body, which describes
the actions of the coroutine.

resume(a)

resume(b) resume(a)

resume(a)

coroutine a coroutine b

2

The javaCoroutine package provides the class Coroutine for writing
coroutine programs. Coroutines can be created as instances of Coroutine-
derived classes that override the abstract body method. As a consequence of
creation, the current execution location of the coroutine is initialized at the
start point of body.

Class Coroutine is sketched below.

public abstract class Coroutine {
 protected abstract void body();

 public static void resume(Coroutine c);
 public static void call(Coroutine c);
 public static void detach();

 public static Coroutine currentCoroutine();
 public static Coroutine mainCoroutine();
}

Control can be transferred to a coroutine c by one of two operations:

resume(c)
call(c)

Both operations cause c to resume its execution from its current execution
location, which normally coincides with the point where it last left off.

The call operation furthermore establishes the currently executing coroutine
as c’s caller. A subordinate relationship exists between the caller and the
called coroutine. c is said to be attached to its caller.

The currently executing coroutine can relinquish control to its caller by means
of the operation

detach()

The caller then resumes its execution from the point where it last left off.

The currentCoroutine method may be used to get a reference to the cur-
rently executing coroutine.

The first coroutine activated in a system of coroutines is denoted the main co-
routine. If the main coroutine terminates, all other coroutines will terminate. A
reference to this coroutine is provided through the mainCoroutine
method.

3

Below is shown a complete coroutine program. The program shows the use
of the resume method for coroutine alternation as illustrated in the figure on
page 1 .

import javaCoroutine.*;

public class CoroutineProgram extends Coroutine {
 Coroutine a, b;

 public void body() {
 a = new A();
 b = new B();
 resume(a);
 System.out.print("STOP1 ");
 }

 class A extends Coroutine {
 public void body() {
 System.out.print("A1 ");
 resume(b);
 System.out.print("A2 ");
 resume(b);
 System.out.print("A3 ");
 }
 }

 class B extends Coroutine {
 public void body() {
 System.out.print("B1 ");
 resume(a);
 System.out.print("B2 ");
 resume(a);
 System.out.print("B3 ");
 }
 }

 public static void main(String args[]) {
 resume(new CoroutineProgram());
 System.out.println("STOP2");
 }
}

4

Execution of this program produces the following (correct) output:

A1 B1 A2 B2 A3 STOP1 STOP2

A coroutine may be in one of four states of execution at any time: attached,
detached, resumed or terminated. The figure below shows the possible state
transitions of a coroutine.

A coroutine program consists of components. Each component is a chain of
coroutines. The head of the component is a detached or resumed coroutine.
The other coroutines are attached to the head, either directly or through other
coroutines.

The main program corresponds to a detached coroutine, and as such it is the
head of a component. This component is called the main component. The
head of the main component is the main coroutine.

Exactly one component is operative at any time. Any non-operative compo-
nent has an associated reactivation point, which identifies the program point
where execution will continue if and when the component is activated (by
resume or call).

When calling detach there are two cases:

• The coroutine is attached. In this case, the coroutine is detached, its exe-
cution is suspended, and execution continues at the reactivation point of
the component to which the coroutine was attached.

• The coroutine is resumed. In this case, its execution is suspended, and
execution continues at the reactivation point of the main component.

detached

attached terminated

resumed

new
resume

detach

exit routine

exit routinecall

detach

5

Termination of a coroutine's body method has the same effect as a detach
call, except that the coroutine is terminated, not detached. As a consequence,
it attains no reactivation point and it loses its status as a component head.

A call resume(c) causes the execution of the current operative component
to be suspended and execution to be continued at the reactivation point of c.
The call constitutes an error in the following cases:

c is null
c is attached
c is terminated

A call call(c) causes the execution of the current operative component to
be suspended and execution to be continued at the reactivation point of c. In
addition, c becomes attached to the calling component. The call constitutes an
error in the following cases:

c is null
c is attached
c is resumed
c is terminated

A coroutine program using only resume and detach is said to use sym-
metric coroutine sequencing. If only call and detach are used, the pro-
gram is said to use semi-symmetric coroutine sequencing.

On the next pages is shown small program for testing the javaCoroutine pack-
age. The program has been adapted from [5].

6

import javaCoroutine.*;

public class CoroutineTest extends Coroutine {
 CoroutineTest(char cmd) { command = cmd; }

 Coroutine a, b, c;
 char command;

 class A extends Coroutine {
 public void body() {
 System.out.print("a1"); detach();

 System.out.print("a2"); call(c = new C());
 System.out.print("a3"); call(b);
 System.out.print("a4"); detach();
 }
 }

 class B extends Coroutine {
 public void body() {
 System.out.print("b1"); detach();
 System.out.print("b2"); resume(c);
 System.out.print("b3"); detach();
 }
 }

 class C extends Coroutine {
 public void body() {
 System.out.print("c1"); detach();
 System.out.print("c2\n");
 System.out.println("==> " + command);
 if (command == 'r')
 resume(a);
 else if (command == 'c')
 call(a);
 else
 detach();
 System.out.print("c3"); detach();
 System.out.print("c4");
 }
 }

 public void body() {
 System.out.print("m1"); call(a = new A());
 System.out.print("m2"); call(b = new B());
 System.out.print("m3"); resume(a);
 System.out.print("m4"); resume(c);
 System.out.print("m5\n");
 }

7

 public static void main(String args[]) {
 resume(new CoroutineTest('r'));
 resume(new CoroutineTest('c'));
 resume(new CoroutineTest('x'));
 }
}

/*

Expected output:

m1a1m2b1m3a2c1a3b2c2
==> r
b3a4m4c3m5

m1a1m2b1m3a2c1a3b2c2
==> c
b3a4c3m4c4m5

m1a1m2b1m3a2c1a3b2c2
==> x
m4c3m5

*/

8

References

1. G. M. Birtwistle, O.-J. Dahl, B. Myhrhaug & K. Nygaard,
SIMULA BEGIN ,
Studentlitteratur (1974).

2. Programspråk – SIMULA, SIS,
Svensk Standard SS 63 61 14 (1987).

3. K. Helsgaun,
Discrete Event Simulation in Java,
Datalogiske skrifter, No. 89, Roskilde University (2000).

4. C. D. Marlin,
Coroutines,
Lecture Notes in Computer Science (1980).

5. H. B. Hansen,
SIMULA - et objektorienteret programmeringssprog,
Kompendium, Roskilde Universitetscenter (1990).

	Urser's guide to javaCoroutine
	References

