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O. Neugebauer in memoriam

I. INTRODUCTION

The following article deals with two particular ways to denote fractional
numbers, one of them multiplicative (»parts of parts«) and the other
multiplicative-additive (»ascending continued fractions«). They turn up in sources
from several cultures and epochs, but as a standard idiom only in Arabic
mathematics, where their occurrence has been amply described. In certain other
contexts (Babylonia, High and Late Medieval Europe) their occasional presence
has been taken note of though rarely investigated systematically. Finally, a few
scattered occurrences in Ancient Greek and Egyptian sources have not been
commented upon until this day.

Widespread occurrence of similar practices raises the question of interdepen-
dence versus independent development by accident or in response to analogous
situations. Thus also in this case. Posing the question, however, turns out to be
more easy than answering it, not least because some of the cultures to be dealt
with only present us with utterly few examples of the usage, and only the
combination of evidence and arguments of many kinds will allow us to construct
a scenario which is at least well-founded if not definitively verified on all points.

As a by-product, the inquiry will cast new light on the origins of the Egyptian
unit fraction system.

II. ISLAMIC AND POST-ISLAMIC EVIDENCE

In chapter V of Leonardo Fibonacci’s Liber abaci (second version, 1228) a
number of complex writings for fractional numbers are introduced. One of them –
the others are irrelevant for the present purpose – is what later has come to be
called the »ascending continued fraction« (»Aufsteigende Kettenbrüche« in
German), which Leonardo exemplifies by the number



meaning 7 10ths plus 5 6ths of a 10th plus ½ of a 6th of a 10th1 – in more
compact writing {1/10 [7+(1/6) (5+½)]}. In general,

stands for

The generalization to two or four or more levels is obvious. Incidentally, the
latter expression demonstrates that »ascending continued fractions« have nothing
but an inverted visual image in common with genuine continued fractions.

The notations for ascending continued fractions was not invented by
Leonardo but apparently in the Maghreb mathematical school, probably during
the 12th century. They are discussed in ibn al-Bannā ’s 13th century Talkhı̄s a māl
al-hisāb2 though without indication of the way they were to be written. Various
commentaries show, however, that standardized notations were in use. In one
late commentary, al-Qalasādı̄’s Arithmetic3 (1448), it is furthermore required that
the denominators in an ascending continued fraction stand in descending order
from the right (b1>b2>b3), as it is actually the case in Leonardo’s examples. Even



will ensure that a1/b1 is a good approximation (though not necessarily the optimal
approximation, cf. note 28). Thus, in Leonardo’s example, dividing first by 10
ensures that the first member will at most be 0.1 off the true value (a’s are always
smaller than the corresponding b’s). If the reverse canon (b1<b2<b3) had been used,
the result had been 1/2+

1/2
1/2+

1/2
1/2

1/6, and the error committed by taking the
first member alone would have been 7/24¸0.29.

The invention of notations was part of the general drive of Maghreb
mathematics, but verbally expressed ascending continued fractions and other
composite fractional expressions belonged to the common lore of Arabic
mathematics. They had been amply used and discussed in the later 10th century
by Abū’l-Wafā in his Book on What Scribes, Officials and the Like Need from the
Science of Arithmetic.5 They are also present in al-Khwārizmı̄’s early ninth century
Algebra6 and as well as in the Liber mensurationum by one Abū Bakr, translated
by Gherardo of Cremona into Latin in the 12th century and presumably written
in the first place around 800 A.D.7 Among the occurrences in al-Khwārizmı̄’s
work are the following (page references to Rosen’s translation):

– P. 24, 25/36 is transformed into »two-thirds and one-sixth of a sixth« [2/3+
1/6

1/6].

– P. 45, 1 māl is found as »a fifth and one-fifth of a fifth« of 41/6 māl [1/5+
1/5

1/5].

– P. 53: »three and three-fourths of twenty parts« [3/20+
3/4

1/20] is transformed
into »fifteen eightieths«.

– P. 54, a twelfth is expressed as »the moiety of one moiety of one-third« [1/2
1/2

1/3].

– P. 72, as one of several rules for finding the circular area we find the square
of the diameter minus »one seventh and half one-seventh of the same«.

