User’'sguidetoj avaSi nul ati on

1. Introduction

Thisguide describesj avaSi mul at i on, a Java package for process-based
discrete event ssimulation. The package is a Javaimplementation of the simu-
lation facilities provided by SIMULA [1][2][3]. In addition to the simulation
facilities, the package also includes the facilities for list manipulation, random
number drawing and coroutine sequencing as found in SIMULA.

A simulation encompasses a set of interacting processes A process is an ob-
ject associated with a sequence of activities ordered logicaly in smulated
time. Each process hasits own life cycle and may undergo active and inactive
phases during its lifetime. Processes represent the active entities in the real
world, e.g., customers in a supermarket.

InJavaSi nul at i on the processes are described in one or more subclasses
of the class Pr ocess. Their life cycles are described by overriding the ab-
stract method act i ons.

cl ass Customer extends Process ({
public void actions() {
/1 The life cycle of a custoner
}

}

Anoutline of classPr ocess is shown below.

public abstract class Process extends Link {
protected abstract void actions();

public static double tine();

public static void activate(Process p);
public static void hol d(double t);
public static void passivate();

public static void wait(Head q);

Thet i me method returns the current ssmulated time.

Theact i vat e method is used to make a specified process start executing its
actions.

Thehol d method suspends the execution of the calling process for a speci-
fied period of time.

Thepassi vat e method suspends the execution of the calling process for an
unknown period of time. Its execution may later be resumed by caling
act i vat e with the process as argument.

Sinceclass Pr ocess isasubclass of the class Li nk, each process has the
capability of being a member of a queue. The wai t method suspends the
calling process and adds it to a queue.

The use of these facilities is best explained through an example. The figure
below shows the system to be simulated.

O

—> —> - —>
Customer Queue O
generator

Servers

It is an abstraction of, for example, abank where the customers wait in asin-
gle queue for any of thetellers.

The interval between arrivalsis uniformly distributed from 1 to 3 minutes.
The time for serving a customer is normally distributed with a mean value of
4 minutes and a standard deviation of 1 minute. Simulation is used to find the
average time a customer spendsin the system.

First the processes of the system are identified.

One process is the generator of customers. It should repeatedly generate a
customer and wait a period of time.

Customers and servers may also be conceived as processes. When a customer
arrives, he activates an idle server (if any) and then waits in the queue. An
active server repeatedly serves customers from the queue until the queueis
empty. Then the server passivates.

Using the j avaSi mul at i on package this model may be described by the
following three classes:

cl ass Custoner CGenerator extends Process {
public void actions() {
while (true) {
activate(new Customer());
hol d(random uni forn(1, 3));

}

cl ass Customer extends Process {
public void actions() {
double arrival Time = tinme();
i nt o(cust oner Queue) ;
if (!serverQeue.enmpty())
activate((Process)
server Queue. first());

passi vate();
cust omer s++
throughTinme += time() - arrival Tine;

}

cl ass Server extends Process {
public void actions() {
while (true) {

out ();

whil e (!custonerQueue. enpty()) {
Cust omer served =

(Customer) customerQueue.first();

served. out ();
hol d(random nornal (4, 1));
activate(served);

wai t (server Queue);

}

Customerswait inagqueue caled cust omer Queue. When a server activates
acustomer after the completion of a service, the customer just updates statis-
tics and terminates.

Idle serverswait in aqueue called ser ver Queue. When a customer acti-
vates an idle server, the server leaves this queue and serves the customer.

A complete program for simulating the system is shown below. The classes
Cust omer Gener at or, Cust onmer and Ser ver are as defined above.

i mport javaSi nul ation.*;
i mport javaSi nul ati on. Process;

public class Sinulation extends Process {
int servers = 2;
Random random = new Random(7913);

Head custoner Queue = new Head();
Head server Queue = new Head();

i nt custoners;

doubl e t hroughTi ne;

public void actions() {
for (int i =1; i <= servers; i++)
new Server().into(serverQeue);
activat e(new Customer Generator());
hol d(600) ;
System out . printl n(throughTi me/ custoners);

}

cl ass Customer Generator extends Process { ... }
cl ass Custoner extends Process { ... }

class Server extends Process { ... }

public static void main(String args[]) {
activate(new Sinmulation());
}

}

This program simulates a system with two servers over a period of 600 min-
utes.

The mai n method starts the smulation by activating an object of a
Pr ocess-derived class. This object is called the main process and acts as
main program for the simulation. The simulation stops when the main process
terminates.

