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In memoriam David Fowler,
gentle friend and wise colleague

The received view

As long as the existence of the late medieval and Renaissance Italian abbaco

tradition has been recognized, it has been taken for granted by almost everybody
that it had to descend from Leonardo Fibonacci’s writings, at most with more
or less marginal additions. In particular, this has been the repeated view of those
scholars who know the tradition most intimately and who have made it known
to the rest of the world

The latest phrasing of the view may be that of Elisabetta Ulivi [2002: 10],
according to whom the libri d’abbaco “were written in the vernaculars of the
various regions, often in Tuscan vernacular, taking as their models the two
important works of Leonardo Pisano, the Liber abaci and the Practica geome-

triae”.[1]

Even stronger is Warren Van Egmond’s statement [1980: 7] that all abbaco

writings “can be regarded as [...] direct descendants of Leonardo’s book”. As
regards abbaco algebra in particular, the same author asserts that this “tradition
is logically a continuation of the work of Leonardo Pisano” though not explaining
which logic should be involved [Van Egmond 1988: 128].

In [1985: 28], Raffaella Franci and Laura Toti Rigatelli stated similarly that
“the abacus schools had risen to vulgarize, among the merchants, Leonardo’s
mathematical works”.[2] As regards the algebra contained in some of the
treatises, however, Franci and Toti Rigatelli already mitigated the claim just
quoted in the same article by the observation (p. 45) that

in Florence, in the 14th century, at least two algebraic traditions coexisted. One of

1 As everywhere in the following where no translator is identified, I am responsible for
the translation.
2 More recently, Franci [forthcoming] has downplayed the importance of the Liber abbaci
significantly, suggesting instead that the inspiration was derived from that lost liber minoris
guise, “book in a smaller manner”, which Fibonacci says to have written [ed. Boncompagni
1857: 154]. I shall return to my reasons for finding this implausible in note 10, cf. also
note 23.
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them was inspired by Leonardo of Pisa and was improved by Biagio the Old and
Antonio de’ Mazzinghi, the other, the beginning of which is unknown until now,
has Gerardi as its first exponent.

In [2002: 82], Franci sharpened this dissent from the prevailing view, suggesting
that the “authors [of fourteenth-century abbaco algebra] may have had access
to Arabic sources different from those used by Leonardo”. Partial divergence
from the conventional wisdom is also expressed by Enrico Giusti [2002: 115],
according to whom some of the abbaco writings

were genuine and proper vernacular versions of [Fibonacci’s] works, made easier
by elimination of the most abstract and theoretical parts; in other cases the author
limits himself to dig in the mine of examples and problems from the Liber abaci, in
order to find material he could insert in his own treatise.

Similar partial divergence was expressed by Gino Arrighi already in [1987: 10],
when he suspected Paolo Gherardi’s Libro di ragioni (also referrred to by Franci
and Toti Rigatelli) and another treatise which he ascribed to the same author
to be either re-elaborations or translations of French writings; on the other hand
he stated (p. 5) that these treatises are the only witnesses we have of important
mathematical exchanges between Italy and France (i.e., the Provençal area[3]).

Before the autonomous existence of the abbaco tradition was recognized, it
was even more obvious to those few who did work on abbaco material that it
belonged within a current leading from Fibonacci to Luca Pacioli, Tartaglia and
Cardano. One clear enunciation is due to Louis Karpinski [1929: 177], who ends
his description of Jacopo da Firenze’s Tractatus algorismi from 1307 with the
observations that the

3 Politically, Montpellier was only definitively integrated in the French Kingdom in 1349
(which did not in itself make it culturally French), after having been bought from the
Aragon-Majorcan king; Avignon and the surrounding Comtat Venaissin were only
absorbed by France in 1791. Thirteenth-century practical arithmetic from France proper,
as known from the last part of the Pratike de geometrie [ed. Victor 1979] was very different
in character from what we know from Jacopo da Firenze’s Tractatus algorismi and Paolo
Gherardi Libro di ragioni (both written in Montpellier, in 1307 and 1328, respectively),
and also from a Trattato di tutta l’arte dell’abacho (Rome, Biblioteca dell’Accademia
Nazionale dei Lincei, Cors. 1875, with parallel manuscripts) written in Avignon in the
1330s (see [Cassinet 2001]; the ascription of the latter treatise to Paolo dell’Abbaco, e.g.
in [Van Egmond 1977], is apparently based solely on a probably ill-founded guess by
a fifteenth-century owner of one of the manuscripts).
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treatise by Jacob of Florence, like the similar arithmetic of Calandri, marks little
advance on the arithmetic and algebra of Leonard of Pisa. The work indicates the
type of problems which continued current in Italy during the thirteenth to the fifteenth
and even sixteenth centuries, stimulating abler students than this Jacob to researches
which bore fruit in the sixteenth century in the achievements of Scipione del Ferro,
Ferrari, Tartaglia, Cardan and Bombelli.

One reason for the persistence of this belief (which, as I shall argue, is largely
illusory) is probably the principle of the great book, to which scholars are prone
to fall victims: the belief that everything in a book, if not an innovation, must
be derived from a famous book that is known to us – known at least by name and
fame if no longer extant.

In a way, this principle can be seen as a sound application of Occam’s razor:
explanatory entities in the shape of wonderful secret traditions that have left
no traces should not be multiplied without necessity. But if applied without
attention to the copious evidence that is offered by less famous sources, without
regard for the details of the material and without recognition of the fact that
this extant material may contain more holes than cheese, then it can at best be
compared to Kepler’s explanation of planetary movements by means of
magnetism, the only force acting at a distance he knew.

However, the creed of modern scholars is only half of the explanation. Early
sources also seem to suggest a key role for Fibonacci. In the Ars magna, Cardano
[1663: 222] tells that algebra took its beginning with al-Khwārizmı̄ and was
copiously developed by Fibonacci; much later, as he further relates, three new
derivative chapters were added by an unknown author, being put together with
the others by Luca Pacioli.

But we may go even further back. Abbaco writers of the mature tradition,
if referring at all to intellectual ancestors (which they do not do too often), tend
to mention Fibonacci, perhaps together with more recent maestri d’abbaco.
Moreover, already (what is likely to be) the oldest extant abbaco treatise presents
itself as a Livero de l’abbecho “secondo la oppenione de maiestro Leonardo de la
chasa degli figluogle Bonaçie da Pisa” [ed. Arrighi 1989: 9], an “Abbacus book

according to the opinion of master Leonardo Fibonacci”. This seems to leave
little doubt that Fibonacci was indeed a founding father of abbaco mathematics,
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if not the father.[4]

The Umbrian evidence

This earliest extant libro d’abbaco (Florence, Riccardiana, MS 2404, fols 1r–136v)
appears from internal evidence to have been written in c. 1288–1290 in Umbria.[5]

Whoever starts reading attentively beyond the introductory lines that were just
quoted will discover that it contains material that is definitely not from Fibonacci;
further on he will also find indubitable borrowings from the Liber abbaci. Is this
then really a “genuine and proper vernacular version” of Fibonacci’s work, made
easier by elimination of the most abstract and theoretical parts? Or has the author
limited himself “to dig in the mine of examples and problems from the Liber

abbaci, in order to find material he could insert in his own treatise”? Or is the
character of the treatise more fittingly described in some third way?

In order to find out we shall need a close examination of the contents of the
treatise. Before that, however, a few words about Fibonacci’s way to write mixed
numbers and composite fractions will serve.