– P. 88, the third of »nine dirhems and four-fifth of thing« is found to be »three
dirhems, and one-fifth and one-third <of> one-fifth of thing« [3+1/5+

1/3
1/5].

– P. 99. »two-sevenths and two thirds of a seventh of the share of a son« [2/7+
2/3

1/7].

The Liber mensurationum (which contains mostly integer numbers) presents
us with the following relevant passages:

5 See Youschkevitch, “Abū’l-Wafā ”; idem 1976: 25ff; or Saidan 1974. My poor
Russian has not permitted me to make much use of Medovoj’s fuller description
(1960) of Abū’l-Wafā ’s treatise. Nor have I been able to use Saidan’s Arabic
edition (1971: 64-368) of the work.
6 Ed., transl. Rosen 1831.
7 Ed. Busard 1968. As to the dating (built on terminological considerations), see
Høyrup 1986.



– No 19 (p. 90), 7 et dimidium septime.

– No 89 (p. 107), 43 et due quinte et quattuor quinte quinte, resulting from the
computation of 169-(111/5)

2. Similarly but in greater computational detail in
No 128 (p. 115).

– No 113 (p. 112), the root of 3/16 census is expressed as radix octave census et
medietatis octave census.

– No 144 (p. 118), the area of the circle is expressed as the square on the
diameter minus septimam et septime eius medietatem. Similarly in Nos 146, 156
and 158 (pp. 119 and 124).

The elementary building stones of the ascending continued fractions are the
»parts of parts«, the partes de partibus as they came to be called in the Medieval
Latin tradition, i.e., expressions of the form »p/q of 1/r«. The extent to which these
were natural to Arabic speakers of early Islam is demonstrated in the first treatise
of the 10th century Epistles of the Brethren of Purity, the Rasā il ikhwān al-safā . In
this exposition of the fundaments of arithmetic great care is taken to explain that
the first of a collection of two is called a half, while the first of three is a third,
that of four a fourth, and that of eleven one part of eleven; the first of twelve,
however, is labeled a half of a sixth, without a single word commenting upon
the reasons for or meaning of this composition. Similarly, the first of fourteen
is expressed without explanation as a half of a seventh, and that of fifteen as
a third of a fifth.8

The origin of both the parts of parts and of the ascending continued fractions
has been ascribed to a variety of causes, in particular to the peculiarities of the
Arabic vocabulary. Unit fractions from 1/2 to 1/10 possess a particular name of their
own, while those with larger denominators require a full phrase, 1/n being
expressed as »one part of n« or »one part of n parts« unless it can be composed
from unit fractions with smaller denominators. This might indeed explain that
the Arabic authors transformed the 1/14 of Hero’s (or rather pseudo-Hero’s) rule
for finding the circular area9 into »half one-seventh«, and that they expressed
1/25 as »one-fifth of a fifth«.

On the other hand, »the moiety of one moiety of one-third« is somewhat
at odds with the hypothesis: Why not »one-third of a fourth«, when in the actual
case the number 12 arises as 3 4? Or at least »one-half of a sixth«, which

8 Transl. Brentjes 1984: 212f.
9 The square on the diameter minus 1/7 and 1/14 of the square. Geometrica 24.40,
ed., transl. Heiberg 1912: 442f. Cf. Geometrica 17.4, ibid. 332b, 333b.



according to Abū’l-Wafā is to be preferred to »one-third of a fourth«,10 and
which still circumvents the difficulties created by the Arabic language while using
only two factors? Al-Khwārizmı̄, moreover, had no particular difficulty with
general fractions, at times with denominators exceeding 10, which abound even
in those very calculations where the »parts of parts« turn up. The reason that
the reciprocal of 25/6 is expressed in the form of an ascending continued fraction
on p. 45 of the Algebra while another ascending continued fraction is, reversely,
reexpressed as 15/80 on p. 53 seems simply to be that both reformulations fit the
further calculations better. The conventional explanation of the use of composite
expressions based solely on Arabic linguistic particularities is apparently
insufficient, even if these particularities have evidently tainted the way the system
was used.