In this program the main process inserts a number of serversin the queue of
idle servers, activates the customer generator and waits 600 units of simulated
time. Before it terminates, it prints the average time spent by customersin the
system.

The program imports all classes of the j avaSi nul at i on package. Note,
however, that class Pr ocess must be imported explicitly in order to avoid
the name conflict caused by the co-existence of the class Pr ocess of the
j ava. | ang package.

The simulation aboveisbased on active customers and active servers. A
model based on active customers and passive servers may be obtained by de-
fining the classes Cust omer and Ser ver asfollows:

cl ass Custoner extends Process {
public void actions() {
double arrival Time = time();
if (serverQeue.enmpty()) {
wai t (cust onmer Queue) ;
out ();
} _
Server server = (Server) serverQeue.first();
server.out();
hol d(random nornal (4, 1));
server.into(serverQeue);
i f (!custonerQeue.enpty())
activate((Custoner) custonerQeue.first());
cust omer s++
throughTime += time() - arrival Tine;

}

|c|ass Server extends Link {}

A model based on passive customers and active serves may be obtained by
defining the Cust omer Gener at or, Cust omer and Ser ver classes as
follows:

cl ass Customer Generator extends Process {
public void actions() {
while (true) {
new Customer (). into(customerQeue);
if (!serverQeue.enpty())
activate((Server) serverQeue.first());
hol d(random uni forn(1, 3));

}

cl ass Server extends Process {
public void actions() {
while (true) {

out ();

whil e (!custonerQueue. enpty())
Cust onmer served =

(Customer) customer Queue. first();

served. out ();
hol d(random nornmal (4, 1));
cust omer s++;
t hroughTine += tinme() - served.arrival Ti ng;

}

wai t (server Queue);

}

cl ass Customer extends Link {
double arrival Time = time();
}

All three versions produce the same output (in less than a second):
11.79438522339415

However, the last version executes faster than the two other versions. Thisis
due to the computational overhead induced by the usage of threads internally
injavaSi mul ati on. Each Process has its acti ons executed by a
thread. In contrast to the two first versions, the last version has a small num-
ber of processes. In thisversion there are only three processes (the main
process and the two server processes).

2. The simulation facilities of j avaSi mul ati on

The design of the j avaSi mul at i on package follows very closely the de-
sign of the built-in package for discrete event simulation in SIMULA, class
SIMULATION. The development of j avaSi nul at i on has been described
in[4].

A program is composed of a set of processes that undergo scheduled and un-
scheduled phases. When a process is scheduled, it has an event time associ-
ated with it. Thisisthe time at which its next active phase is scheduled to oc-
cur. When the active phase of a process ends, it may be rescheduled, or
descheduled (either because al its actions have been executed, or the time of
its next active phase is not known). In either case, the scheduled process with
the smallest event time is resumed.

The currently active process always has the smallest event time associated
with it. Thistime, the simulation time, moves in jumps to the event time of
the next scheduled process.

Scheduled events are contained in an event list. The processes are ordered in
accordance with increasing event times. The process at the front of the event
list is always the one, which is active. Processes not in the event list are either
terminated or passive.

At any point in simulation time, a process can be in one (and only one) of the
following four stetes:

(1) active: the processis at the front of the event list. Its actions are being
executed

(2) suspended: the processisin the event list, but not at the front

(3) passive: the processisnot in the event list and has further actions to
execute

(4) terminated: the processis not in the event list and has no further actions
to execute.

All the public parts of the Pr ocess class are shown in the class outline below.

public abstract class Process extends Link {
protected abstract void actions();

public static final Process current();
public static final double tinme();

public static final void hold(double t);
public static final void wait(Head q);
public static final void cancel (Process p);
public static final Process main();

public static final At at;

public static final Delay delay;

public static final Before before;

public static final After after

public static final Prior prior;

public static final void activate(Process p);

public static final void activate(Process p

At at, double t);
public static final void activate(Process p

Del ay del ay, double t);
public static final void activate(Process p

At at, double t, Prior prior);
public static final void activate(Process p

Delay d, double t, Prior prior);
public static final void activate(Process pl

Bef ore before, Process p2);
public static final void activate(Process pl

After after, Process p2);

public static final void reactivate(Process p);
public static final void reactivate(Process p

At at, double t);
public static final void reactivate(Process p

Del ay del ay, double t);
public static final void reactivate(Process p

At at, double t, Prior prior);
public static final void reactivate(Process p

Del ay d, double t, Prior prior);
public static final void reactivate(Process pl

Bef ore before, Process p2);
public static final void reactivate(Process pl

After after, Process p2);

public final boolean idle();
public final boolean terninated();
public final double evTinme();
public final Process nextEv();

Below is given a short description of each of the methods.

current () returnsareferenceto the Process object at the
front of the event list (the currently active process).

ti me() returnsthe current smulation time.
hol d(t) schedulesCurr ent forreactivationatti me() + t.

passi vat e() removescurrent () fromthe event list and re-
sumes the actions of thenew current ().

wai t (q) includescurrent () intothetwo-way list g, and then
calspassi vat e().

cancel (p) removesthe process p fromtheevent list. If p is
currently active or suspended, it becomes passive. If p isapassive
or terminated process or nul | , the call has no effect.