In the writing of mixed numbers Fibonacci follows what he is likely to have
been taught by those teachers in Bejaïa in present-day Algeria with whom he
spent “some days studying the abbacus” during his boyhood, as he explains
in the preface to the Liber abbaci [ed. Boncompagni 1857: 1] – that is, writing them
with the fraction to the left, preceding (in our view) the integer part, 182 and

a half appearing hence as 182.1

2

Fibonacci also explains and makes use of several types of composite fractions.

4 In the interest of moral balance I shall cite my own [2000: 56] as an example of a scholar
taken in by this title and the identification of some indubitable borrowings.
5 The actual date may be slightly later, cf. note ?. It should be observed that improved
understanding of the coin list contained in the “Columbia Algorism” (Columbia University,
MS X 511 A13, [ed. Vogel 1977]) due to Lucia Travaini [2003: 88–92] shows that at least
this list (which is not annexed to the text but integrated) was made in the years between
1278 and 1282. The manuscript has habitually been ascribed to the first half of the
fourteenth century and is indeed a copy [Vogel 1977: 6], and the Umbrian Livero
dell’Abbecho is therefore still likely to be the earliest extant abbacus manuscript; but the
Columbia Algorism now seems to be a copy of the earliest earliest abbaco treatise we know
about, written in or in the vicinity of Cortona.

4



One renders the “ascending continued fractions” that were commonly used in

Arabic arithmetic – [ed. Boncompagni 1857: 24] thus stands for plus1 5 7
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we shall not need them in the following).

Let us then return to the Umbrian abbaco. It consists of 31 chapters:
Ch. 1, de le regole de le tre chose.
Ch. 2, de le chose che se vendono a centonaio.
Ch. 3, de le regole de pepe che senno.
Ch. 4, de le regole degle drappe che se vendono a channa e a br.
Ch. 5, de regole de chanbio.
Ch. 6, de baracta de monete e denari.
Ch. 7, de le regole de marche Tresce [from Troyes / JH] e de svariate ragione de lib.
Ch. 8, da sapere quante d. de chantra e charrubbe e grana è l’onzia.
Ch. 9, de conparare bolçone a numero de denare ed a peso de libr.
Ch. 10, de regole de consolare ed alegare monete.
Ch. 11, de svariate regole che s’apartengono al consolare de le monete.
Ch. 12, de regole de merto o vero d’usura.
Ch. 13, de regole che s’apartengono a quille de la usura.
Ch. 14, de regole de saldare ragione.
Ch. 15, de svariate regole de conpagnie.
Ch. 16, de chonpare de chavagle.
Ch. 17, de huomene che demandavano d. l’uno a l’altro.

6 That is, . The name should not mislead, evidently the only link of such expressions
7

5
1
2

6

10

with continued fractions proper is graphical. Their spoken form is used routinely in Arabic
(and other Semitic languages, see [Høyrup 1990]); Fibonacci’s notation coincides with
the one that is used in al-Qalasādı̄’s Kašf [ed. Souissi 1988: Ar. 67], and there is thus no
doubt that Fibonacci has borrowed it from the Maghreb school, even though we may
doubt that it belonged to what could be covered in school in a couple of days.
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Ch. 18, de huomene che trovaro borsce.
Ch. 19, de huomene che cholsero denare emsiememente.
Ch. 20, de regole de prochacio overo de viage.
Ch. 21, de huomene ch’andaro a guadagnare agl merchate.
Ch. 22, de choppe e del suo fondo.
Ch. 23, d’arbore o vogle de legne.
Ch. 24, de vasa.
Ch. 25, de huomene che vonno per via chumunalemente ensieme.
Ch. 26, de huomene che portaro margarite a vendere em Gostantinuopole.
Ch. 27, de tine e de botte cho’ n’esce el vino per gle foramene cho sonno el fondo.
Ch. 28, d’uno che manda el figlo en Alixandria.
Ch. 29, d’uno lavoratore che lavorava enn una uopra.
Ch. 30, de huomene ch’andano l’uno po’ l’altro.
Ch. 31, de regole per molte guise forte e ligiere de molte contintione.

A detailed description of the contents of each chapter is given in the appendix.
Here we may sum up some of the general observations that can be synthesized
from these descriptions.

Chapters 1–9 and 13–15 borrow nothing from Fibonacci. They all treat of
such basic matters as would be of real use for the students of an abbacus school:
the rule of three; shortcuts allowed by the metrological system;[7] shrinkage
due to the refining of spices; exchange of coin against coin, bullion or goods;
metrology, refining and evaluation of bullion; simple interest; and partnerships.
Not a single problem in these chapters comes from Fibonacci. Chapters 10 and
12 start by problems of direct relevance for daily commercial life, similarly
independent of Fibonacci. The remainder of these two chapters – a collection
of reverse alloying problems and one containing problems about giving a loan
in a house which the creditor rents – is borrowed from the Liber abbaci.[8] So

7 Rules of the type “if something is sold at p libre for a hundred units, then the price of

one unit is 2 p denari” (1 libra = 20 soldi = 240 denari).2

5

8 Since readers are more likely to have access to Laurence Sigler’s translation than to
Boncompagni’s edition, it may be appropriate to point out that the translation misunder-
stands the original on this point – see [Sigler (trans.) 2002: 384] confronted with
[Boncompagni (ed.) 1857: 267].
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is almost everything contained in chapters 11 and 16–30: in part artificially
complex problems in commercial apparel, in part variants of well-known
«recreational» problem types. Only chapters 22–23, teaching the method of the
single false position, is likely to have been useful; the rest might be regarded
as brain gymnastics – had it not been for counterevidence to be presented
imminently. Chapter 31 is a mixed collection of mainly recreational problems,
some from the Liber abbaci, others not. Some of the latter are simpler versions
of Fibonacci problems that appear in the preceding chapters, reflecting the
familiar fact that Fibonacci borrowed amply from a fund of problems that
circulated in numerous versions, and suggesting that Fibonacci may have had
a predilection for the more difficult of these – those where the need for a
mathematical explanation might be urgently felt.

Until near the end of chapter 2, mixed numbers are written with the integer

to the left (3 , etc.). Then suddenly the writing shifts to Fibonacci’s system, the1

4

fraction being written to the left of the integral part ( 1, etc.); this system2

13

remains in vigour until the end.[9] In consequence we see numerous writings

of concrete numbers in the awkward style “d. 7 de denaio”, “denari 7 of17

49

17

49

denaro” (meaning 7 denari) – but exclusively in problems that are not taken17

49

over from the Liber abbaci. A few slips shows that the author has copied rather

9 So far, only Fibonacci and no other preceding Latin or European-vernacular source is
known from where the compiler could have taken his inspiration for this system, and
it has thus seemed obvious that Fibonacci was the inspiration. But both the Florence
manuscript of Jacopo da Firenze’s Tractatus algorismi (Ricc. 2236) and the two manuscripts
of the Trattato di tutta l’arte dell’abacho I have inspected (cf. note 3) contain multiplications
arranged from right to left in tables; in Ricc. 2236, some of these tables contain products
of mixed numbers, writing these with the fractional part to the left. The Columbia
Algorism, on its part (see note ?), contains occasional notations for ascending continued
fractions, not wholly in Fibonacci’s style and written at times from right to left, at times

from left to right – meaning = 5/8 in one place, = 3/8 in another [Vogel1 1

4 2

1 1

4

2

1 1

2

4

1977: 13]. Independent influence from Maghreb notations thus turning up in various
places, it is not totally excluded that the Umbrian compiler had adopted his “Arabic”
ways from a non-Fibonacci source.
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faithfully from sources using the straightforward style familiar from other abbaco

writings (and also used in chapter 1, before the inversion of the writing of mixed

numbers), “d. 7, de denaio”, “denari 7, of a denaro”, trying only to impose17

49

17

49

on the material the Fibonacci style.[10]

Since the compiler adopts from Fibonacci almost exclusively the intricate
matters, he has borrowed numerous problems making use of Fibonacci’s notations
for composite fractions. It turns out, however, that he does not understand them.