III. CLASSICAL ANTIQUITY AND ITS LEGACY

The need for an explanation which goes beyond the peculiarities of the Arabic
language is confirmed by certain older sources. One of them is the collection
of arithmetical riddles in Anthologia Graeca XIV.11 A study of these give the
fascinating result that the types of fractional expressions used varies with the
subject of the problem. Problems which refer to Greek mythology or history make
use of unit or general fractions. So do all problems dealing with apples or
walnuts stolen by girl friends, with the filling of jars or cisterns from several
sources, with spinners’, brickmakers’ or gold- or silversmiths’ production, with
wills, and with the epochs of life – none of them make use of »parts of parts«.

»Parts of parts« and related composite expressions, on the other hand, turn
up in all problems dealing with the Mediterranean extensions of the Silk Road
(Nos 121 and 129), with the legal partition of heritages (Nos 128 and 143), and
with the hours of the day (Nos 6, 139, 140, 141, and 142; No 141 is connected to
astrology). A final »fifth of a fifth« is found in No 137, dealing with a catastrophic
banquet probably meant to be held in Hellenistic Syria. It appears that a number
of recreational problems belonging to (at least) two different contexts (providing
the dress of the problems) have been brought together in the anthology, each
conserving its own distinctive idiom for fractions: on one hand the traditional
Greek idiom, which makes use of general and unit fractions; on the other, the

10 Saidan 1974: 368.
11 Ed., transl. Paton 1979. The editor of this part of the Anthologia was probably
Metrodoros (fl. c. A.D. 500), but the single epigrams are older.



usage of the trading community and of juridical calculators (and perhaps of
astrologers and makers of celestial dials), which is different.

We may list the various composite fractional expressions:12

– No 6 (the hour of the day): »Twice two-third«.

– No 121 (travelling from Cadiz to Rome): »One-eighth and the twelfth part
of one-tenth«.

– No 128 (a textually and juridically corrupt heritage): »The fifth part of seven-
elevenths«.

– No 129 (travelling from Crete to Sicily): »Twice two-fifths«.

– No 137 (the Syrian banquet): »A fifth of the fifth part«.

– No 139 (a dial-maker asked for the hour of the day): »Four times three-fifths«.

– No 140 (the hour of a lunar eclipse): »Twice two-sixths and twice one-
seventh«.

– No 141 (the hour of a birth, to be used for a horoscope): »Six times two-
sevenths«.

– No 142 (The hour for spinning-women to wake up): »A fifth part of three-
eighths«.

– No 143 (The heritage after a shipwrecked traveller): »Twice two-thirds«.

We observe the character of these composite expressions is similar to but does
not coincide with what we know from the Arabic texts. Firstly, of course, these
do not contain integer multiples of fractions like those of Nos 6, 129, 139, 140,
141 and 143, and they would speak of »three fifths of an eighth«, not of »a fifth
part of three-eighths«. Secondly, the Arabic sources mostly follow the canon made
explicit by al-Qalasādı̄, while for instance No 121 of the Anthologia does not –
and 1/12 they split further, viz into 1/2 of 1/6, into 1/3 of 1/4 or even, as we have seen,
into 1/2 of 1/2 of 1/3.

Most likely, the integer multiples of the Anthologia are to be explained from
the recreational character of the arithmetical riddles: by being unusual, the
multiples make the riddles more funny or more obscure at first sight – it is hardly
imaginable that »two-thirds« would be expressed as »twice two-sixths« for any
everyday purpose. The demands of versification may have played a supplemen-

12 I follow Paton’s translation, even though a somewhat more literal translation
of some fractional expressions could be made. Paton’s concessions to English
rhythm are immaterial for the present purpose.



tary rôle – but since problems with a traditional »Greek« subject make no use
of the stratagem hardly more than a supplementary rôle.

The deviation from »al-Qalasādı̄’s canon«, however, gives no impression
of grotesquerie and can therefore not be an effect of the recreational purpose
of the epigrams. It is thus probable that it reflects the daily usage of the
practitioners trading in »parts of parts«, which will not have respected the later
Arabic canon and customs in full.

Another, Latin source of interest for our purpose is the Carolingian collection
Propositiones ad acuendos iuvenes conventionally ascribed to Alcuin and dating
from c. A.D. 800.13 Chronologically, it is roughly contemporary with al-
Khwārizmı̄ and probably with the Liber mensurationum. The material, however,
appears to be inherited from late Antiquity, and the Carolingian scholar (be it
Alcuin or somebody else connected to the Carolingian educational effort) has
only acted as an editor.

