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Abstract

At earlier occasions I have argued that the development toward full algebraic
symbolism in Europe was a case of "stumbling progress", before Viète never really
intentional. Here I shall concentrate on a particular aspect of algebraic symbolism,
the one that allowed Cartesian algebraic symbolism to become the starting point
not only for theoretical algebra but for the whole transformation of mathematics
from their time onward – yet not fully exploited even by Descartes: The
possibility of embedding, that is, of making a symbol or an element of a
calculation stand not only for a single number, determined or undetermined,
but for a whole expression (which then appears as an algebraic parenthesis).

From the very Italian beginning in the fourteenth century, and also in ibn
al-Yāsamin’s (?) first creation of the Maghreb letter symbolism, the possibility
of embedding was understood and explained in the simple case where a fraction
line offered itself as defining a parenthesis; Diophantos, without a line, did
something similar on at least one occasion. However, only Chuquet and Bombelli
would explore the some of the possibilities beyond that, and Viète still less. Even
Descartes did not take full advantage.

A final section argues, from the character of the mathematical practice in
which medieval and Renaissance algebra participated, why this stumbling
character of development should not bewilder us.
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Im memory of Ivor Grattan-Guinness,
friend and wise colleague

Approaches to algebraic symbolism

As is well known, Georg Nesselmann’s Algebra der Griechen[1] suggested
a classification of algebra types into three groups: rhetorical, syncopated, and
symbolic [Nesselmann 1842: 302]. In “rhetorical algebra”, everything in the
calculation is explained in full words. “Syncopated algebra” uses standard
abbreviations for certain recurrent concepts and operations, while “its exposition
remains essentially rhetorical”.[2] In “Symbolic algebra” (as known to us as well
as to Nesselmann), “all forms and operations that appear are represented in a
fully developed language of signs that is completely independent of the oral
exposition”. He also characterized these types as “stages” (Stufen), a term that
normally indicates chronology; but it is clear from his examples that this division
into chronological stages is at most meant locally, not as steps of some universal
history.

Accordong to Nesselmann, the rhetorical stage is represented by Iamblichos,
by “all so far known Arabic and Persian algebraists”, and by all Christian-
European writers on algebra until Regiomontanus. Diophantos,and the later
Europeans until well into the 17th century are classified as syncopated,

although already Viète has sown the seeds of modern algebra in his writings,
which however only sprouted some time after him.

In the following pages, Oughtred, Descartes, Harriot and Wallis are mentioned
as creators of this modern, symbolic algebra.

However, we Europeans since the 17th century are not the first to have attained
this level; indeed, the Indian mathematicians anticipate us in this domain by many
centuries.

1 The first volume of his Versuch einer kritischen Geschichte der Algebra. Nach den Quellen
bearbeitet – and, as it turned out, the only volume to appear. In 1843 he published an
edition and translation of an Arabic practical arithmetic, after which followed work on
Baltic languages (an Indo-European group which he named) and a Sanskritist and Arabist
chair. As many Orientalists of his day, he was thus versed in all the languages required
for the topic as it could be studied at the time – Latin, Greek, Arabic, Sanskrit, as well
as modern European languages. We may envy him.
2 Here and in the followings, all translations into English are mine if nothing else is
indicated.
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Probably because they are used by most of those historians who refuse to see
every use of algebraic abbreviations as a “symbolism”, Nesselmann’s categories
have often been criticized – obvious mistakes from the 1840s would have been
forgotten long ago. What follows may also be read as an attempt to elaborate,
substantiate and revise what Nesselmann says in a couple of pages.

As if we all knew and agreed upon what symbolic algebra is, Nesselmann’s
central observation about what characterizes the symbolic level has mostly been
neglected, namely that symbolization allows operations directly on the level of
the symbols, without any recourse to thought through spoken or internalized
language – indeed, almost without recourse to reflective thought. In Nesselmann’s
words

We may execute an algebraic calculation from the beginning to the end in fully
intelligible way without using one written word, and at least in simpler
calculations we only now and then insert a conjunction between the formulae
so as to spare the reader the labour of searching and reading back by indicating
the connection between the formula and what precedes and what follows.

That is exactly what we do when we reduce an equation by additions, divisions,
differentiations, and whatever else we may need to apply. We can of course speak
about the operations we perform, just as we may speak about the operations we
perform when changing the tyre on a bicycle or preparing a sauce; but in all
three cases the operations themselves are outside language.

To illustrate this we may look at two instances of incipient symbolic
operation – one from Diophantos, one from the Italian 14th century.

In the Arithmetic, Diophantos uses abbreviations (spoken of as “signs”
[σημειον]) for the unknown number (the arithmós) and its powers.[3] The
unknown itself is written with a simple sign, something like ς; for the higher
powers (dynamis = ς2, kybos = ς3, dynamodynamis = ς4, etc.), phonetic complements
are added (ΔΥ, ΚΥ, etc.);[4] similarly, complements are added to the sign for the

3 Manuscripts do not agree in about when and when not to use an abbrevation, but all
use them; Diophantos’ introduction leaves no doubt that they are really his, and no later
scribal invention.
4 Diophantos wrote without distinguishing between majuscules and minuscules. Beyond
indicating the phonetic reading, the complements thus make sure that the symbols for
the dynamis and the kybos are not read as 4 and 20, respectively (the stroke indicating
that numbers and not letters are meant will have been easily overlooked or produced
by material accident on papyrus).

Heath [1921: II, 457] argues from the various forms of the sign in Medieval
manuscripts that even the sign for the αριθνος is derived from a contracted αρ. However,
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monad (“power zero”), and for numbers occurring as denominators in frac-
tions,[5] except in the compact writing of fractions where means . Addition“ 5

16
” 16

5
is implied by juxtaposition, subtraction and subtractivity are denoted by the
abbreviation (λειψις, “missing” etc.). Only one sign occasionally serves direct
operation: the designation of the “part denominated by” n (better, indeed, since
n is not always integer, the reciprocal of n); the introduction explains it to be
indicated by a sign × for powers of the unknown. In III.xi we see that a number
which was posited to be ς× is stated immediately to be ( ) when ς itself“41

77
” 77

41
turns out to be . This would hardly have been possible if Diophantos had“77

41
”

not known at the level of symbols (and supposed his reader to recognize) that
(ς×)× = ς, and that × = . But this, as far as I have noticed without having“p

q
” “q

p
”

worked systematically on the text, is the only instance of genuine symbolic
operation.

Let us next look at a Tuscan Trattato dell’alcibra amuchabile, a compound in
three parts from c. 1365.[6] In the third part we find [ed. Simi 1994: 41f] the
request to divide 100 first by a “quantity” and then by the “quantity” plus five.
The sum of the quotients is told to be 20. So, you should first divide 100 by a
cosa (“a thing”), and next by “a cosa and 5”, and join the two quotients. Similar
problems (though with subtraction) are found in al-Khwārizmı̄’s and Abū Kāmil’s
algebras [ed. Hughes 1986: 255; ed. Sesiano 1993: 370f], and again in Fibonacci’s
Liber abbaci [ed. Boncompagni 1857: 413]. Al-Khwārizmı̄ gives a purely numerical
(but sensible) prescription for the initial, difficult steps – obviously, what he did
went beyond his technical vocabulary; Abū Kāmil uses a geometric diagram;
and Fibonacci applies proportions. The fourteenth-century treatise, however,
comes close to what we would do:

Now I want to show you something similar so that you may well understand
this addition, and I shall say thus: I want to join 24 divided by 4 to 24 divided
by 6, and you see that it should make 10. Therefore write 24 divided by 4 as
a fractions, from which comes . And posit similarly 24 divided by 6 as a24

4

its form in the papyrus P. Mich. 620 (probably early second century CE) does not agree
with Heath’s reconstruction [Vogel 1930: 373].

5 In I.23 [ed. Tannery 1893: I, 92], 50/23 appears as ν̄ κγων, “50 of 23rds”, and slightly150

23later as “150 of the said part”.
6 The first part contains the sign rules and teaches operations with roots and binomials;
the second gives the rules, mostly provided with examples, for the basic “cases” (equation
types) until the fourth degree (some of them false); the third, finally, is a problem
collection.
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fraction. Now multiply in cross, that is, 6 times 24, it makes 144; and now
multiply 4 times 24, which is above the 6, it makes 96, join it with 144, it makes
240. Now multiply that which is below the strokes, that is, 4 times 6, it makes
24. Now you should divide 240 by 24, from which 10 should result. [...]