For instance, he reads (to quote one example among many) Fibonacci’s 33 6 42 46

53 53 53 53

[ed. Boncompagni 1857: 273], standing for

,
46

42
6

33
53

53
53

53

as if it meant simply [ed. Arrighi 1989: 112].[11] The implication is that3364246

53535353

10 This is one of the reasons that this source cannot be Fibonacci’s liber minoris guise
mentioned in note 2. All conserved treatises of Leonardo, indeed, use the same writing
of mixed numbers. In the first instance this only disqualifies the lost work as a source
for this particular treatise. However, the argument for the general importance of this “book
in a smaller manner” is the similarity of other treatises to the present one on various
accounts, e.g. in the presentation of the rule of three – which seems to imply that it breaks
down generally.

This argument of course does not invalidate the reasonable assumption that the “book
in a smaller manner” treated all or some of the same matters as later abbaco books. All
we know about it is that Fibonacci says to have borrowed from it an alternative method
to treat the alloying of three kinds of bullion for the Liber abbaci, and that an anonymous
fifteenth-century abbaco writer had heard about it and characterized it as a Libro de
merchaanti (Biblioteca Nazionale di Firenze, Pal. 573, fol. 433v, see [Franci, forthcoming]).
11 Beyond Arrighi’s familiarity with Fibonacci’s text, two strong arguments speak against
the counter-hypothesis that Arrighi did not notice small spaces in the manuscript and
committed the error. Firstly, the manuscript never explains these composite fractions as
does Fibonacci, nor are they ever translated into other fractions, as happens when
Fibonacci’s composite fractions of soldi are occasionally transformed into denari and

fractions of these. Secondly, on fol. 108v, Fibonacci’s 100 ° [ed.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Boncompagni 1857: 312], meaning 100 [ ], reappears in the Umbrian5

4
( 5

4
)2 ( 5

4
)3 ... ( 5

4
)18
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the compiler never performed these computations and would not have been able
to explain them in his teaching. At least those of Fibonacci’s problems where
such fractions occur are thus taken over as mere external embellishment,[12]

no more to be identified with brain gymnastics than looking at it in the TV has
to do with genuine gymnastics. But the observation should probably not be
retricted to the problems containing composite fractions. For this there are too
many borrowed cross-references to matters that are not borrowed, and genuine
misunderstandings of sophisticated matters.

Two cases where such misunderstanding is blatant can be found in chapter
21, fols 86v–87r. The first corresponds to a problem which Fibonacci [ed.
Boncompagni 1857: 399] solves by means of his letter formalism (“Somebody
has 100 libras, on which he earned in some place; then he earned proportionally
in another place, as he had earned before, and had in total 200 libras”). The
compiler speaks of two different persons; does not tell that the second goes on
with what the first has in total, as he must if the computations shall be
meaningful; and eliminates the letters from the text when translating. The
outcome is evidently pure nonsense.

The second is a mixed second-degree problem (“Somebody had 100 libras,
with which he made a travel, and earned I do not know what; and then he
received 100 libras more from a partnership, and with all this he earned in the

treatise as (the fraction being perhaps split over two lines in the555555555

444444444

555555555

444444444
100

manuscript used by the compiler), that is, as a sum of two fractions and an integer. This
could not have resulted from an editorial misreading of the manuscript. Instead, it
corresponds exactly to an additive juxtaposition of fractions found in chapter 2 (see note
12).

On fol. 136r Fibonacci’s ° is correctly replaced by9 9 9 9 9 9 9 9 9 9 9 9

10 10 10 10 10 10 10 10 10 10 10 10

, but this seems to be due to the circumstance that here9

10

9

10

9

10

9

10

9

10

9

10

9

10

9

10

9

10

9

10

9

10

9

10

Fibonacci explains the transformation in detail. Indeed, in the following analogous problem
copied from another place in the Liber abbaci where no explanation is given, understanding
fails completely.
12 One non-Fibonacci problem contains a composite fraction, but of a wholly different
(namely, additive) kind: on fol. 2r, the division of 63 denari by 100 is split up, 60 denari

giving , and 3 denari giving . This is obviously well understood.3

7

1

50

1

100
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same proportion as in the first travel, and thus had 299 libras”), which Fibonacci
[ed. Boncompagni 1857: 399] transforms by means of continued proportions into
a rectangle problem which he solves using Elements II.6. All letters and lines have
disappeared in the translation, as has the Euclidean reference.

A particular difficulty for our compiler is that he does not understand
Fibonacci’s regula recta, the application of first-degree res-algebra (apparently
not counted as algebra by Fibonacci). Mostly, Fibonacci’s alternative solution
by means of regula recta are simply skipped, but in one place (fol. 83r) he takes
over a regula-recta solution from Fibonacci [ed. Boncompagni 1857: 258], promising
to teach the solution “per regola chorrecta” (demonstrating thereby that he does
not know what regula recta stands for); omits the first res from Fibonacci’s text
(the position) while conserving some of the following as cosa, obviously without
noticing that this thing serves as an algebraic representative for the unknown
number. Beyond elucidating once again the merely ornamental function of
Fibonacci’s sophisticated problems in the treatise,[13] this shows that the
compiler worked at a moment when even the most elementary level of algebra
was still unknown in his environment.

Let us then turn our attention to those chapters which teach matters of real
commercial use – that is, to chapters 1–10 and 12–15. As we see, only chapters
10 and 12 contain problems taken over from Fibonacci; moreover, those which
are taken over all belong to the most sophisticated and often rather artificial class.

The claim that the treatise is shaped “according to the opinion of master
Leonardo Fibonacci” is thus in itself an instance of embellishment.[14] The
treatise is certainly no “genuine and proper vernacular” version of Fibonacci’s
work, “made easier by elimination of the most abstract and theoretical parts”,
nor is it written in order “to vulgarize, among the merchants, Leonardo’s
mathematical works”. At most, this earliest extant libro d’abbaco is one in which,
in Giusti’s words, “the author limits himself to dig in the mine of examples and

13 Indeed, the method in question is well explained by Fibonacci in the Liber abbaci [ed.
Boncompagni 1857: 191] and regularly used after that in chapter 12 [ed. Boncompagni
1857: 198, 203f, 207, 213, 258, 260, 264, 280].
14 Unless we take it to refer to the writing of mixed numbers and the use of Arabic
numerals, which – given the actual number of borrowed problems – does not seem very
likely.
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problems from the Liber abaci, in order to find material he could insert in his
own treatise” – but without understanding this material, only as a way to show
off in front of others who understood no more. Already in the outgoing thirteenth
century, Fibonacci had apparently acquired the status of the culture hero of the
abbaco culture.

Our compiler certainly could have found even the simple material for his
basic chapters in the Liber abbaci – apart from interest on loans (present only as
an element in complex problems) all of it is there. But he may have preferred
to use examples referring to the metrologies and exchange rates of his own times
and area; alternatively, he may already have had a treatise in hand which was
ready for all practical purposes[15] and then have decided to insert into it the
embellishments borrowed from the hero[16]; for the last chapter he dug in
further sources, some of which are also likely to have surpassed his mathematical
wits.[17] We cannot know in exact detail what he did. What we can know from
the analysis is that the abbaco tradition of the outgoing thirteenth century was
no Fibonacci tradition, even though it was already a tradition.

