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ABSTRACT

Analysis of the errors in two Old Babylonian “algebraic” problems show, firstly,
that the computations were performed on a device where at least additive
contributions were no longer identifiable once they had entered the computation;
secondly, that this device must have been some kind of counting board or abacus
where numbers were represented as collections of calculi; and, thirdly, that units
and tens were represented in distinct ways, perhaps by means of different calculi.

Eine Analyse der Rechenfehler in zwei altbabylonische “algebraische” Aufgaben
zeigen, erstens, daß die Berechnungen auf einem Gerät durchführt wurden, wo
wenigstens additive Beiträge nicht länger identifizierbar waren nach ihrer Eintragung
in die Rechnung; zweitens, daß das Gerät irgendeine Art Rechenbrett war, wo Zahlen
als Haufen von Rechensteinen erschienen; drittens, daß Einer und Zehner in
verschiedener Weise, vielleicht mittels verschiedener Rechensteine repräsentiert
wurden.



It has been known for more than a century that Babylonian calculators made use
of tables of multiplication, reciprocals, squares and cubes. It is also an old insight
that such tables alone could not do the job – for instance, a multiplication like that
of 2 24 and 2 36[1] (performed in the text VAT 7532, obv. 15, ed. [Neugebauer 1935:
I, 294]) would by necessity require the addition of more partial products than could
be kept track of mentally, even if simplified by means of clever factorizations. It has
therefore been a recurrent guess that the Babylonians might have used for this
purpose some kind of abacus – Kurt Vogel [1959: 24] also pointed to the possibility
that the creation of the sexagesimal place value system might have been inspired
by the use of a counting board.

Denise Schmandt-Besserat’s discovery [1977] of the continuity between an age-old
accounting system based on clay tokens and the earliest cuneiform writing could
only give new life to such speculations, the fullest development of the argument
being probably [Waschkies 1989: 84ff]. Unfortunately, neither material finds nor texts
allowed to transform the speculations into something more substantial – as pointed
out explicitly by Waschkies [1989: 85], no document was known at the time which
contained intermediate calculations or which told in clear terms how they were made.

Old Babylonian documents containing “rough work” were only identified by
Eleanor Robson ([1995], republished in final form as [Robson 1999]; further examples,
e.g., in [Robson 2000]).[2] What we learn from these is, however, that calculations
whose result could not be found by mental calculation (after adequate training) were
performed in a different medium; thus, the tablet UET VI/2 222 states directly (and
correctly) that 1 03 45 times 1 03 45 (expressed by the writing of one number above
the other) is 1 07 44 03 45. Since none of the round tablets discussed by Robson
contains the details of such calculations, we must presume that they were not made
in clay. How they were then made remains an open question.

Fortunately, not all calculators are equally precise, and calculational errors in
the sources may often be as informative about the process in which they were
produced as those made in the class-room may be about the way school kids think
about mathematical objects. Errors contained in two (equally Old Babylonian) texts
belonging to the so-called “algebraic” genre turn out to shed some light on the nature
of the devices of which their authors made use.

The first is problem no. 12 of the tablet BM 13901 (obv. II, lines 27–34, ed.

1 Since the present discussion regards calculation within the sexagesimal floating-point place
value system, I render the numbers without any indication of a presumed absolute order
of magnitude. 2 24 thus stands for 2 60n+24 60n–1, where n can be any integer.

2 The Old Babylonian period lasts from 2000 BCE to 1600 BCE in the currently used “middle
chronology”.
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[Neugebauer 1935: III, 3]). Line 29 asks for the multiplication of 10´50´́ by 10´50´́ ,[3]

and line 30 states the result as 1´57´́ 46´́´40(4) – wrongly, indeed, the true answer
being 1´57´́ 21´́´40(4). Since the erroneous result is used further on, it must be due
to the author of the text, not to a copyist. The computation can be made in many
ways, but I have been able to figure out only one where 25 occurs as an intermediate
result, and indeed in the order of thirds: a determination of the partial product 50´́50´́
as 25 (10´́ 10´́ ) = 25 (1´́´40(4)) = 25´́´+16´́´40(4).

This does not inform us about the tool on which the
1 57 21 40
1 57 46 40computation was performed, but is interesting in itself. The use

of factorization agrees well with what is known from other
sources – thus for instance from the tablets for rough work published by Eleanor
Robson. But factorization only intervenes when the answer cannot be given
immediately. We thus discover that the author of the tablet knew by heart (or because
he had just made use of it for the determination of another partial product) that 1010 =
1 40; but he seems not to have known by heart that 10 50 = 8 20, nor that 50 50 =
41 40. (Since the details of the computation are not presented in the text, a
pedagogically motivated detour can be safely excluded).

The fact that the contribution 25´́´ is added twice does
10 50 × 10 50

01 40
05
03 20
05
03 20

25
25
16 40

01 57 46 40

tell us something about the calculational tool. Omission of
a contribution can occur in almost any kind of device.
Insertion twice instead of once, on the other hand, is next to
excluded if the single contributions remain visible to the
reckoner, as in our paper algorithms (anybody going from
paper to the pocket calculator will have experienced the
unpleasant change on this account). We must therefore
conclude that our Old Babylonian calculator operated in a
medium where at least additive contributions were no longer identifiable once they
had entered the computation – as in the medieval dust abacus or on a counting
board, but not in the paper algorithms that were developed by the late medieval
maestri d’abbaco and which are still with us.