Then follows the application:

Now let us return to our problem. Let us take 100 divided by a cosa and 100
divided by a cosa and 5 more, and therefore posit these two divisions as if they
were fractions, as you see hereby.

And now multiply in cross as we did before, that is, 100 times a cosa, which
makes 100 cose. And now multiply along the other diagonal, that is, 100 times
a cosa and five, it makes 100 cose and 500 in number; join with 100 cose, you get
200 cose and 500 in number. Now multiply that which is below the strokes, one
with the other, it makes a censo[7] and 5 cose more. Now multiply the results,
that is, 20 against a censo and 5 cose more, it makes 20 censi and 100 things more,
which quantity equals 200 things and 500 in number. ...

This text, we see, is purely rhetorical – everything is written out in full words.
On the other hand, the solution proceeds by means of formal operations, in a
way we are accustomed to in symbolic algebra; rhetorically expressed poly-
nomials are dealt with as if they were the numbers of normal fraction arithmetic.
We may say that the lexicon of the text is rhetorical, but its syntax (in part)
symbolic.[8]

Characteristic for this syntax is the phenomenon of embedding: the insertion
of something possibly complex in the place of something simpler. We know the
phenomenon from ordinary language making use of subordinate clauses: I go
now → I go when it pleases me. In contemporary symbolic mathematics indefinitely
nested embedding is possible – for instance, in continued fractions, or in the

7 The censo is the square on the cosa.
8 (An aside:) And why not? As pointed out by André Weil in a famous polemical note
[1978: 92] that deserves to be read for much more than it venomous concluding paragraph,
“words, too, are symbols”. We, when reducing “3 things and two added equal 17” into
“3 things equal 15” probably use our training in letter algebra, that is, use the syntax of
symbolism, stepping outside the framework of grammatical language and forgetting for
a while to think of that which the words stand for. A genuinely rhetorical solution would
follow the principles of Euclid’s common notions (if only at the intuitive level): “But then,
since removing equals from equals gives equals, 3 things alone must equal 17 with 2
removed”, etc. Whether an algebraic text becomes truly rhetorical or hiddenly symbolic
depends in part on the reader.
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graphically simpler expression

1 + (1 + (1 + (1 + (1 + (...)))) .x

2

x

3

x

4

x

5

x

6

In ordinary language, the same possibility is present, restricted only by pragmatic
considerations of comprehensibility – “This is the man all tattered and torn /
That kissed the maiden all forlorn / That milked the cow with the crumpled
horn / That tossed the dog / That worried the cat / That chased the rat / That
ate the cheese / That lay in the house / that Jack built”.

We may now turn back to Nesselmann. As we remember, he ascribed to
the Indian mathematicians a symbolic algebra that precedes that of Europe by
many centuries.

We may look at an example, borrowed from Bhaskara II (b. 1115) via [Datta
& Singh 1962: II, 31f]. What we would express

5x+8y+7z+90 = 7x+9y+6z+62
is written by Bhāskara as a scheme

yâ 5
yâ 7

kâ 8
kâ 9

nî 7
nî 6

rû 90
rû 62

while our
8x3+4x2+10y2x = 4x3+0x2+12y2x

appears as

yâ gha 8
yâ gha 4

yâ va 4
yâ va 0

kâ va yâ.bhâ 10
kâ va yâ.bha 12

Datta and Singh quote David Eugene Smith [1923: II, 425f] for the stance that
this notation is “in one respect [...] the best that has ever been suggested”, namely
because it “shows at a glance the similar terms one above the other, and permits
of easy transposition”.

However, the Indian schemes do not permit direct multiple embedding –
for instance the replacement of yâ by a polynomial. Nor are they meant for that,
they serve exclusively for reducing one side of an equation to zero. For the rest
of the argument (the initial part that precedes the scheme as well as that based
on the reduced equation) is as syncopated as that of Diophantos, albeit with a
more systematic use of the abbreviations (and goperating with several
unknowns) – see the chapter “Varieties of Quadratics” in Bhāskara’s Lı̄lāvati
[ed. trans. Colebrooke 1817: 245–267]. Replacing a simple by a composite
expression requires the same amount of thinking in the Indian notation as in
a rhetorically expressed algebra. It is not impossible in either case.

Indian schemes allow certain direct operations, and in this sense they clearly
constitute a symbolism, as claimed by Nesselmann. However, Smith is right that
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this notation is the best “in one respect” only – namely for linear reductions
within the restricted framework of problems actually dealt with by Bhāskara.
It allows operations directly at the level of symbols, but only a rather limited,
non-expandable set of operations.

Stumbling progress toward algebraic symbolism

On an earlier occasion [Høyrup 2010] I have described the slow development
of algebraic symbolism, from the first introduction in late twelfth-century
Maghreb to the final unfolding around Viète and Descartes – not only “hesitat-
ing”, as my title said, but stumbling. A summary will be useful for the following.

At some moment mathematicians in the Islamic West (the Maghreb, in the
general sense including also al-Andalus) invented not only the writing of fractions
with a stroke (taken over in the Latin Liber mahameleth, plausibly from the 1160s)
but also notations for composite fractions, most important the notation for
ascending continued fractions such as meaning + + (they are usede c a

f d b

a

b

c

bd

e

bdf
in Fibonacci’s Liber abbaci, almost certainly already in the lost first version from
1202).

Probably towards the very end of the century (Fibonacci does not know about
it), an algebraic symbolism was created, with symbols for powers zero to three
of the unknown, and signs for subtraction, inverse, square root and equality;
ibn al-Yāsamin († 1204) may have been the inventor. It was first described by
Franz Woepcke on the basis of its use by al-Qalasādı̄ (15th c.) in [1854], that is,
well after Nesselmann’s perspicacious reference to “all so far known Arabic and
Persian algebraists”. Already Woepcke suspected from ibn Khaldūn’s report that
the notation might go back to the twelfth century, as now confirmed by scattered
occurrences in writings of ibn al-Yāsamin – see [Abdeljaouad 2002: 11]; from
these early traces it is not clear whether the full system as known from later
centuries was there from the beginning. Signs for the powers are written above
their coefficient, the root and inverse signs above their argument. The signs are
derived from the initial letters of the corresponding words but provided with
tails enabling them to cover composite expressions, that is, to delimit algebraic
parentheses; the notation served to write polynomials and equations, and even
to operate on the equations.

The phrase “algebraic parentheses” asks for two observations. Firstly, a
parenthesis is not a (round, square or curly) bracket nor a pair of brackets but
an expression that is marked off, for example by a pair of brackets; in spoken
language, pauses may mark off a parenthesis in the flow of words, and in written
prose these are often rendered as a pair of dashes. An algebraic parenthesis is an
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expression marked off as a single entity that can be submitted as a whole to
operations; in calculations it has to be determined first. When division is indicated
by a fraction line, this line delimits the numerator as well as the denominator
as parentheses if they happen to be composite expressions (for instance,
polynomials). Similarly, the modern root sign marks off the radicand as
a parenthesis.

Secondly, it is to be observed that the Maghreb notation, though possessing
the parenthesis function, does not exploit it fully. More on this below.

The early evidence is accidental, but later extant Maghreb writings are
sometimes systematic in their use of the notation, showing that at least its fully
developed form can be regarded as a genuine symbolism at the Indian level
(though so different in character that influence one way or the other can be safely
disregarded).

In these later writings, the symbolic calculations are as a rule made separately
from the running text (as can be seen in Woepcke’s translation of al-Qalasādi),
usually following after a phrase “its image is” and thus illustrating the preceding
rhetorical exposition. They can also stand as marginal commentaries, as in the
“Jerba manuscript” (written in Istanbul in 1747) of ibn al-Hā im’s Šarh al-Urjūzah
al-Yasminı̄ya, “Commentary to al-Yāsamin’s Urjuza” (originally written in 1387)
[ed. Abdeljaouad, 2004]. Such marginal calculations probably correspond to what
was written on a takht (a dustboard, in particular used for calculation with Hindu
numerals) or a lawha (a clayboard used for temporary writing) – see [Lamrabet
1994: 203] and [Abdeljaouad 2002: 14, 19f].