Reverence for glorious fathers

The “genuine and proper vernacular versions” of Fibonacci’s works came
later, when a few abbaco masters felt the ambition to trace the sources of their
field (the full or partial translations are listed in [Van Egmond 1980: 363]). A

15 Whether such a primitive version was written by himself or borrowed wholesale from
a precursor we cannot know for sure – but the way concrete mixed numbers are spoken
of suggests that he did use borrowed material profusely for the non-Fibonacci parts of
his treatise. So does the similarity between his way to introduce the rule of three and
the way it its introduced in the Liber habaci, cf. below, note 29.
16 An obvious model for this possibility is Bombelli, whose L’algebra was already finished
in a first version when he discovered Diophantos.
17 I have identified one problem [ed. Arrighi 1990: 119] which with great likelihood come
either from the Columbia Algorism [ed. Vogel 1977: 83] or something very close to it,
a problem about two kinds of dirty wool that shrink at different rates when washed
(not only the story and the numbers ar shared but also offside explanatory remarks).
However, if the version we find in the Columbia MS was indeed the source, the Umbrian
compiler must have understood what went on here (not difficult, indeed), since he adds
a remark that this is a subtle method for comparing goods.
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couple of translations from the Liber abbaci, one of chapters 14–15, another of
most of chapter 12 and a little of chapter 13, go back to c. 1350; another
translation of chapters 14–15 can be dated c. 1400, as can a translation of the Liber

quadratorum; a translation of the Practica geometrie is dated 1442.[18] This can
be contrasted with the total number of extant vernacular mathematical writings
made within consecutive 25-year periods according to [Van Egmond 1980:
407–414] (with the proviso that some datings are approximative, and others too
early because copied internal evidence may give an early dating to a later text):

1276-0 1301-25 1326-50 1351-75 1376-00 1401-25 1426-50 1451-75 1476-0

1 8 10 6 19 16 39 56 66

The age distribution of surviving complete or partial Latin Liber-abbaci manu-
scripts is not very different from that of the translations; 3 appear to be from
the later 13th century, 4 from the 14th, 2 or 3 from the 15th, 3 or 2 from the
16th.[19]

The number of vernacular versions of al-Khwārizmı̄’s algebra (or part of it)
turns out to equal the total number of translations from Fibonacci (namely five) –
see [Franci & Toti Rigatelli 1985: 28–30] and Van Egmond 1980: 361]. One is from
c. 1390, one from c. 1400, and three from the fifteenth century. In several cases,
interest in al-Khwārizmı̄ goes together with interest in Fibonacci – obviously,
both play the role of (mythical) fathers, those fontes which it was not uncommon
to look for in the Italian fourteenth and fifteenth centuries. Obviously, all of these
together count as almost nothing compared to the total number of abbaco

manuscripts, and analysis of most treatises from the fourteenth and fifteenth
centuries would reveal a picture similar to that of the Umbrian abbaco – with
the difference, however, that the number of borrowings from Fibonacci would
be much smaller, and that the need for showing off beyond one’s real mathemat-
ical competence was now much less urgent and mainly fulfilled by the display
of dubious solutions to algebraic equations of the third and fourth degrees –

18 All translations, we notice, are of sophisticated matters.
19 Menso Folkerts, private communication from 1989. Some of the datings are uncertain
or disputed.
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a fashion originating somewhere between 1307 and 1328 [Høyrup 2001] within
that abbaco tradition which was already independent (and independent of
Fibonacci) around 1290, and which on the whole remained independent.

Fibonacci and the abbaco

But what about Fibonacci himself? He certainly took his inspiration from
many sources, some of which can be identified – as we have seen, the notation
for ascending continued fractions emulates that of the Maghreb mathematical
school, the algebra of the Liber abbaci copies creatively but unmistakeably from
Gherardo of Cremona’s translations of al-Khwārizmı̄’s Algebra [Miura 1981], the
Pratica geometrie from the same translator’s version of Abū Bakr’s Liber mensura-

tionum.[20] Most of his sources, however, are unidentified. If the abbaco tradition
does not descend from Fibonacci, could then Fibonacci instead have taken an
already emerging abbaco tradition as his starting point?

The title Liber abbaci is irrelevant to the question, since it is definitely not
Fibonacci’s own title. Already Boncompagni [1854: 88–94] pointed out that he
invariably refers to the work as Liber numerorum or, in the dedicatory letter of
the Flos, as his Liber maior de numero. The word abbaco does appear at least thrice
(as a latinized genitive abaci/abbaci) in the book: in the prologue, where he tells
to have pursued studio abaci for some days in Bejaïa, as already quoted; when
chapter 12 is told to treat of questionibus abbaci [ed. Boncompagni 1857: 166]; and
when the numerical determination of the approximate square root of 743 is told
to be done secundum abaci materiam [ed. Boncompagni 1857: 353].[21] At least
the latter two occurrences do sound as if something specific is meant, and could
well refer to such things as we find in the earliest abbaco treatises; but it hardly
proves anything.

More informative are certain key phrases that abound in the Umbrian as
well as later abbaco writings. Very often, problems start by the phrase (I quote

20 [Ed. Busard 1968]. This treatise is indeed the source for most (if not all) of what Fibonacci
is normally taken to have borrowed from Savasorda for his Pratica geometrie, as becomes
evident as soon as the three texts are compared..

21 The approximate root is found as 27 by means of a procedure that is familiar from7

27

many places, among which both Maghreb sources and abbaco treatises.
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the Umbrian spellings) famme quista ragione, “make this problem for me” or se

ci fosse dicto, “if it was said to us, ...”. Very often, the procedure description ends
by a phrase like e chusì fa’ le semeglante ragioni, “and make similar problems in
this way”. Often, the procedure description also starts by the declaration that
quista è la sua regola, “this is its rule”.

In the Umbrian abbaco, such phrases are particularly copious in problems
that are not taken from the Liber abbaci, but many are also glued onto Liber-abbaci

problems without having a counterpart in the original. What is more interesting
is that Fibonacci has scattered though rarer instances of the “make similar
problems in this way”, as if somewhat influenced by the style of an environment
where this usage was pervasive. We also find copious references to “the rule
of [e.g.] trees”, meaning the rule introduced by means of a problem on a tree.

Similar evidence comes from the particular way in which many of the first
Umbrian alloying problems but none of its other problems begin (the initial
problems of chapter 10, which are not derived from the Liber abbaci), namely
in the first person singular, “I have silver which contains n ounces per pound”;
the later problems, those taken from Fibonacci, start in different ways, and so
do the alloying problems in the Liber abbaci itself – but in one place, in a general
explanation [ed. Boncompagni 1857: 143], we find cum dicimus: habeo monetam

ad uncias quantaslibet, ut dicamus ad 2, intelligimus quod in libra ipsius monete

habeantur uncie 2 argenti, “when we say, I have bullion at some ounces, say at
2, we understand that one pound of it contains 2 ounces of silver”. It is not
credible that the later abbaco tradition should have grasped this hint and
generalized it (it is also found in other abbaco writings and, even more significant,
in Pegolotti’s Pratica di mercatura [ed. Evans 1936: 342–357]); instead, Fibonacci
must be quoting – and the only place where such a standard beginning is possible
is in problems on alloying (the construction “we say, I have” shows that the choice
of the grammatical person I belongs within the citation).

However, “style” is more than standard phrases and the choice of grammati-
cal person. In a mathematical text it also involves standards of rigour and
correctness (etc.). Even in this respect close reading of Fibonacci’s text turns out
to be revelatory on at least two points.

