
11

COROUTINE
User Guide

Version 1.0 (May 1999)

by
Keld Helsgaun

E-mail: keld@ruc.dk

1. Introduction

Coroutines provide the means to organize a program execution as several sequential proc-
esses.

A coroutine is an object that has its own stack of procedure activations. A coroutine may
temporarily suspend its execution and another coroutine may be executed. A suspended
coroutine may later be resumed at the point where it was suspended.

COROUTINE is a library for coroutine sequencing in the programming language C++. The
facilities of the library are based on the coroutine primitives provided by the programming
language SIMULA.

The coroutine library has been used to implement a C++ library for process-oriented dis-
crete event simulation. This library is also provided along with libraries for random draw-
ing and handling of two-way lists.

Also provided is a library for the combination of coroutine sequencing and non-determin-
ism.

The library is described in the report

K. Helsgaun,
"A portable C++ library for coroutine sequencing",
Roskilde University, 1999.

This report may be found in pdf-format in the directory DOC.

2

2. Installation

The software is available in two formats:

COROUTINE-1.0.tgz (gzipped tar file, ≈ 180 KB)
COROUTINE-1.0.sit (Stuffit archive, ≈ 180 KB)

If a UNIX machine is used, download the software in the first format. Next execute the fol-
lowing UNIX commands:

gzip -d COROUTINE-1.0.tgz
tar xvf COROUTINE-1.0.tar

If a MacOS or a Windows machine is used, download the software in the second format.
Next unstuff it with StuffIt Expander™ (freeware available at http://www.aladdinsys.com).

The code is distributed for research use. The author reserves all rights to the code.

On a MacOs machine the following files and folders can be found in the folder
COROUTINE-1.0. Similar files and directories can be found on a Windows machine and
on a UNIX machine.

The README file contains instructions for installing the software.

The DOC folder contains the following documentation: (1) COROUTINE_GUIDE.pdf, this
user guide, and (2) REPORT.pdf, a report that describes the use and implementation of the
software.

The EXAMPLES folder contains all the example programs from the report.

33

The SRC folder contains source code. On a MacOs machine the folder has the following
appearance.

The coroutine library is provided in two versions. The versions are made available in two
separate folders: copy-stack and share-stack. Each folder contains a header file,
coroutine.h, and a source file, coroutine.cpp.

The remaining four folders, random, simset, simulation and CBack, contain header
and source files of the random drawing, list handing, simulation and backtrack program-
ming library.

Both versions of the coroutine library should run without modifications on most platforms.
However, for the copy-stack version a small adjustment may be necessary. Some C++ sys-
tems do not always keep the runtime stack up-to-date but keep some of the variable values
in registers. This is for example the case for C++ systems on Sun machines. If this is the
case, the macro Synchronize must be used. The comment characters are simply removed
from the macro definition (in the beginning of coroutine.cpp of the copy-stack ver-
sion).

The library may now be compiled and tested with the program TestProgram.cpp in the
EXAMPLES folder.

The program should produce the following output

m1a1m2b1m3a2c1a3b2c2
==>

and wait for input from the keyboard.

4

If the character r is typed, the program should print

b3a4m4c3m5

and stop.

If the character c is typed, the program should print

b3a4c3m4c4m5

and stop.

If any other character is typed, the program should print

m4c3m5

and stop.

	Introduction
	Installation