Fibonacci, as stated, does not know the Maghreb notation (his copious use
in non-algebraic contexts of rectangular schemes rendering what would be written
on a lawha makes it almost certain he would have used it if he had known about
it). Nor does the earliest generation of abbacus algebra as represented by Jacopo
da Firenze’s Tractatus algorismi [ed. Høyrup 2007a].[9] Even algebraic abbre-
viations are absent in this earliest phase, although abbreviations are of course
used profusely in the writing of current words.

9 There are strong reasons to suppose that this algebra, present in only one of the three
manuscripts, belongs to Jacopo’s original work; but even if it should be a later insertion,
its closeness to the second section of the Trattato dell’alcibra amuchabile (above, note 6)
and the way the two texts are reflected in Paolo Gherardi’s Libro de ragioni from 1328
shows that it must antedate the latter treatise – see [Høyrup 2007a: 23–25, 163f] and hence
all other extant vernacular algebra texts.
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Soon, however, some traces of symbolic operation turn up. Paolo Gherardi’s
Libro de ragioni from 1328 [ed. Arrighi 1987: 101] describes operations on a
diagram (itself missing in the copy, which also has a defective text on this
point,[10] but which is found in a parallel text[11]):

The context is the same problem as discussed above, just after note 6. Clearly,
the same operations are thought of, even though the diagram is more rudimen-
tary.

In the first part of the Trattato dell’alcibra amuchabile, schemes are used to teach
the multiplication of binomials – for example (we now observe the abbreviation

for radice, “root”):

The binomials are numerical, but since al-Khwārizmı̄ irrational roots had been
used so to speak as pedagogical stand-ins for algebraic roots (square roots of
the censo, that is, cose).

The Trattato dell’alcibra amuchabile was written in c. 1365, but even this part
of its material is probably older. In Dardi of Pisa’s Aliabraa argibra from 1344,[12]

we find something similar though more elaborate:

Here we find a supplementary abbreviation, for meno, “less”. Dardi indeed

10 Unless, of course, Gino Arrighi copies the manuscript badly. However, I doubt that
Arrighi would first read parto as porto, then omit e poi parto 100 in più 5 che prima (or
something similar), and finally also omit a diagram spoken of in the text.
11 Florence, Ricc. 2252, see (Van Egmond, 1978, p. 169).
12 I use the manuscript Vatican, Chigi M.VIII.170, written in Venetian in c. 1395, checking
with Van Egmond’s personal transcription of a manuscript from 1429 actually held by
Arizona State University Temple, for access to which I am grateful. In some of the details,
the Arizona manuscript appears to be superior to the others, but at the level of overall
structure the Chigi manuscript is demonstrably better – see [Høyrup, 2007a: 169f].
Considerations of consistency suggests it to be better also in its use of abbreviations and
other quasi-symbolism, for which reason I build my presentation on this manuscript (cross-
checking with the transcription of the Arizona-manuscript – differences on this account
are minimal); for references I use the original foliation.
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uses abbreviations systematically: radice is always , meno (“less”) is , cosa is
c, censo is Ç, numero/numeri are nũo/nũi. Cubo is unabridged, censo de censo (the
fourth power) appears not as ÇÇ but as Ç de Ç (an expanded linguistic form
which we may take as an indication that Dardi thinks in terms of abbreviation
and nothing more). Roots of composite entities are written by a partially

rhetorical expression, for instance (fol. 9v) “ de zonto cô de 12” (meaning
1

4

; zonto corresponds to Tuscan gionto, “joined”; that a root is “joined”1

4
cosa 12

means that it is taken of composite expression, mostly a binomial).

Algebraic monomials are written in a way which we might be tempted to
see as an inversion of the Maghreb notation – for instance, “4 cose” is written

. The same notation is used in the original manuscript of the Trattato di tutta4

c
l’arte dell’abbacho from 1334.[13] Closer inspection of the use reveals, however,
that the notation must be understood as a mere reflection of the spoken form,
in analogy with the frequent writing of the ordinal il terzo as “il ” (for example1

3
number three of “three men”) – that is, the fraction notation itself is not
understood as an indication of division but as a way to write the ordinal form
of the numeral. Even though Dardi was indubitably the best abbacus
mathematician of his days and the first to write a treatise dealing solely with
algebra, and more consistent in his use of algebraic standard abbreviations than
anybody else in his century, he saw no point in exploring the possibilities of
symbolic operations.

All in all, until the mid-14th century the only symbolic operations we find
are those on formal fractions and the multiplication of binomials in schemes –
both rather rudimentary, the former plausibly inspired from Maghreb practices,
the latter perhaps an independent development. Algebraic abbreviations remained
abbreviations and nothing more, and only Dardi used them systematically.

In the early 15th century, the use of standard abbreviations (co and ce) for
cosa and censo become common (but more often used in marginal annotations
than in the running text, rarely very systematically, and very rarely for symbolic
operations); they are often written above the coefficient, which might suggest
inspiration from Maghreb ways. The first trace of such recent interaction is the
algebra section of a Tratato sopra l’arte della arismetricha written in Florence around

13 Florence, Bibl. Naz. Centr., fond. princ. II.IX.57. For the dating and for reasons not to
ascribe the work to Paolo dell’Abbaco, see [Cassinet 2001].
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1390.[14] Recent contact of some (probably indirect) kind with the Arabic world
is suggested by the use of censo for an amount of money which the compiler
(in spite of being apparently an extraordinary mathematician) does not
understand – after having found the censo he takes its square root, believing it
has to be an algebraic square, and then has to multiply it with itself in order
to find the unknown amount. Beyond sophisticated use of polynomial algebra
in the transformation of equation types, we find here a clear discussion of the
sequence of algebraic powers as a geometric progression, to which we shall have
to return.

The running text contains no abbreviations and certainly nothing foreshadow-
ing symbolic operations. Inserted to the left, however, we find a number of
schemes explained by the text and showing multiplication of polynomials with
two or three terms (numbers, roots and/or algebraic powers).

Those involving only binomials are related to those of the Trattato dell’alcibra
amuchabile and Dardi. The schemes for the multiplication of three-term poly-
nomials are of a different kind. They emulate the scheme for multiplying multi-
digit numbers, and the text itself justly refers to multiplication a chasella [ed.
Franci and Pancanti 1988: 9]. The a casella algorithm (roughly identical with ours)
differs only from the older a scacchiera algorithm, used in the Maghreb multiplica-
tion of polynomials (see the “Jerba manuscript” [ed. Abdeljaouad 2002: 47]), by
using vertical instead of slanting columns.

Such schemes (and other schemes for calculation with polynomials) turn up
not only in later abbacus writings (for instance, in Raffaello Canacci’s Ragionamenti
d’algebra [ed. Procissi 1954: 319 and passim], on which more below) but also in
Stifel’s Arithmetica integra [1544, fols. 3vff], in Jacques Peletier’s L’Algèbre [1554:
15–22] and in Petrus Ramus’s Algebra [1560: fol. A iiir]. On the other hand,
schemes of this type are absent from the three major “abbacus encyclopediae”
from c. 1460, all three Florentine and in the tradition reaching back via Antonio
de’ Mazzinghi (c. 1353 to c. 1391 [Ulivi 1996: 110f]) to Paolo dell’Abbaco and
Biagio “il vecchio” (mid- and early-mid-14th c.). Most famous and known from
many copies is Benedetto da Firenze’s Trattato de praticha d’arismetrica. The other
two (both known only from the autograph) are Florence, Palatino 573, and
Vatican, Ottobon. lat. 3307 – the compilers of the latter two being both pupils
of a certain Domenico d’Agostino vaiaio.

14 Bibl. Naz. Centr., fondo princ. II.V.152. Its algebraic section was edited by Raffaella
Franci and Marisa Pancanti [1988].
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On the other hand, here we find marginal schemes of this type:

Antonio
marginalberegning

A marginal calculation accompanying the same problem from Antonio’s
Fioretti in Siena, Biblioteca Comunale degli Intronati, L.IV.21, fol. 456r

and Ottobon. lat. 3307, fol. 338v (both redrawn).