The first of these concerns his presentation of the method of a single false
position (“the rule of trees”). A typical abbaco way to make such computations
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runs as follows:[22]

The and the of a tree is below the ground, and above 12 braccia appear. […]1

3

1

5

If you want to know how long the whole tree is, then we should find a number in

which is found, which is found in 3 times 5, that is, in 15. Calculate that the1

3

1

5

whole tree is 15 braccia long. And remove and of 15, and 7 remain, and say thus:1

3

1

5

7 should be 12, what would 15 be? 12 times 15 make 180, when divided by 7, 25 5

7

results. And as long is the whole tree. And in this way all similar calculations are
made.

Even Fibonacci [ed. Boncompagni 1857: 173f], as mentioned, uses a tree for this

purpose. of it are below the ground, which is said to correspond to 21 palms.1

4

1

3

He also searches for a number in which the fraction can be found (in this case
of course 12). But then he argues that the tree has to be divided in 12 parts, 7
of which must amount to 21 palms, etc. He goes on explaining that there is
another method “which we use” (quo utimur), namely to posit that the tree be
12. This explanation ends thus:

therefore it is customary to say, for 12, which I posit, 7 result; what shall I posit so
that 21 result? and when this is said, the extreme numbers are to be multiplied, that
is, 12 by 21; and the outcome is to be divided by the remaining number.

Already in 1228, perhaps in 1202, it was therefore “customary” to do as the abbaco

authors were to do in later times. Since nothing is said about this formulation
to be customary in some other place, Fibonacci must refer to a custom belonging
to a region the reader can be supposed to know about, and to a “we” of which
Fibonacci himself is at least a virtual member.[23] Fibonacci feels obliged to
present this way, as what “we” are doing, but evidently prefers to avoid falsity
in mathematics, and therefore introduces the subdivision into parts.

The second point is a similar reinterpretation of a more direct challenge to
mathematical truth. Many Italian abbaco treatises, and all Ibero-Provençal writings

22 I translate from the Columbia Algorism [ed. Vogel 1977: 79]. Cf. above, note 5.
23 We notice that Fibonacci does not say that this is “what we say in our book in a smaller
manner” (the way he refers to it in the place where it is mentioned, and where the
reference concerns a particular alloying calculation). The reference to the “costumary”
rules out that the formulation is an ellipsis for this fuller phrase.
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I have had the opportunity to examine, contain counterfactual rule-of-three

problems – either simple, like “if were , what would be?” or “7 is worth2

3

3

4

4

5

1

2

9 , what will 5 be worth”[24], or more sophisticated, like “if 5 times 5 would1

3

3

4

make 26, say me how much would 7 times 7 make at this same rate” or “If 9

is the of 16, I ask you what part 12 will be of 25”.[25]1

2

The Ibero-Provençal examples are all of the simple type, and all Ibero-
Provençal treatises use them to introduce the rule of three: the Castilian Libro

de arismética que es dicho alguarismo from 1393 (ed. Caunedo del Potro, in [Caunedo
del Potro & Córdoba de la Llave 2000: 147f]); the "Pamiers Algorism" [Sesiano
1984: 45] from c. 1430; Francesc Santcliment’s Summa de l’art d’Aritmètica, printed
in Barcelona in 1482 [ed. Malet 1998: 165]; and Francés Pellos’ Compendion de

l’abaco from 1492 [ed. Lafont & Tournière 1967: 103-107]. With the Columbia
algorism as only exception, all Italian treatises I know which contain
counterfactual problems assign less prominent positions to them - either they
serve as alternative examples of the rule of three or they stand as isolated number
problems.

The Liber abbaci [ed. Boncompagni 1857: 170] presents us with two instances,
one from each category: “If 7 were the half of 12, what would be the half of 10?”,

and “If were , what would be?”. Yet Fibonacci clearly does not like them1

3

1

4

1

5

as they stand, and explains that by the first it can be understood “that the half
of 12, which is 6, grows into 7; or 7 is diminished into the half of 12, which is

24 The former example is from a fifteenth-century anonymous Arte giamata aresmetica, Torino
N.III.53 [ed. Rivolo 1983:11f], the latter from the Columbia Algorism [ed. Vogel 1977: 54].
25 The former example is from Jacopo da Firenze’s Tractatus algorismi [ed. Høyrup 1999:
39], the latter from Paolo Gherardi’s Libro di ragioni [ed. Arrighi 1987: 17]. The third Italian
treatise written in Provence, the Trattato di tutta l’arte dell’abacho (Rome, Biblioteca
dell’Accademia Nazionale dei Lincei, Cors. 1875, fol. 32v), contains this: “Let us posit that
3 times 7 would make 23, tell me how much 5 times 9 would make at that same rate”.
The Columbia Algorism [ed. Vogel 1977: 101, 110–112] contains three examples very
similar to Gherardi’s, one of them twice. Apart from these I have only noticed a
counterfactual calculation in ps.-Paolo dell’Abbaco, Istratti di ragioni, [ed. Arrighi 1964:
89], in words so close to Jacopo’s that it might well descend from him – and then in the
Liber abbaci, see presently.
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6”; about the second he tells the reader that it is as if one said, “ of a rotulo1

3

[a weight unit, c. 2 libre] for of one bezant, how much is of one rotulo1

2

1

4

1

5

worth?” If Fibonacci uses a formulation which he feels an immediate need to
translate he evidently cannot have invented it himself – but no Arabic treatise
seems to contain anything similar, which implies that he has found the
formulations in the Romance-speaking area.

All in all we may thus conclude that Fibonacci, though mostly trying to be
neutral and to emulate scholarly style, was familiar with a tradition that
influenced the style of the later abbaco writings heavily.

We do not know with certainty that this environment was located in Italy –
as I have argued elsewhere ([Høyrup 2001] and, with a more extensive argument,
Høyrup 2003]), Italian abbaco algebra, when it emerged, received its inspiration
not from Fibonacci but from some non-Italian (probably Ibero-Provençal)
environment; the importance of the counterfactual rule-of-three problems in this
area and their generally more modest position in the sources from Italy point
in the same direction.[26] But the various Italianisms that creep into his text

26 Since the early Columbia Algorism is an exception to this general observation, the latter
argument is in itself only of limited strength. It is noteworthy, however, that precisely
the Columbia Algorism [ed. Vogel 1977: 31f] might show us the passage from abstraction
to fanciful counterfactuality. A number problem with the structure

(n-1/3n-1/4n)×(n-1/3n-1/3n) = n
is solved from the false position n = 12, whence 5×5 = 25 should be 12. The text runs
“5 times 5 are 25; I want that this 25 should be 12, what would 12 be? Say, if 25 were
12, what would 12 be”. By containing counterfactual calculations (and on this account only! -
if we look, e.g., at the treatment of the rule of three, things look quite differently), the

Liber abbaci, the Columbia Algorism and the three Italian treatises written in Provence
in the early fourteenth century form a conspicuous cluster.