It is desirable to have the main program participating in the simulation as a
process. Thisis achieved by an impersonating Pr ocess object that can be
manipulated like any other Pr ocess object. This object, cadled the main
process, isthefirst process activated in asmulation.

mai n() returnsareference to the main process.
There are seven ways to activate a currently passive process.
activat e(p): activates processp at the current smulation time.

activate(pl, before, p2): positions process pl in the
event list before process p2, and gives it the same event time as
p2.

activate(pl, after, p2): positionsprocesspl inthe event
list after process p2, and givesit the same event timeasp2.

activate(p, at, t):theprocess p isinserted into the event
list at the position corresponding to the event time specified by t .
The processisinserted after any processes with the same event
time which may already be present in the list.

activate(p, at, t, prior):theprocessp isinserted into
the event list at the position corresponding to the event time speci-
fied by t . The processisinserted beforeany processes with the
same event time which may already be present in thelist.

activate(p, delay, t):theprocess pis activated after a
specified delay, t . The processisinserted in the event list with the
new event time, and after any processes with the same simulation
time which may aready be present in the list.

activate(p, delay, t, prior):theprocess p isactivated
after aspecified delay, t . The processisinserted in the event list
with the new event time, and before any processes with the same
simulation time which may already be present in the list.

Correspondingly, there are seven r eact i vat e methods, which work on
either active, suspended or passive processes. They have similar signaturesto
theiract i vat e counterparts and work in the same way.

All methods described above are classmethods of class Pr ocess. Thefol-
lowing four instance methods are available:

i dl e() returnst rue if the processis not currently in the event
list. Otherwisef al se.

t ermi nat ed() returnst r ue if the process has executed all its
actions. Otherwisef al se.

evTi me() returnsthe time at which the processis scheduled for
activation. A runtime exception is thrown if the process is not
scheduled.

next Ev() returns areference to the next process, if any, in the
event list.

10

3. Thelist handing facilities of j avaSi mul ati on

This package contains facilities for the manipulation of two-way linked lists.
Its functionality corresponds closely to SIMULA's built-in class SIMSET.

List members are objects of subclasses of the classLi nk.
An object of the classHead is used to represent alist.
TheclassLi nkage isacommon superclassfor classLi nk and classHead.
The three classes are described below by means of the following variables:
Head hd;
Link | k;
Li nkage | g;
Class Li nkage

public class Linkage {
public final Link pred();
public final Link suc();
public final Linkage prev();

}

I k.suc() returns areference to the list member that is the successor
of | k if | k isalist member and is not the last member of
theligt; otherwisenul | .

hd. suc() returns areference to the fist member of the list hd, if the
list is not empty; otherwisenul | .

| k. pred() returns areference to the list element that is the predeces-
sor of | k if I k isalist member and is not the first mem-
ber of thelist; otherwisenul | .

hd. pred() returns a reference to the last member of thelist hd if the
list isnot empty; otherwisenul | .

I k. prev() returnsnul | if | k isnot alist member, areference to the
list head if | k isthefirst member of alist; otherwise aref-
erencetol k's predecessor in thelist.

hd. prev() returns areferenceto hd if hd is empty; otherwise aref-

erenceto the last member of thelist.

11

Class Head

hd.

hd.

hd.

hd.

hd.

public class Head extends Linkage {

public final
public final
public final
public final
public final

Link first();
Link last();
bool ean enmpty();
int cardinal ();
void clear();

}
first() returns a reference to the first member of thelist (nul I,
if thelist isempty).
last () returns areference to the last member of thelist (nul |, if

thelist isempty).

cardi nal () returnsthe number of membersinthelist (nul I , if the

list is empty).

enmpty() returnst r ue if thelist hd has no members; otherwise
nul | .

cl ear () removes all membersfrom thelist.