The appearance of the scheme in similar shape in the different encyclopediae
suggests that it goes back to Antonio (from whom the problem itself is borrowed).
We also find an abundance of formal fractions, and schemes of a different kind
for the multiplication of binomials (ρ stands for cosa, c for censo):

Benedetto
455r

Benedetto’s multiplication of (1ρ–√[131 –1c]) by (1ρ+√[13 1/2 –1c]).
Redrawn after the autograph Siena, Biblioteca Comunale degli
Intronati, L.IV.21, fol. 455r.

All in all, as I summarized the matter in [Høyrup 2010: 39]:

The three encyclopediae confirm that no systematic effort to develop notations
or to extend the range of symbolic calculation characterizes the mid-century
Italian abbacus environment – not even among those masters who, like Benedetto
and the compiler of Palat. 573, reveal scholarly and Humanist ambitions [...].
The experiments and innovations of the fourteenth century – mostly, so it seems,
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vague reflections of Maghreb practices – had not been developed further. In that
respect, their attitude is not too far from that of mid-fifteenth-century mainstream
Humanism.

As Humanism, the character and use of notations underwent some changes
toward the end of the century – and not only as a consequence of printing (the
notational innovations are also found in manuscripts, and sometimes they are
more thorough there).

Firstly, the use of abbreviations becomes more systematic, and there is some
exploration of alternative systems; secondly, the character of the sequence of
powers as a geometric series is taken note of more often, and the sequence of
powers is linked to the natural numbers. Sometimes the numbering coincides
with our exponents, but the most influential work – Luca Pacioli’s Summa –
makes the unfortunate choice to count number as level 1, and cosa as level 2 (etc.).
In consequence, it still asks for thinking to see that an equation involving (for
example) censi di censo, censi and numero is simply a quadratic equation with
unknown censo.[15]

We still find schemes for multiplication of binomials, sometimes like those
of Dardi, sometimes similar to Benedetto’s, and also symbolic marginal calcula-
tions similar to what Benedetto and his contemporaries had offered – but hardly
anything that goes beyond them.

We may jump – in time, and also socially, namely to a scholar treating in
Latin of abbacus mathematics von höheren Standpunkt aus – to Cardano’s Practica
arithmetice, et mensurandi singularis from [1539]. Here, we find not only indented
marginal schemes (in Benedetto style) but also compact writings in the running
texts – a very simple case is the statement (C viir) that “ducendo .8 ad . fit

64”; somewhat more complex (D ir) “1.co.p̃. ”, meaning 1 cosa + .1.men. 1.co.

1.ce.piu.1.

1 – 1cosa

1censo 1
“Plus”, we observe, may appear both as p̃ and as piu. As we shall see below,
the use of the parenthesis function is even less systematic in Cardano’s Ars magna
from 1545. It is doubtful whether this can have assisted symbolic operations,
and even whether it has supported thought better than full writing (as the
marginal schemes indubitably do, but only for the addition, subtraction and
multiplication of binomials, which they had always served).

15 In contrast, the manuscript Modena, Bibl. Estense, ital. 578 (a copy from c. 1485 of an
earlier but probably not much earlier original), whose numerical gradi coincides with
exponents, classifies higher-degree equations according to the quadratic equations to which
they correspond, and does not need to waste words on the matter.

- 12 -



Tartaglia’s Sesta parte del general trattato from [1560] is not very different in
its use of notations: there are schemes for the operations on binomials, still in
Benedetto’s style (trinomials are treated stepwise, the a casella scheme for
polynomials from the Tratato sopra l’arte della arismetricha seems to have been
forgotten). We also find formal fractions like (fol. 23r [16]) and other240ce. men 48000

1ce. p 14 co. p 60
expressions using abbreviation used in the running text – but nothing with
suggests thought supported by symbolic operations.

Michael Stifel, in the Arithmetica integra [1544], as already Christoph Rudolff
in the Coss [1525], use the modern symbols +, – and √, but without making any
other changes.

Noteworthy innovations are to be found in the works of Chuquet and
Bombelli, but since these innovations are central to our topic we shall deal with
them below.

Powers

Let us now return, not so much to embedding as a mere fact as to the
willingness to think in terms of embedding. This willingness is revealed by the
ways in which higher powers were named.

Diophantos introduces these terms for the powers of the unknown [ed.
Tannery 1893: I, 2–6]:[17]

αριθμóς (first power)
δυναμις (second power)
κυβος (third power)
δυναμοδυναμις (fourth power)
δυναμοκυβος (fifth power)
κυβοκυβος (sixth power)

Obviously, juxtaposition here means multiplication. Nothing in the grammatical
construction would suggest otherwise, the nouns are glued together in the
standard way to make compositions.

Arabic algebra is very similar. A systematic exposition was given by al-Karajı̄
in the Fakhri [Woepcke 1853: 48]:

16 Actually, the p standing for piu is encircled.
17 Hippolytos refers to the same sequence and names in his Refutation of all Heresies, I.2.10
and IV.51.8 ed. [Wendland 1916: 6, 75]. Since Diophantos speaks of the terms as “having
been approved” (εδοκιμασθη), this is hardly astonishing.
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jidhr or šai (first power)
māl (second power)
ka b (third power)
māl māl (fourth power)
māl ka b (fifth power)
ka b ka b (sixth power)
māl māl ka b (seventh power)
ka b ka b (eighth power)
ka b ka b ka b (ninth power)

“and so on, until infinity”; indeed, the system allows naming of all powers.
Juxtaposition once more stands for multiplication. Grammatically, the connection
between the nouns is a genitive, but the Semitic genitive does not, like its Indo-
European namesake, necessarily imply a subordination – as we shall see, the
use of the Latin and Italian genitive was in the long run to enforce a reading
of “the cube of the cube” as the ninth power.

Only in the long run, however. The Latin translations of al-Khwārizmı̄’s
algebra have no names for powers beyond the second (various biquadratics and
other easily reducible higher-degree equations are reduced without names being
given to the higher powers, and therefore do not turn up in the problems). The
Liber mahameleth refers twice to the cubus, explains the first time that the cubus
is the product of the census and its root [ed. Vlasschaert 2010: 338, 363], but goes
no further in the sequence.

Fibonacci, however, does. He does not explain the names nor a fortiori the
whole sequence, but in the Liber abbaci he makes use of those which he needs
[Boncompagni 1857: 447f, 450f, and passim]. Here we see that the sixth power
may be cubus cubi as well as census census census (this equivalence is stated on
p. 447, and the latter expression seems to be his standard; we may guess that
he follows an Arabic model), while the eighth power is census census census census.
He obviously uses the Latin genitive in the Arabic way.[18]

The early abbacus algebras – for instance, Jacopo – go no further than the
fourth power, which is censo di censo (while the third power is cubo). Since 2+2 =
2×2, they can tell us nothing about conceptualizations.

The earliest abbacus writer known to go beyond this limit is a certain
Giovanni di Davizzo. A manuscript written in 1424 (Vatican, Vat. lat. 10488)
contains seven pages claimed to be copied from a treatise written in 1339 by him;

18 In the Pratica geometriae [ed. Boncompagni 1862: 207] census census and cubus cubi are
used in the same way, pp. 214–216 census census census and census census census census.

- 14 -



since the style (use of abbreviations, etc.) is wholly different from what comes
before or after, we can probably accept the dating. The interesting part for our
present discussion [ed. Høyrup 2007b:479–481] first gives rules for the multiplica-
tion of powers, some of which show the thinking to be multiplicative in spite
what might be suggested by the grammar:

and thing times censo makes cube
and cube times cube makes cube of cube
and censo times cube makes censo of cube.

Then follows something which will wring the bowels of any modern mathema-
tician – a daring but mistaken attempt to express negative powers, namely
confounding them with roots (the first negative power stated to be “num-
ber”):[19]

And know that dividing number by thing gives number
and dividing number by censo gives root
and dividing thing by censo gives number
and dividing number by cube gives cube root
and dividing thing by cube gives root
and dividing censo by cube gives number
and dividing number by censo of censo gives root of root
and dividing thing by censo of censo gives cube root
and dividing censo by censo of censo gives root
and dividing cube by censo of censo gives number
and dividing number by cube of cube gives cube root of cube root
and dividing thing by cube of cube gives root of cube root
and dividing censo by cube of cube gives root of root
and dividing cube by cube of cube gives cube root
and dividing censo of censo by cube of cube gives root
...