Noteworthy is also the following problem from the Columbia algorism [ed. Vogel
1977: 122], “Somebody had denari in the purse, and we do not know how many. He lost
1/3 and 1/5, and 10 denari remained for him”. The same problem (a fairly atypical use
of the dress of the purse), only with the unlucky owner of the purse being “I” and the
remaining dineros being only 5, is found in the Libro de arismética que es dicho alguarismo
(ed. Caunedo del Potro, in [Caunedo del Potro & Córdoba de la Llave 2000: 167]). Both
solve it by way of the counterfactual question, "If 7 were 10 [respectively 5], what would
15 be?". Since the Libro de arismética appears to belong squarely within the Ibero-Provençal
group and not to have particular affinities with Italian material, this similarity suggests
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(e.g., viadium/viagium for travel, from viaggio, avere as an occasional translation
of Arabic māl instead of census) as well as the observation that Italian merchants
already had an urgent need for such things as are taught in the first 15 chapters
of the Umbrian abbaco suggests that it encompassed Italy without excluding that
it ranged more widely.[27]

We should take note of exactly what Fibonacci tells in the prologue of the
Liber abbaci: that his father brought him to Bejaïa, where his studio abbaci

introduced him to the “nine figures of the Indians”, that is, to the use of the
Hindu-Arabic numerals; nothing is said about methods like the rule of three,
partnerships, or alloying.[28] Latin culture, as is well known, had already been
introduced to these in the early twelfth century; none the less it is highly likely
that whatever commercial teaching went on in Italy during Fibonacci’s youth
was still based on Roman numerals[29], and that the consistent application of

that the importance of the counterfactual problems in the Columbia Algorism, far from
undermining the importance of the Ibero-Provençal area for the emergence of abbaco
culture, strenghtens the hypothesis (while leaving it a hypothesis that may possibly be
killed off by the appearance of further thirteenth-century material pointing in a different
direction).
27 It may also have encompassed the Arabic world. We know next to nothing about
Mediterranean-Arabic mathematics teaching for merchants, but it must have existed. Which
was the kind of school in Bejaïa where Fibonacci spent “some days”? Certainly no
madrasah, hardly a mosque school. And which was the institutional framework for the
teaching and transmission of mu āmalāt mathematics? Probably an institution linked to
social groups engaged in mu āmalāt, commercial transactions.
28 Later, of course, the regula recta and the elchatayn (“double-false”) rule are ascribed to
the Arabs [ed. Boncompagni 1857: 191, 318]; but these are higher-level matters that go
beyond basic abbaco teaching as reflected in chapters 1–15 of the Umbrian treatise and
the curriculum of the abbacus schools of Pisa as described by one Cristofano di Gherardo
di Dino who flourished in 1428–29 [ed. Arrighi 1967].
29 A Liber habaci (Florence, Magl. XI, 88, fols 1r–40v, [ed. Arrighi 1987: 109–166], dated by
Van Egmond [1980: 115] on the basis of internal evidence to 1310, still gives all integers
in Roman numerals – also those in the brief exposition of the place-value system (p. 109) –
and all fraction denominations in words. Comparison of its introduction of the rule of
three with what we find in the Umbrian abbaco shows close affinity between the two.
Given the vacillating Umbrian writing of fractions based on Hindu-Arabic numerals within
mixed numbers we may perhaps guess its compiler to have worked on the basis of
material which was similarly based on Roman numerals and verbal fractions – that is,
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Arabic numerals to otherwise familiar matters is what makes his treatise really
new (apart of course from its exorbitant scope and its integration of algebra and
Euclidean material and of numerous sophisticated variants of many recreational
problems); such an interpretation would fit his words better than the belief that
everything in the book was new to his world. Instead of being the starting point
of abbaco culture Fibonacci may have been an extraordinary representative who,
growing, had grown taller and more conspicuous than any other representative –
so tall that Cardano saw nobody but him in the landscape who was worth
mentioning, although Cardano’s own Practica Arithmeticae generalis – which
undertakes to set straight what was faulty in abbaco tradition – contains much
abbaco material not coming from Fibonacci (see [Gavagna 1999]).

Appendix: detailed description of the Umbrian abbaco

Ch. 1, de le regole de le tre chose (fols 1r–1v).
Here, the rule of three for integers is introduced together with the tricks to
use if one or more of the given numbers contains fractions. Nothing is taken
over from Fibonacci, although the Liber abbaci contains many problems that
could have been borrowed.

Ch. 2, de le chose che se vendono a centonaio (fols 2r–3r).
This chapter gives rules of the type “if something is sold in batches of a
hundred pounds, then for each libra that the hundred are worth, the pound

is worth 2 d., and the ounce is worth d.” (1 libra = 20 soldi = 240 denari).2

5

1

5

Nothing is borrowed from Fibonacci, but from the end of the chapter (and,
with some exceptions, until the end of the treatise) the writing of mixed
numbers suddenly follows Fibonacci’s system, the fraction being written to
the left of the integral part; until then, the integral part stands to the left.

Ch. 3, de le regole de pepe che senno (fols 3r–4v).
Problems about pepper and other spices, some of them involving loss of
weight due to refining. Nothing is borrowed from Fibonacci.

that an expression like d. 4 de denaio reflects an effort to adapt writings like gienovino4

11

vii et septe ottavj d’uno gienovino [ed. Arrighi 1987: 125] to Fibonacci’s notation.
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Ch. 4, de le regole degle drappe che se vendono a channa e a br. (fols 4v–6r).
Problems depending on the metrology for cloth. Nothing is borrowed from
Fibonacci.

Ch. 5, de regole de chanbio (fols 6r–13r).
Mostly on exchange of one coin against another – but also of coin against
weighed bullion, silk or fish, and of combination of coins, depending mostly
on the rule of three and involving the subdivisions of the libra. Nothing is
borrowed from Fibonacci. From fol. 7r onward, many results are given in

the awkward form “d. 7 de denaio”, “denari 7 of denaro”, and similarly –17

49

17

49

obviously arising from infelicitous mixing of Fibonacci’s notation with the

standard expression “denari 7, of denaro”.[30] The implication is that the17

49

compiler has copied this section from another pre-existing written source
making use of the standard idiom (which is hardly unexpected). The same
construction turns up again in various later chapters, but never in problems
taken over from Fibonacci.[31]

Ch. 6, de baracta de monete e denari (fols 13r–15r).
More complex problems on exchange of coin (and merchandise), involving
the (unnamed) rule of five. Nothing is borrowed from Fibonacci.

Ch. 7, de le regole de marche Tresce [from Troyes / JH] e de svariate ragione de lib

(fols 15r–16v).
Similar to chapter 6, but even more complex. Nothing is borrowed from

30 This is the notation that is used until that of Fibonacci is adopted on fol. 2v – e.g.,

“denare 19, de denaio”, fol. 1r. In both cases, as we notice, the first time the unit is17

49

mentioned it occurs as a plural, the second time as a singular genitive, which excludes

a reading of the inverted expression as “denari , 7 denari”.17

49

31 Fol. 7r has an isolated “d. 10, de denaio” betraying the original, and slightly later6

7

“d. 5 de denaio”. Similar slips are found on fol. 45r, “dr. 1, de denaio”, and fol.2493

1200

21

50

134r, “d. 3, de denaio”, “d. 8, de denaio”. On fol. 57r and again on fol. 121r, whole15

19

4

19

schemes are organized accordingly. All of these instances are in problems not borrowed
from Fibonacci.
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Fibonacci.

Ch. 8, da sapere quante d. de chantra e charrubbe e grana è l’onzia (fols 16v–17v).
On the subdivision of the ounce, and on the purification of alloyed bullion.
Nothing is borrowed from Fibonacci.

Ch. 9, de conparare bolçone a numero de denare ed a peso de libr (fols 17v–20v).
Problems on the purchase of alloyed bullion and its evaluation in value of
pure metal. Nothing is borrowed from Fibonacci.