12

Class Li nk

public class Link extends Linkage {
public final void out();
public final void foll ow(Li nkage ptr);
public final void precede(Linkage ptr);
public final void into(Head s);

.out ()

.into(hd)

. precede(l g)

_follow(lg)

removes| k from thelist (if any) of which it isamem-
ber. The call has no effect if | k has no membership.

removes| k fromthelist (if any) of which it isamem-
ber and inserts| k asthe last member of thelist hd.

removes| k fromthelist (if any) of which it isamem-
ber and inserts| k beforel g. The effect isthe same as
| k.out () if Igis null, orithasnomembership
and isnot alist head.

removes| k fromthelist (if any) of which it isamem-
ber and inserts | k after | g. The effect is the same as
I k.out () if Igis null,orithasnomembership
and isnot alist head.

13

4. Therandom drawing facilities of j avaSi mul ati on

The j avaSi mul at i on package provides the same methods for random
drawing as can be found in SIMULA. All methods are available in a class
caled Random A summary of this classis shown below.

public class Random extends java.util.Random {
public Randonm() { super(); }
publ i c Randon(l ong seed) { super(seed); }

public final bool ean draw double a);

public final int randint(int a, int b);

public final double uniform double a, double b);
public final double normal (double a, double b);
public final double negexp(double a);

public final int poisson(double a);

public final double erlang(double a, double b);
public final int discrete(double[] a);

public final double |inear(double[] a, double[] b);
public final int histd(double[] a);

The class is an extension of Java' s standard class j ava. uti | . Random
Thus, al of the facilities of the latter classis also available to the user.

publ i c Random();

This constructor creates a Randomobject with the current time as its
seed value.

public Randon(l ong seed);

This constructor creates a Randomobject with the given seed value.

14

Each of the instance methods performs a random drawing of some kind.
Their semanticsareasin SIMULA.

bool ean draw doubl e a);

The vaueistrue with the probability a, f al se with probability 1- a.
Itisalwaystrueifasd 1,andadwaysf al seifa £0.

int randint(int a, int b);

Thevaueisoneof theintegersa, a+1, ..., b- 1, b with equal prob-
ability. If b < a, the call constitutes an error.

doubl e uni form(doubl e a, double b);

Thevaueisuniformly distributed intheintervala £ x < b. If b £ a,
the call constitutes an error.

doubl e nornal (doubl e a, double b);

The vaueisnormally distributed with mean a and standard deviation
b.

doubl e negexp(doubl e a);

The value is adrawing from the negative exponential distribution with
mean 1/A. If a isnon-positive, aruntime error occurs.

i nt poi sson(doubl e a);

The value is a drawing from the Poisson distribution with parameter
a.

doubl e erl ang(doubl e a, double b);

The value is adrawing form the Erlang distribution with mean 1/a
and standard deviation 1/(a* () . Both a and b must be positive.

15

int discrete(double[] a);

The one-dimensional array a of n elements of type doubl e, aug-
mented by the element 1 to the right, isinterpreted as a step function
of the subscript, defining a discrete (cumulative) distribution function.

The function value satisfies
0 £discrete(a) £n

Itisdefined asthesmallesti suchthatali] >r, wherer isarandom
number intheinterval [0;1] anda[n] = 1.

doubl e Iinear(doubl e[] a, double[] b);

The value is adrawing from a (cumulative) distribution function f,
which is obtained by linear interpolation in a non-equidistant table de-
fined by a and b, such that a[i] =f(b[i]).

It isassumed that a and b are one-dimensional arrays of the same
length, that the first and last elements of a areequal to 0 and 1, re-
spectively, andthat afi] @ a[j] andb[i] > b[j] fori >j.

public int histd(double[] a);

Thevaueisaninteger intherange[0;n-1] where nisthe number of
elementsin the one-dimensional array a. The latter isinterpreted asa
histogram defining the relative frequencies of the values.

16

Refer ences

1. O.-J. Dahl, B. Myhrhaug & K. Nygaard,
Common Base Lanugae,
NNC Publication S-22 (1970).

2. G. M. Birtwistle, O.-J. Dahl, B. Myhrhaug & K. Nygaard,
SIMULA BEGIN,
Studentlitteratur (1974).

3. Programsprak — SMULA, SIS,
Svensk Standard SS 63 61 14 (1987).

4. K. Helsgaun,

Discrete Event Simulation in Java,
Datal ogiske skrifter, No. 89, Roskilde University (2000).

17

	1. Introduction
	2. The simulation facilities of javaSimulation
	3. The list handling facilities of javaSimulation
	4. The random drawing facilities of javaSimulation
	References