It may not be warranted to take the text as more than a play with words, but
we can still try to take it as seriously meant, and suppose that Giovanni’s “roots”
in this context are intended to be the same as those he speaks about in the first
part of the excerpt (which are those of everybody else). Under these conditions
we see that even his roots are supposed to be composed “multiplicatively”
(whatever can have meant by that) – for instance, that the cube root of the cube

19 Along with a number of false solutions to cubics and quartics, this system survived
until Bento Fernandes’ Tratado da arte de arismetica from 1555, see [do Céu 2008]. Maria
do Céu’s attempt (p. 9) to save the system mathematically is ingenious but disagrees
completely with the words and the structure of the various texts that state these rules
(and obviously never use them).
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root is the sixth, not the ninth root. Similarly, the Trattato dell’alcibra amuchabile
[ed. Simi 1994: 48] takes radicie de radicie chubica to be the fifth – but since this
is once again in a messy context where no calculation is performed, the compiler
has no reason to discover that his rule is absurd.

Dardi knows better. His names for the powers are still in the Arabic style,
and he even explains like Fibonacci that Ç di Ç di Ç is the same as cubi di cubi
(fol. 43r). Since most of his problems involve radicals (in the style of “roots of
cubes”), he gives us the occasion to observe that he is aware that repeated root
taking involves embedding – expressing for example (fol. 95r) the twelfth root

as cuba de de overo de de cuba ( or ), while his term for
3

a
3

a

the twelfth power would be cubo di cubo di cubo di cubo. But this terminological
insight and innovation has a price: Dardi has no name for the fifth and the
seventh root, and once replaces the former by cuba (fol. 97v), and once the latter
by dela (fol. 98r), thus ending up with mistaken rules – cf. [Van Egmond 1983:
417]. In spite of his manifest command of the sequence of powers, he is at the
limits of what he can express.

Toward the end of the century, the frontier had moved, and the consequences
of the genitive construction are made themselves felt – but as yet inconsistently.

The manuscript Palat. 573 (one of the three “abbacus encyclopedia”
mentioned above) quotes Antonio de’ Mazzinghi for the following [ed. Arrighi
1967: 191]:

Cosa is here a hidden quantity; censo is the square of the said cosa; cubo is the
multiplication of the cosa in the censo; censo di censo is the square of the censo,
or the multiplication of the cosa in the cubo. And observe that the terms of algebra
are all in continued proportion; such as: cosa, censo, cubo, censo di censo, cubo relato,
cubo di cubo, etc.

As we see, Antonio avoids speaking of the fifth power as cubo di censo or censo
di cubo, introducing instead a neologism; but his naming of the sixth power is
still multiplicative. The name for the fifth power may have been inspired by his
term for the fifth root, appearing in a problem about composite interest [ed.
Arrighi 1967: 38] as radice relata.

The extensive algebra section of a Tratato sopra l’arte della arismetricha
(Florence, c. 1390, see above) – also from the hand of a highly competent
algebraist – starts by explaining how the powers are produced one from the
other, and that they are in continued proportion [ed. Franci & Pancanti 1988:
3–5]. One particularity is an extra identification of these as “roots”, namely (as
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explained) as the roots which they have.[20] Taking this into account, the
sequence is

cosa (first power)
censo or radice (second power)
cubo or radice cubica (third power)
censo di censo or radice della radice (fourth power)
cubo di censi or una radice che nascerà d’una quantità quadrata

chontro a una quantità chubicata or (some say) radice relata
(fifth power)

censo di cubo (sixth power)
For the sixth power it is stated (but not properly given as a name) that one may
take the root, and of this quantity take the cube root. The author thus recognizes
the embedding of the taking of roots, and transfers this to the name censo di cubo,
corresponding to our (x3)2; this, however, does not force him to give up the
multiplicative name for the fifth power, also identified as “a root born from a
squared root multiplied against a cubicated quantity”. The name radice relata
ascribed to “some”, we observe, coincides with the name for the fifth root used
by Antonio.

Benedetto as well as Palat. 573, both of whom copy long extracts from
Antonio, also take over his naming in their independent chapters. The third
encyclopedia instead (Ottobon. lat. 3307) uses both cubo di censo and censo di cubo
about the fifth power; the intervening 70 years have thus not witnessed any steps
beyond the inconsistencies of the late 14th century.

There is some – though not yet really exhaustive – change toward the end
of the century. Above, the algebra of the Modena manuscript Bibl. Estense, ital.
578 was mentioned for its use of gradi coinciding with our exponents. It also
uses the “root names” for the powers, and the abbreviations C, Z and Q for cosa,
censo (thought of in the North Italian orthography zenso) and cubo – in the
running text (and once in the scheme below), however, censo is represented by
a variant of Dardi’s Ç.[21] The whole sequence (fol. 5r) is then abbreviated

20 “tanto vol dire uno censo quanto dire una quantità ch’à radice” (p. 3); “questa quantità
di nome che produce radice relata” (p. 5).
21 Namely, with a much enlarged cedilla – of interest only because Jacques Peletier also
uses it in [1554], which shows him to know not only Stifel, Pacioli and Cardano but also
at least part of the manuscript tradition.
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N (power zero)
C (first power)
Z (second power)
Q (third power)
ZÇ (fourth power)
Cd̄ZZ (fifth power)
ZdiQ (sixth power)
Cd̄ZdQ (seventh power)
Zd̄ZZ (eighth power)
Qd̄Q (ninth power)

Since, as always, 2+2 = 2×2, we cannot decide the principle according to which
the name for fourth power is formed; the fifth, however, is clearly formed from
the fourth as a multiplication, whereas the 6th is based on embedding. The
seventh is based on mixed principles, the eighth and the ninth on pure
embedding.

On fol. 5v, a new scheme gives the corresponding root significations:
C: egli che trovi.
Z: la R. di quello.
Q: la R. quba di quello.
ZÇ: la R. di R. di quello.
Cd̄ZZ: la sua R. di quello.
ZdiQ: la sua R. de la R. di quello.
Cd̄ZdQ: la 7a R. di quello.
Zd̄ZZ: la R. di R. di R. di quello.
Qd̄Q: la RQ di la RQ di quello.

As we see, there is a strong coupling between the roots that are expressed via
embedding and the corresponding powers. The seventh, irreducible root is
referred to with this name, whereas the fifth root is unspecified.[22] All in all,
a preliminary conclusion suggests itself: Namely that the much more obvious
embedding of roots is what started enforcing also the view of power-taking as
an embedding (or, in modern mathematical terms, as a function or an operation).

Raffaello Canacci’s Ragionamenti d’algebra from c. 1495 has idiosyncratic names
for some of the higher powers:

22 It is possible but rather unlikely that the copyist has misread “5a” as “sua”.
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numero (power zero)
chosa (first power)
censo (second power)
cubo (third power)
censo di censo (fourth power)
chubo di censo (fifth power)
relato (sixth power)
promico (seventh power)
censo di censo di censo (eighth power)
chubi di chubi (ninth power)
relato di censo (tenth power)

The fifth power is thus named according to the multiplicative principle, but the
eighth and ninth by embedding (the Modena manuscript does the same, but
not in the same way for the fifth power). The name for the sixth power is the
one others use for the fifth power, and that for the seventh is even more
astonishing, and in absolute conflict with normal usage.[23] The name for the
tenth power falls outside both systems (but see imminently).

Canacci also experiments with graphic notations for the powers – censo is
a square, cubo a vertically divided rectangle, censo di censo two separate squares,
his relato a horizontally divided rectangle, his promico a horizontally divided
square. Their compositions emulate those of the names.

According to Francesco Ghaligai [1521: 71], the same names and graphic signs
had been used by Giovanni del Sodo (Cannacci’s teacher) in his algebra, with
the extension that the 11th power was tromico, and the 13th was dromico. But
del Sodo, according to Ghaligai, used relato about the fifth power, and named
the sixth power with embedding, as cubo di censo. In this system, relato di censo,
understood as embedding, is really the tenth power. Del Sodo’s system is thus
consistently based on embedding, although his graphic notation must be
characterized as unhandy. Canacci’s inconsistencies, it turns out, must be traced
back to deficient understanding of his model (his rules for multiplication of
powers [ed. Procissi 1954: 433] confirms this). However, such misunderstandings

23 Pronic numbers are numbers of the form n (n+1), and the pronic root is related in other
authors to this concept, though not always in the same way. According to Pacioli [1494:

I, 115v], the pronic root of 84 is 9, because (92+1) = 84, while Gilio [ed. Franci 1983:9
18f] as well as Muscharello [ed. Chiarini et al 1972: 163] state that it is 3. Benedetto [ed.
Pieraccini 1983: 26] suggests without being quite clear that the pronic root of 18 is 4, which
would agree with Pacioli (2 (23+1) = 18).
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on the part of an otherwise competent abbacus write shows that del Sodo’s way
to think was not yet commonplace, nor central to mathematical practice –
concepts that are appropriated through use are not mixed up like this by trained
practitioners.