Ch. 10, de regole de consolare ed alegare monete (fols 20v–29v).
Problems about alloying. After ten simple problems that are independent
of Fibonacci follow eighteen, some of them more complex, that are borrowed
from the Liber abbaci [ed. Boncompagni 1857: 144–158] – in part whole
sequences of consecutive problems. At times the copying is so close that
Fibonacci’s cross-references are borrowed even though they are invalid in
the actual context; at times minor variations are introduced, e.g. the

conversion of ounce into 7 [denari] (1 ounce is 12 denari).101

163

71

163

Ch. 11, de svariate regole che s’apartengono al consolare de le monete (fols 29v–32v).
Six rather artificial problems of alloying type, five of which are from the Liber
abbaci [ed. Boncompagni 1857: 159–164].

Ch. 12, de regole de merto o vero d’usura (fols 32v–42v).
Problems about loans and interest, first 24 on simple interest, then one
(counting a numerical variant, two) problems about composite interest over
full years and one on a decrease in geometrical progression; none of these
come from Fibonacci (the last problem is structurally analogous to one found
in the Liber abbaci [ed. Boncompagni 1857: 313], but the solution runs along
different lines).[32] In the end comes a section “De sutile regole de prestiare
lib. quante tu vuogle ad usura sopre alchuna chosa”, about giving a loan
in a house which the creditor rents, the excess of the rent over the interest
on the loan being discounted from the capital; all 12 problems belonging
to this section are borrowed from the Liber abbaci [ed. Boncompagni 1857:
267–273].

32 In this and in a slightly earlier problem, we also find constructions of the type “d. 11747

2561

de denare”
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Ch. 13, de regole che s’apartengono a quille de la usura (fols 42v–44r).
Eight problems somehow involving interest (combined with partnership,
discounting, etc.), not derived from Fibonacci. There are a few instances of

constructions like “d. 5 de denaio”, and also one “dìne 13 de dìne”,2493

1200

6

97

“days 13 of day”.6

97

Ch. 14, de regole de saldare ragione (fols 44r–51r).
Loan contracts containing invocations of God, names and dates, thus real
or pretendedly real, leading to the problem of repaying at one moment
several loans made within a single year; only simple interest is involved.
The whole chapter is independent of the Liber abbaci. There are copious

instances of expressions of the type “d. 6 de denaio” in all those problems11

12

that permit it, with the implication that this section is copied from a written
source, either real contracts or another abbaco treatise.[33]

Ch. 15, de svariate regole de conpagnie (fols 51r–58v).
Various partnership problems, none of which come from Fibonacci. Most

of them contain constructions of the type “staia 90 de staio” (the staio is5

8

a measure of capacity).

Ch. 16, de chonpare de chavagle (fols 58v–65r).
Ten variations of the “purchase of a horse”. The first two are independent
of Fibonacci (the second is indeed of “partnership” type, the following eight
are taken over from the Liber abbaci [ed. Boncompagni 1857: 228–235, 253f].

The first two problems contain numerous constructions of the type “d. 84

7

de denaio”, the others none.

Ch. 17, de huomene che demandavano d. l’uno a l’altro (fols 65r–74r).
Variations (with changing number of men and conditions) of the problem
type “Two men have denari; if the first gets a of what the second has, he shall

33 Since this is the chapter whose dated problems suggest that the treatise was written
in c. 1290, this observation reduces the credibility of that dating for the actual treatise;
however, the compiler’s total ignorance of algebraic terminology (see text just after note
13) supports an early date; so does, to the extent I can judge it, the apparently archaic
orthography.
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have p; if the second gets b of what the first has, he shall have q”, where
a, b, p and q may be given absolutely or relatively to what the other has. The
first six are independent of Fibonacci, then come nine that are taken from
Liber abbaci [ed. Boncompagni 1857: 189f, 198–202], then finally one that is
not borrowed from that work.[34]

Ch. 18, de huomene che trovaro borsce (fols 74r–79v).
Seven variations on the theme “N men find a purse with denari; the first says,
‘If I get what is in the purse (with/without what I already have) I shall have
p’; the second says ...”, N being 2, 3, 4 or 5, and p being given relatively to
the possession of the other(s). All come from the Liber abbaci [ed. Boncom-
pagni 1857: 212–214, 220, 223, 227].

Ch. 19, de huomene che cholsero denare emsiememente (fols 79v–82r).
Five problems of the type “N men find denari which they divide in such a
way that ...”, N being 2, 3, 5 or 6. In several cases “in such a way” regards
the products between the shares two by two. All are borrowed from the Liber
abbaci [ed. Boncompagni 1857: 204–207, 330, 281, this order]. In the end comes
a single problem of the type treated in chapter 18, which is independent of
Fibonacci.

Ch. 20, de regole de prochacio overo de viage (fols 82r–86v).
Fifteen problems “on gain and travelling”, about a merchant visiting three
or more markets, gaining every time a profit that is defined relatively to what
he brought and having expenses that are defined absolutely; the initial capital
is found from what he has in the end. All come from the Liber abbaci [ed.
Boncompagni 1857: 258–262, 266].[35]

34 Or which at least is not in the 1228 edition as published by Boncompagni; it could in
principle be one of those problems from the 1202-edition which Fibonacci states [ed.
Boncompagni 1857: 1] to have eliminated as superfluous; indeed, no obvious stylistic
features distinguish it from the Liber-abbaci problems that precede it. It could also come
from the liber minoris guise.
35 Max Weber in memoriam, the most widespread variant of the problem type could be
baptized “pre-Protestant merchant’s nightmare”: at each market, the merchant promises
God to give a specific amount to the Church or the poor if God doubles his capital; this
happens thrice, after which the pious merchant is bankrupt. The earliest extant appearance
of this problem is in Ananias of Širak’s seventh-century problem collection [ed., trans.
Kokian 1919: 116]; it disappears after the Reformation, in good agreement with the Weber
thesis – but it is also avoided by Fibonacci, who may have found it too far removed from
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Ch. 21, de huomene ch’andaro a guadagnare agl merchate (fols 86v–91r).
Nine problems concerning trade or markets – not all, in spite of the title,
about gains (two, indeed, are of the type “a hundred fowls”), but all are from
the Liber abbaci [ed. Boncompagni 1857: 399, 298, 160, 165f, 179, this order];
in some cases it is obvious that the compiler does not understand what he
copies, cf. p. 9.

Ch. 22, de choppe e del suo fondo (fols 91r–92r).
Three problems about a cup consisting of a cover, a foot, and “el meço” (“the
middle”), one part being given absolutely, the others relatively. The problems
correspond to a sequence of consecutive problems in the Liber abbaci [ed.
Boncompagni 1857: 188f];[36] the second contains a backward reference to
the use of the “rule of the tree” even though this rule, earlier in the Liber
abbaci, comes later in the present treatise. The same second problem is

corrupt, seemingly because the manuscript that is used has employed “ ”1

2

as a word sign for medium or meço, which the present writer repeats but
understands as a number.

Ch. 23, d’arbore o vogle de legne (fols 92r–93r).
Four problems about a tree, a certain fraction of which is either hidden
underground, or added to the tree, the remainder or total being given
absolutely. They correspond to a sequence in the Liber abbaci [ed. Boncom-
pagni 1857: 174f], but the wording of the first problem deviates so much from
the Liber-abbaci counterpart (and corresponds so well to what is found in
other abbaco writings, e.g., in the Columbia Algorism) that one may assume
the writer to have rewritten this problem from Fibonacci in a familiar style,
knowing it also from elsewhere.

Ch. 24, de vasa (fols 93v–95r).
Two problems about three respectively four vases, relative relations between

whose contents are given (e.g., that the first holds of what the second1

18

what real merchants from his times and town would do.
36 In order to see that the second problems has a counterpart in the Liber abbaci one has
to discover (from the subsequent calculation, or from our Umbrian abbaco) that the words
“ponderet quantum medii” [ed. Boncompagni 1857: 188, line 5 from bottom] should be
“ponderet quartum medii”.
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holds, plus of what the third holds). Both are from the Liber abbaci [ed.1

3

Boncompagni 1857: 286].