Further information is obtained from the second problem of the text TMS XIX

3 Actually the text asks for the laying-out of a rectangle with these sides and the ensuing
determination of the area. However, the present inquiry concerns only the numerical aspect
of the question, for which reason it will be convenient to disregard the geometrical setting.

Since the analysis requires that the relative order of magnitude of members be kept clear,
from this point onward I make use when adequate of Thureau-Dangin’s extension of the
degree-minute-second notation. It should be kept in mind that the tablet contains no similar
indications.
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(rev., lines 1–12, ed. [Bruins & Rutten 1961: 103, pl.
3 39 28 43 27 24 26 40
3 39 28 44 26 24 26 40
3 39 28 44 26 40

29].[4] In line 4, the square on 14´48´́ 53´́´20(4) is deter-
mined as 3´39´́ [28´́´]44(4)26(5)40(6),[5] and not as
3´39´́ 28´́´43(4)27(5)24(6)26(7)40(8)). Two errors appear to
have been committed: first, 43 27 has become 44 26; next, the repetition of «26» (in
both cases preceded by «4») has made the calculator change «44 26 24 26 40» into
«44 26 40». Since the number that is produced is used further on, even the latter
error must have been committed by the original calculator when transferring it from
a separate device on which it had been found. The first error – the misplacement
of a single unit in a wrong order of magnitude – implies that numbers were
represented as collections of units in the calculational device, in the manner of calculi
placed on a counting board, and not as the written numbers on a dust abacus.

In lines 6–7, 11´́ 6´́´40(4) is added to the number 3´39´́ [28´́´]44(4)26(5)40(6),[6] and

3 50 35 24 26 40
3 50 36 23 26 40
3 50 36 43 26 40
3 50 36 43 34 26 40

the result is stated to be 3´50´́ 36´́´43(4)34(5)26(6)40(7) instead of 3´50´́ 35´́´24(4)26(5)40(6).
This error is more complex, and since the number is not used further on[7] we
cannot know whether a copyist’s error (or an unsuccessful copyist’s attempt to repair
a recognized error) has been superimposed upon an
original calculator’s error. It seems, however, that a unit
has been misplaced in the order of fourths instead of that
of thirds; besides, two tens have been added wrongly to
the fourths, and an extra place «34» inserted after the

4 In the problem, the area of a rectangle is given together with the area of another rectangle,
whose length is the cube on the length of the first rectangle, and whose width is the diagonal
of the first rectangle. This is a problem of the eighth degree, which is solved correctly (apart
from the calculational errors which are discussed below) as a bi-biquadratic.

5 Bruins’s transliteration has «3.39.2[8.43.27]〈24〉 .26.40», but Ruttens’s hand copy shows that
there is space for nothing more than 28, and that the presumedly missing «24» is present
but as «44»; moreover, the number is repeated in line 7 as «3´39´́ 28´́´44´́´́ 26(5)[40(6)]».

There is no photo of the tablet in the edition, which means that this is one of the tablets
that were mislaid by the Louvre after having been hidden away in the late thirties because
of fear of imminent war [Jim Ritter, personal communication]; Bruins will therefore have had
to make his transliteration from the hand copy, and cannot have improved the readings of
the latter after collation.

6 Bruins gives the number as «3.39.28.44.26.24.[26.40]»; however, according to the hand copy
only «3.39.28.44.26» is legible, and the final lacuna has space for only one sexagesimal place –
i.e., exactly for the number found in line 4. Bruins has evidently reconstructed with an eye
to the correct value.

7 Its square root is taken in lines 8–9, but the stated value «15´11´́ 6´́´40´́´́ » is obviously found
from the known end result, which is the reason that the solution can be stated correctly. The
same, by the way, happens in BM 13901 no. 12.
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fourths.
Since misplaced units appear not to turn up as tens, it is likely that counters

for units and tens were different (as are the corresponding cuneiform signs, and
as would also be expected if the pre-literate accounting system had provided the
original inspiration); alternatively, a counting board may have been in use where
cases (or carved grooves, or whatever was used to keep together counters that
belonged together) for units and for tens were clearly distinguished but cases for
units in neighbouring orders of magnitude were so spatially close that single counters
could be mislaid or pushed accidentally from one to the other.

This is as far as the errors can bring us. Other textual evidence is at best ambi-
guous.[8] Archaeology only tells us is that the implements in question will either
have been made of perishable materials or have been of a type that has not allowed
archaeologists to identify their function.

It may be added that the use of a counting board will explain the rarity of
mistaken place ascriptions in the mathematical texts, for instance in the addition
of multi-place numbers. Mistakes are, indeed, much less common than could be
expected if absolute orders of magnitude were to be kept track of mentally, without
any material support.

It may also be added, and should be emphasized, that all conclusions drawn
above were based upon Old Babylonian material. There is no certainty that similar
techniques were used in the first millennium BCE. By then, the wax tablet had come
into use. A dust abacus is also likely to have been employed, as revealed by the
Greek name for the abacus (αβαξ ): as first pointed out by Nesselmann [1842: 107
n.5], it is a West Semitic loan word, derived from a verb meaning “to fly away”
and/or from a cognate noun meaning “light dust”.

8 Stephen Lieberman [1980: 346f], it is true, supposed to have found terms in lexical lists that
designated wooden accounting and calculational devices. His key piece, however, was a first
millennium version of one such list; the Old Babylonian version of the same list which has
been found in the meantime does not corroborate his interpretations (Eleanor Robson, personal
communication).
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