In Pacioli’s Perugia manuscript from 1478 [ed. Calzoni & Gavazzoni 1996],
those 25 sheets are missing where a systematic presentation of the powers would
be expected (also according to Pacioli’s own table of contents). Since the problems
do not deal with powers beyond the fourth, we can only see that cosa, censo, cubo
and censo di censo are represented by superscript co, , Δ and . from which we
can derive nothing.

We may look instead at his Summa from [1494], which uses a different
notation (plausibly because superscripts were not possible for his printer). Here,
fol. 67v [24] the 30 gradi of the “algebraic characters” or dignità (as he says they
are called):

1a no. numero (power zero)
2a co. cosa (first power)
3a ce. censo (second power)
4a cu. cubo (third power)
5a ce.ce. censo de censo (fourth power)
6a po.ro primo relato (fifth power)
7a ce.cu. censo de cubo e anche cube de censo (sixth power)
8a 2o.r0. secundo relato (seventh power)
9a ce.ce.ce. censo de censo de censo (eighth power)

. . .
29a ce.ce.2o.ro. censo de censo de secundo relato (twenty-eighth power)
30a [9o]ro. nono relato (twenty-ninth power)

Everywhere, composition means embedding, and the prime powers are
designated as 1st, 2nd, 3rd, 4th, ... 9th relato.

So, with del Sodo and Pacioli, embedding-composition has become the sole
principle. Or, in other words, taking a power has become an operation, and the
power itself more or less a function. And in the Modena manuscript as well as
Pacioli, the members of the sequence are identified arithmetically.

Chuquet’s Triparty des nombres [ed. Marre 1880] from 1484 was more radical.
Dropping all names, Chuquet simply wrote the exponent of the power superscript
after the coefficient. This was too radical, at least in the opinion of Étienne de
la Roche, whose Larismethique nouvellement composee from [1520], based to a large

24 Repeated on fol. 143r within a more complicated structure.
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extent on Chuquet’s work and the only channel through which Chuquet’s ideas
reached the world, turns instead to the notations that were becoming current
in German algebra at the time, for instance in Rudolff’s Coss (ultimately going
back to the Florentine notations of the mid-15th century) – see [Moss 1988], in
particular the comparison between Chuquet’s manuscript and de la Roche’s
corresponding text on p. 122.

Rudolff [1525: D iiv] offers this sequence (omitting the graphic symbols):

dragma oder numerus (power zero)
radix (first power)
zensus (second power)
cubus (third power)
zensdezens (fourth power)
sursolidum (fifth power)
zensicubus (sixth power)
bissursolidum (seventh power)
zenszensdezens (eighth power)
cubus de cubo (ninth power)

– also based on embedding, but with new terms for the prime powers, obviously
invented in a Latinizing environment (sursolidum/supersolidum might be related
to Antonio’s cubo relato – a cube, after all, is a solid).

The same powers and graphic symbols are given by Stifel in the Arithmetica
integra [1544: 234v–235r] – but Stifel goes on until the 16th power (after zenso-
cubicus only with graphic symbols). Similarly, Tartaglia, in the Secunda parte del
general trattato de numeri e misure [1556: 73r] repeats Pacioli’s list – and again in
the Sesta parte [1560: 1r], though stopping here at the 14th power because one
very rarely needs so high powers (but pointing out in both volumes that one
may go on in infinito).

Bombelli, in the manuscript of his L’algebra, uses an arithmeticized notation
with indication of the power written above the coefficient – for instance, for
“30 cose” [Bortolotti 1929: 21], which in the printed version would become 30 1.
In the beginning of book I [Bombelli 1572: 1–3], however, he explains the terms
which we know from Pacioli and Tartaglia – though only until numero quadro-
cubico, over cubicoquadrato. As Tartaglia in the Sesta parte he obviously sees no
purpose in discussing, for the sole reason that they can be given a name, powers
that are of no use in his work.

All in all, the insights in this domain that had been reached by del Sodo and
Pacioli in the late 15th century were conserved and systematized but not
superseded during the following century. But how could they be without an
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explicit parenthesis function allowing the automatization and apparent
trivialization[25] of such insights as xmn = (xm)n = (xn)m ? Therefore, we shall now
turn our attention to the algebraic parenthesis.

The parenthesis before and until the brackets

Once upon a time there was a “Babylonian algebra”. It was discovered (or
invented) around 1930, but over the last three decades I believe I have managed
to convinced most of those who work seriously on the topic that the numbers
found on the tablets and supposed to reflect algebraic operations correspond
instead to the measures of geometric entities manipulated in a cut-and-paste
technique. For instance, let us look at a literal translation of the very simplest
second-degree example – the first problem on the tablet BM 13901, a “theme
text” about squares:[26]

1. The surface and my confrontation I have

heaped: is it. 1, the projection,3

4
2. you posit. The moiety of 1 you break, 1

2
and you make hold.1

2
3. to you join: by 1, 1 is equal. which1

4

3

4

1

2
you have made hold

4. from the inside of 1 you tear out: the con-1

2
frontation.

A “confrontation” is the side of a square (which
“confronts” its equal), the “moiety” is a “natural
half”, that is, a half whose role could not be filled
by any other fraction. To “make a and b hold”
stands for the construction of a rectangle with
sides a and b, and that s “is equal by” A means
that s is the side of the area A laid out as a square.
The “projection” gives the clue to the method: at
first the side or “confrontation” c is provided with
a “projection”, a breadth 1, which transforms it
into a rectangle with area 1 c = c. Then, according
to the statement, this rectangle, together with the square (c), has a total area

25 Apparent! Cf. [Weil 1978: 92], where exactly this is discussed.
26 Borrowed from [Høyrup, forthcoming]. Since the Babylonian sexagesimal place value
system is immaterial for the present discussion, I translate the numbers.
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. Breaking it into two equal parts and moving one of them around we get a3

4
gnomon, still with area , which is completed by a square of area × = .3

4

1

2

1

2

1

4
The completed square has an area + = 1 and therefore a side √1 = 1. Removal3

4

1

4
of the part which was added below leaves us with the original side, which must

hence be 1– = .
1

2

1

2

This technique seems to leave no space for anything like a parenthesis, and
at this level this immediate impression holds true. However, the technique may
be used for “representation”, that is, the sides of square and rectangular areas
may themselves be areas, volumes, numbers of working days or bricks produced
during these days, prices, etc. In the particular case where the sides of a rectangle
are two square areas, we may describe the solution as making use of an implicit
parenthesis – as when Fibonacci [ed. Boncompagni 1857: 447] solves a bi-
biquadratic problem by treating the census census census census as a square area
and the census census as its side.[27]

The Babylonian texts also present us with an explicit parenthesis function,
though only used in very specific contexts. They make use of two different
subtractive operations, removal and comparison.[28] For an entity b to be removed
from another entity B (for instance, but there are synonyms and almost-synonyms,
by being “torn out”), b has to be a part of B. An entity A that is no part of B
obviously cannot be removed from it, but instead the text may state by how much
B exceeds A. In the former case, the operation produces an entity that can be
subjected to the usual geometric operations. In the latter, however, only few texts
see the excess as an independent quantity that can be directly manipulated, for
instance by constructing a square with the excess as side (making the excess
“confront itself”). The majority would make “so much as that by which B exceeds
A” confront itself. The phrase “so much as” (mala, a single word) thus defines
a parenthesis; it is also used to tell that one entity is “so much as” a composite
expressions (for example, “So much as I have made confront itself, and 1 cubit
exceeding, that is the depth”, namely of an excavation with square base).
However, the use of this parenthesis is not general, and like implicit parentheses
(Babylonian, or Fibonacci’s) it cannot be nested without strain on thought. Within

27 However, Fibonacci takes care here not to identify this square with another census, but
uses Elements II.6 – he is not quite as close to an implicit parenthesis as is the Babylonian
text.
28 This is actually a simplification – [Høyrup 1993] provides some shades; but it is a close
approximation, and sufficient in the present context.
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the kind of mathematics that was practised (by the Babylonian calculators, or
by Fibonacci) it is also dubious whether any use for such nesting would easily
present itself.