Ch. 25, de huomene che vonno per via chumunalemente ensieme (fols 95r–96r).
Two problems about men putting part of their possessions or the total of
these in a common fund, redistributing part of the fund arbitrarily and the
rest according to given proportions, finding thus their original possessions.
Both are from the Liber abbaci [ed. Boncompagni 1857: 293, 297], but the
anecdote in the first one differs from Fibonacci’s version (but probably
coincides with the typical tale belonging with the problem).

Ch. 26, de huomene che portaro margarite a vendere em Gostantinuopole (fols 96r–97v).
First two problems about carrying pearls to Constantinople and paying the
customs, both taken from the Liber abbaci [ed. Boncompagni 1857: 203f]; next
one which combines a dress about precious stones and Constantinople with
the mathematical structure of a problem dealing with fishes and commercial
duty, neighbouring problems in the Liber abbaci [ed. Boncompagni 1857:
276f].[37] Finally an independent problem about trade in pearls.

Ch. 27, de tine e de botte cho’ n’esce el vino per gle foramene cho sonno el fondo (fols
98r–101r).

Six problems on perforated tuns and casks, all from the Liber abbaci [ed.
Boncompagni 1857: 183–186]. In the first problem, the compiler misrepresents
and obviously does not understand the explanation of the procedure given
by Fibonacci.

Ch. 28, d’uno che manda el figlo en Alixandria (fols 101r–102r).
Four problems on the purchase of pepper, saffron (in the fourth also sugar
and cinnamon) for a given total, at given prices and at given weight
proportions. All are borrowed from the Liber abbaci [ed. Boncompagni 1857:
180].

Ch. 29, d’uno lavoratore che lavorava enn una uopra (fols 102r–104v).
First two identical problems about a worker who is paid for the days he
works and pays a fine for the days he does not work, solved with different

37 Given the restricted competence of our compiler one may ask whether these two
problems were one in the version of the Liber abbaci which he had at his disposal (the
1202 edition?) or in the liber minoris guise, given that this book shares material with the
Liber abbaci.
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methods; the two versions are taken from widely scattered places in the Liber
abbaci [ed. Boncompagni 1857: 323, 160] – the first of them appears to be
badly understood by the compiler. Next comes a problem about a complex
mode of wage payment, again in two versions with different solutions, both
coming from the Liber abbaci [ed. Boncompagni 1857: 186, 324].

Ch. 30, de huomene ch’andano l’uno po’ l’altro (fols 104v–105r).
Two problems about two travellers, one going with a constant speed, the
other pursuing him with a speed that increases arithmetically. From the Liber
abbaci [ed. Boncompagni 1857: 168].

Ch. 31, de regole per molte guise forte e ligiere de molte contintione (fols 105r–136v).
A mixed collection of mainly recreational problems, some from the Liber
abbaci, others not; several of the latter are simpler versions of problems
borrowed from Fibonacci that appear in the preceding chapters. With
reference to the pagination in [Boncompagni 1857], the distribution is as
follows: I indicate by “≠” that superficial similarity seems to suggest a
borrowing but closer inspection shows instead that both writers draw on
a common fund of basic problems and variations:

p. 273, p. 273, p. 274, p. 297, p. 298, p. 298, p. 283,[38] p. 329, p. 312, p. 182, p. 182,
indep., indep., indep. (≠p. 307), indep. (≠p. 323, ≠p. 160),[39] indep., indep.,[40]

indep. (≠p. 179), indep., indep., indep., indep.[41], p. 403, indep., indep., indep.,
indep., indep., indep., indep. (≠176f), p. 181, indep. (≠172),[42] indep. (≠174),
indep.,[43] indep., indep.,[44] indep.,[45] indep.,[46] p. 177, p. 182,[47] p. 274, p.

38 The “rabbit problem”, transformed into a “pigeon problem” with no other change, and
with a reference to a marginal diagram that is indeed found in the Liber abbaci but not
in the present treatise.
39 Apparently based on a source which is understood and copied badly.
40 Meaningless as it stands, probably resulting from defective copying of a source. To be
solved “sença regola [...] a palpagione e per apositione falsa”.
41 This is the problem that is borrowed from the Columbia Algorism or its closest kin,
cf. note 17.
42 Apparently based on a source that is copied thoughtlessly.
43 Solved wrongly.
44 A question touching at a real-life problem for long-distance trade which is rarely
mentioned in abbaco treatises: a ship beating up against the wind.
45 An eternal calendar.
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311, p. 316,[48], p. 313, p. 309,[49] p. 311, indep., indep., indep., indep., indep.,
indep., indep., indep., indep., indep., p. 132,[50] p. 133, indep.,[51] (≠167),[52]

(≠167),[53] (≠166),[54] indep., indep., indep., indep. (≠p. 179), indep., indep., p. 283,

46 This problem type is often found in al-jabr treatises: to divide a given number (mostly

10, here 16 ) into two parts with a given ratio.1

4

47 About ships that encounter each other. The compiler has added names to the points
of departure and destination (Genoa and Pisa).
48 Contains a cross-reference to the problem that precedes – in the Liber abbaci. Here it
follows.
49 The chess-board problem. The beginning copies Fibonacci in a way that suggest failing
understanding.
50 Makes use of the “rule of five” but without explaining what goes on (Fibonacci explains).
51 Another instance of sloppy copying from a source – the problems starts, in word-for-

word translation, “There is a well and a serpent deep 90 palms, by day palms and3

3

ascends and by night descends the fourth”. Apart from the displaced and superfluous

words, “ ” should be “ ”.3

3

2

3

52 The rule for the summation of square numbers from 12 to 102, found as
10 (10+1) (10+[10+1])/6. The same computation is found in the Liber abbaci [ed.
Boncompagni 1857: 167], but the formulations are too different to make a borrowing
plausible. The general case (with the corresponding formula) is proved in Fibonacci’s
Liber quadratorum [ed. Boncompagni 1862: 262], but nothing in the formulations suggest
the compiler to have used that work.
53 The rule for the summation of odd square numbers from 12 to 112, found as
11 (11+2) (11+[11+2])/(2 6). The Liber abbaci [ed. Boncompagni 1857: 167] finds the sum
12+32+...+92 according to the same formula, but explaining that the factor 9+2 is the
following member of the sequence of odd numbers, and that the divisor 2 is the distance
between the squared numbers. Once again, a general proof is found in the Liber
quadratorum [ed. Boncompagni 1862: 263], but nothing in the formulations suggests the
compiler to have known that work.
54 The rule for the computation of 1+2+...+99, found as the product of the last member
by its half rounded upwards! The Liber abbaci [ed. Boncompagni 1857: 166] gives two
general formulae, either half the number of terms multiplied by the sum of the extremes,
or half this sum multiplied by the number of terms, and one less general for sums of
the type p+2p+...+np; all Fibonacci’s numerical examples differ from the present one. The
Liber quadratorum [ed. Boncompagni 1862: 265] contains the rule that the sum of a number
n and other numbers pairwise equidistant from it (i.e., n+(n+d1)+(n–d1)+...+(n+dp)+(n–dp))
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indep., indep., indep.

A few of the independent problems contain expressions like “d. 4 de denaio”,2

7

(fol 110v), “d. 9 de denaio” (fol. 112r); “dì 354 de d.” (fol. 122v).1

3

11
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