Because of the tails with which the superscript symbols for powers and root
were provided in the Maghreb notation, these symbols may serve to delimit
parentheses – see examples in [Abdeljaouad 2002: 23–46]. The argument of a
root sign may be a complex expression, and may even itself contain roots
(nesting). Inverse taking may have an algebraic monomial as its argument, and
it may even be repeated; but the notation is ambiguous as regards the coefficient
(will it produce 5x–1 or (5x)–1 ?). Division written fraction-wise may contain
algebraic polynomials in the numerator as well as the denominator.

The situation concerning the symbols for powers is different. Here, the
argument may be an integer or a broken number or even an arithmetical
composite, but nothing else. Number, šai , māl and ka b have individual signs;
higher powers are written as composites either horizontally or vertically, but
the meaning will always be multiplicative (as in al-Karajı̄’s verbal list of their
names) – the sign for māl and ka b written together will always stand for māl
ka b (the fifth power), never for (x3)2. In other words: šai , māl and ka b are
entities, not functions or operations.

All in all: at least in its mature phase the Maghreb notation comprised a fairly
well developed parenthesis function – certainly more fully developed than
anything that can be found in Europe before and even including Viète; but like
Viète[29] it stopped short of the point where it could be used for free symbolic
manipulation.

In Latin (that is, Romance and Germanic) Europe, as we have seen, powers
remained entities until the mid-15th century; even for del Sodo, Pacioli etc., who
consistently named higher powers by embedding, it was still impossible to use
their names as operations on other entities than powers of the unknown.

29 Even Viète’s powers are entities, not functions allowing nesting; his copious use of
proportion technique would also make the use of nested expressions almost as difficult
as in the Indian notation. And like Bhaskara II, he steps outside symbolic calculation when
needing to operate with complex expressions, as for instance in Ad logisticen speciosam
notae priores, prop. 41 [ed. van Schooten 1646: 32]:

Sit radix binomia A+B, sublaterale coëfficiens D planum. Effingendum sit solidum
ub A+B , &D plano, adfectum multa cubi ex A+B. Ducatur A+B in D planum
multatum A+B cubo. Orientur solida, A in D planum, +B in D planum, A cubo, – A
quadrato in B 3, – A in B quadratum 3, – B cubo.
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Formal fractions carrying a binomial in the denominator were in use from
the mid-14th century, as we have seen; in the 15th century, trinomials also appear
occasionally. In the beginning, however, this development was stymied by the
predominant understanding of the fraction line as an indication of ordinality
and not of division; no wonder, perhaps, that this borrowing from the Maghreb
took a long time to get established.

For roots, the sign came in use before 1340 (Giovanni di Davizzo used it
in 1339, and Dardi in 1344). The cube root, however, was written cubo, and
roots of composite expressions also had to be designated “ de zonto” (Dardi),

by Gilio (who may have taken it over from his master Antonio [Franci 1983:
xxiii]), and also by Benedetto; and legata or u (u for universale or unita) by
Pacioli and Cardano. Mostly, but not consistently, this root was to be taken of
a binomial; Cardano, moreover, might use u of a binomial as the sum of the
two roots ( u(a+b) = √a+√b) – see the survey oh his notations in [Tamborini 2011:
57]. That is, u is no symbol proper but only an abbreviation, whose meaning
must be understood from context (as current in manuscript abbreviations, where
a stroke over a vowel might mean that either m or n was to follow, and where
the same abbreviation might stand for phisice as well as philosophice).

So, in spite of the original access to inspiration from the Maghreb and to
the enduring use of the algebraic parenthesis defined by the fraction line, the
obvious need for an unambiguous way to take roots of polynomials, that is, for
a delimitation of the radicand as a parenthesis, was only answered by Chuquet,
who used the simple trick to underline the radicand – see for example [Marre
1880: 734 and passim]. As far as I have noticed, he does not use the notation for
other purposes, and it is never nested. De la Roche may have found the
innovation superfluous.

For the root of binomials, Bombelli still uses Radice legata or Radice universale,
as he explains [1572: 98f]. Longer radicands (and sometimes also binomials, for
instance on p. 106), are delimited by an initial L. and a final inverted ;Γ

sometimes, the system is nested (but always with each parenthesis being a
radicand). The lack of system indicates that the purpose is disambiguation and
nothing more. Bombelli’s manuscript, however, goes somewhat further: the whole
radicand is underlined, and the beginning and the end of the line are marked
by vertical strokes – see [Bortolotti 1929: 6].

So, where does the general algebraic parenthesis begin? Not yet with Viète.
In Ad logisticen speciosam notae priores, prop. 53 [ed. van Schooten 1646: 38], what
we would write B2+(Z+D) is expressed with a rhetorical parenthesis as “B
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quadrato, + quadrato abs Z+D” – but in the accompanying diagram it appears
as “Z+Dq+Bq”, where q stands for quadratum. This is just as ambiguous and just
as context-dependent as Cardano’s u.

What then about Descartes?

Firstly, of course, Descartes has the modern, long square root , which

can also be nested – for instance [ed. Adam & Tannery 1897:1

2
a 1

4
aa bb

VI, 375]. Next, he uses complex expressions involving multiple parentheses, as
in this equation (p. 398):

Descartes_equation

As we see, the parentheses are not enclosed in pairs of brackets, but written
vertically and kept together by a single curly bracket to the right; but that is
immaterial as long as they are unambiguous. We also notice that Descartes
prefers to write second powers as yy, even though he writes y3 (etc.), as in this
expression (p. 420):

Descartes_2

but that, again, is a different question (we too, when dealing with angles, may
write 2°23´12´́ 25(3), and similarly differentiate sequentially as f(x), f’(x), f’’(x), f(3)(x),
...).

Descartes does not use these parentheses very much, but they are there. And
as Engels [1962: 496] states in Dialektik der Natur, “100,000 steam engines [prove
the principle] no more than one”; or, at least, in a formulation ascribed to
Wilamowitz-Moellendorf, “according to the philologists, once is never, twice
is always”. So, after Descartes, the road was open to Euler’s development [1748:
I, 257] of the infinite fractional infinite product
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as the sum

Euler_2

without any intermediate argument – thus expecting the reader to know how
to transform into an infinite sum, and to be able to grasp how the product1

1–x nz
of this infinite product of infinite sums could be reduced to an infinite sum of
infinite sums.

Why? Why not?

Why was progress so slow, much more marked by stops than by goes, at
times even by regressions? Indeed, why not?

Metaphysical absolute progress is nothing but an illusion, mistaking “the
royal road to me” for the road. Within the broader practice of ocean trade,
colonization and warfare, improved mathematical navigation certainly constituted
progress – but from the point of view of the human chattel brought over the
Atlantic or dying on the way, the characterization can be disputed. Even Nunez
and Dee, however, had little use for algebra when working on navigational
techniques.[30] Until their time, algebra had no social uses outside the
environment of those who lived from teaching mathematics. Mathematics, of
course, also has its internal constraints, and those (like Dardi, Antonio and
Benedetto) who understood the subject well would not stoop to the false solutions
of irreducible cubics and quartics or Giovanni di Davizzo’s advertising of roots
as inverse powers. Even they, however, used and developed algebra in view
of treating a particular kind of problems, and for this kind of problems they had
no need to develop neither symbolic operations nor embedding and parenthesis
function. Personally (but this is already counterfactual history running wild),
they might perhaps have enjoyed it if they had been able to foresee that

30 Regiomontanus does use some algebra in his De triangulis – but he needs nothing beyond
simple second-degree abbacus techniques
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developing such techniques would have enabled them to discover Euler’s
theorems about the partition of numbers (or just Descartes geometrical results).
However, in the competition for pupils and prestige within the environment
of abbacus teaching such things would not have been understood and therefore
would not have counted, and in any case it is in the nature of dialectic to react
to the situation which is already there – nobody gets the idea of creating tools
for the solution of problems which only practice of these tools will eventually
create. Moreover, even when Descartes shaped the tools later used by an Euler,
he did not and could not foresee what they would make possible. He shaped
them more or less accidentally within his particular context, and had no reason
to use them more than he did, preparing a future he did not know about.

Already Descartes, however, lived in a mathematical future unknown to Stifel
and his abbacist predecessors. Like theirs, his mathematical world was one where
problems served as challenges, and where the ability to solve problems was the
ground for prestige; but the problems were no longer those of repeated travels
with gain, finding a purse and sharing its contents, buying a horse in common,
or finding numbers in given ratio fulfilling conditions corresponding to particular
algebraic equations. Descartes, Wallis and their kind were not Humanists –
Humanism, in its heyday (the 14th and 15th centuries) had never been interested
in mathematics (Petrarch, as I observed long ago in a different context [Høyrup
1994: 211], wrote several biographic notices of Archimedes the servant of his
king and the great engineer, and he spelled the name more correctly than the
university scholars of his time – but he did not know about any of his works).
But as Humanists discovered after 1500, in the wake of the catastrophic grand
tour d’Italie[31] of the French artillery and after the discovery of the New World,
civic utility if restricted to rhetoric and other studia humanitatis was useless,
civically and in general; civic utility had to encompass technology and even
mathematical competence (as reflected in Hans Holbein’s Ambassadors). In
consequence, the Greek mathematicians became interesting, and the editiones
primae and the first translations of the Greek mathematicians (beyond Euclid
and the Measurement of the Circle) were produced. For French Humanists and
post-Humanists like Viète, Fermat and Descartes, worthy problems were therefore
those inspired by Archimedes, Apollonios and Pappos. Algebra was available

31 As Gibbon points out somewhere, the French mercenaries brought greater havoc to
Rome than the barbarians of late Antiquity had ever done.
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to them, known as the art of solving problems. But it needed to be reshaped
(and not only because of its Arabic name);[32] and that was what they did.
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Publications de l’Association Tunisienne des Sciences Mathématiques

Adam, Charles, & Paul Tannery (eds), 1897. Oeuvres de Descartes. 12 vols. Paris: Léopold
Cerf, 1997–1910.

Arrighi, Gino (ed.), 1967. Antonio de’ Mazzinghi, Trattato di Fioretti nella trascelta a cura
di Mo Benedetto secondo la lezione del Codice L.IV.21 (sec. XV) della Biblioteca
degl’Intronati di Siena. Siena: Domus Galilaeana.

Arrighi, Gino (ed.), 1987. Paolo Gherardi, Opera mathematica: Libro di ragioni – Liber habaci.
Codici Magliabechiani Classe XI, nn. 87 e 88 (sec. XIV) della Biblioteca Nazionale
di Firenze. Lucca: Pacini-Fazzi, 1987.

Bombelli, Rafael, 1572. L’Algebra. Bologna: Giovanni Rossi, 1572 (impr. 1579).
Boncompagni, Baldassare (ed.), 1857. Scritti di Leonardo Pisano matematico del secolo

decimoterzo. I. Il Liber abbaci di Leonardo Pisano. Roma: Tipografia delle Scienze
Matematiche e Fisiche.

Boncompagni, Baldassare (ed.), 1862. Scritti di Leonardo Pisano matematico del secolo
decimoterzo. II. Practica geometriae ed Opusculi. Roma: Tipografia delle Scienze
Matematiche e Fisiche.

Bortolotti, Ettore, 1929. L’algebra, opera di Rafael Bombelli da Bologna. Libri IV e V. Bologna:
Zanichelli.

Calzoni, Giuseppe, & Gianfranco Cavazzoni (eds), 1996. Luca Pacioli, “tractatus mathe-
maticus ad discipulos perusinos”. Città di Castello: Delta Grafica.

Cardano, Girolamo, 1539. Practica arithmetice, et mensurandi singularis. Milano: Bernardini
Calusco.

Cassinet, Jean, 2001. “Une arithmétique toscane en 1334 en Avignon dans la citè des papes
et de leurs banquiers florentins”, pp. 105–128 in Commerce et mathématiques du moyen
âge à la renaissance, autour de la Méditerranée. Actes du Colloque International du Centre
International d’Histoire des Sciences Occitanes (Beaumont de Lomagne, 13–16 mai
1999). Toulouse: Éditions du C.I.H.S.O.

Chiarini, Giorgio, et al (eds), 1972. [Pierpaolo Muscharello], Algorismus. Trattato di aritmetica
pratica e mercantile del secolo XV. 2 vols. Verona: Banca Commerciale Italiana.

32 Its promises as well as the shortcomings of its actual shape are pointed out by Descartes
in the Discours [ed. Adam &Tannery 1897: VI, 17f].

- 29 -



Colebrooke, H. T. (ed., trans.), 1817. Algebra, with Arithmetic and Mensuration from the
Sanscrit of Brahmagupta and Bhascara. London: John Murray.

Datta, Bibhutibhusan, & Avadhesh Narayan Singh, 1962. History of Hindu Mathematics.
A Source Book. Parts I and II. Bombay: Asia Publishing House. 1Lahore: Motilal
Banarsidass, 1935–38.

de la Roche, Etienne, 1520. Larismethique novellement composee. Lyon: Constantin Fradin.
do Céu Pereira da Silva, Maria, 2008. “The Algebraic Contents of Bento Fernandes’ Tratado

da arte de arismetica (1555)”. Historia Mathematica 35, 190–219.
Engels, Friedrich, 1962. “Dialektik der Natur”, pp. 305–570 in Karl marx / Friedrich

Engels, Werke, Bd. 20. Berlin: Dietz Verlag.
Euler, Leonhard, 1748. Introductio in analysin infinitorum. 2 vols. Lausanne: Bosquet.
Franci, Raffaella, & Marisa Pancanti (eds), 1988. Anonimo (sec. XIV), Il trattato d’algibra

dal manoscritto Fond. Prin. II. V. 152 della Biblioteca Nazionale di Firenze. (Quaderni
del Centro Studi della Matematica Medioevale, 18). Siena: Servizio Editoriale
dell’Università di Siena.

Franci, Rafaella (ed.), 1983. Mo Gilio, Questioni d’algebra dal Codice L.IX.28 della Biblioteca
Comunale di Siena. (Quaderni del Centro Studi della Matematica Medioevale, 6).
Siena: Servizio Editoriale dell’Università di Siena.

Ghaligai, Francesco, 1521. Summa de arithmetica. Firenze.
Heath, Thomas L., 1921. A History of Greek Mathematics. 2 vols. Oxford: The Clarendon

Press.
Høyrup, Jens, 1993. “On Subtractive Operations, Subtractive Numbers, and Purportedly

Negative Numbers in Old Babylonian Mathematics”. Zeitschrift für Assyriologie und
Vorderasiatische Archäologie 83, 42–60.

Høyrup, Jens, 1994. In Measure, Number, and Weight. Studies in Mathematics and Culture.
New York: State University of New York Press.

Høyrup, Jens, 2007a. Jacopo da Firenze’s Tractatus Algorismi and Early Italian Abbacus Culture.
(Science Networks. Historical Studies, 34). Basel etc.: Birkhäuser.

Høyrup, Jens, 2007b. “Generosity: No Doubt, but at Times Excessive and Delusive”. Journal
of Indian Philosophy 35, 469–485.

Høyrup, Jens, 2010. “Hesitating progress – the slow development toward algebraic
symbolization in abbacus- and related manuscripts, c. 1300 to c. 1550”, pp. 3–56 in
Albrecht Heeffer & Maarten Van Dyck (eds), Philosophical Aspects of Symbolic Reasoning
Early in Modern Mathematics. (Studies in Logic, 26). London: College Publications.

Høyrup, Jens, forthcoming. Algebra in Cuneiform. Introduction to an Old Babylonian
Geometrical Technique”. Berlin: Edition Open Access (foreseeen for 2015). Preprint Max-
Planck-Institut für Wissenschaftsgeschichte. Preprint 452 (Berlin, 2013).

Hughes, Barnabas, O.F.M., 1986. “Gerard of Cremona’s Translation of al-Khwārizmı̄’s
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