A brief exposition of the global character of the collection will serve the
double purpose of locating its composite fractional expressions with respect to
their background and of introducing some notions concerning the function of
recreational problems from which the further discussion will benefit. In general,
the collection is highly eclectic, bringing together material and methods from
a variety of traditions, combining at times mutually incompatible approximations
within the same problem solution.14 Of particular interest in the present context
is the very diverse network of connections behind the arithmetical problems.
No 13, dealing with 30 successive doublings of 1, points back to a very similar
problem from Old Babylonian Mari15 and eastward to the Arabo-Indian chess-
board problem and even to China. Nos 5, 32-34, 38-39 and 47 all belong to the
type of »A hundred fowls« known from earlier Chinese and contemporary or
earlier Indian sources16 and presented by Abū Kāmil as a type of question
»circulating among high-ranking and lowly people, among scholars and among
the uneducated, at which they rejoice, and which they find new and beautiful;

13 Ed. Folkerts 1978.
14 See Høyrup 1987: 291 n. 38 (»an/42.9« in line 9 from bottom should read
»and«).
15 Published in Soubeyran 1984: 30. The connection and similarities between the
Carolingian doublings and those from other epochs and places (except China)
are discussed in detail in Høyrup 1986: 477-479. On China, see Thompson 1975:
V, 542 (Z 21.1), or Høyrup 1987: 288f.
16 See the survey in Tropfke/Vogel 1980: 613-616.



one asks the other, and he is then given an approximate and only assumed
answer, they know neither principle nor rule in the matter«.17 Other problems
too point to the »oral technical literature«, the treasure of recreational problems
shared and carried by the community of traders and merchants interacting along
the Silk Road, the combined caravan and sea route reaching from China to
Spain.18

Connections to the Anthologia graeca and thus to the Greco-Roman orbit are
also present. Most significant is probably No 35, which is a puzzle on heritages –
one of the types, we remember, which made use of multiples of parts. It can
be traced back to Roman jurisprudential digests, even though the editor of the
Propositiones has got the solution wrong19

A final type represented by Nos 2, 3, 4, 40 and 45 seems to by-pass what we
know from the Anthologia graeca and point directly to Egyptian traditions (even
though matters may in reality be more complex, cf. below, p. ???). Admittedly,
when expressed in algebraic symbolism the problems in question are of a type
identical with the one dominating the Anthologia graeca, both being represented
by first degree equations. The equations of the Anthologia, however, are variations
on the pattern

x (1−1/p−1/q−
1/r)=R

(p, q, and r being integers), while Nos 2, 3, 4, 40 and 45 of the Propositiones build
on the scheme

x (n+α+β)=T

(n being an integer larger than 1 and α and β being unit fractions or »parts of
parts«). Both types possess analogues in the Ancient Egyptian Rhind Mathemat-
ical Papyrus20. The former type corresponds approximately to Nos 24-27 and
31-34; these are problems which consider an unspecified quantity or »heap« ( h ),
and which only differ from those of the Anthologia by adding the unit fractions

17 My English translation from Suter 1910: 100.
18 The classification of recreational mathematics as a parallel to folk-tales and
riddles, and thus as a special genre of oral literature, is discussed in Høyrup 1987:
288f and 1990: 74f.

The influence of eastern trading routes on the stock from which the
Propositiones were drawn is also made clear by problems Nos 39 and 52, dealing,
respectively, with the purchase of animals (including camels) in oriente and with
transport on camel back.
19 Folkerts 1978: 33.
20 Ed., transl. Chace et al 1929.



instead of subtracting them. The first-degree problems of the Propositiones just
spoken of, on the other hand, belong to the same type as Rhind Mathematical
Papyrus Nos 35-38, problems dealing with the hekat-measure.21

The reason for this lengthy presentation of the Propositiones and of a particular
group of first-degree problems is that four of the five problems in this group
employ »parts of parts«:

– No 2: medietas medietatis, et rursus de medietate medietas (meaning 1/2
1/2+

1/2
1/2

1/2).

– No 3: ter et medietas tertii (1/3+
1/2

1/3)

– No 4: medietas medietatis (1/2
1/2).

– No 40: medietatem de medietate et de hac medietate aliam medietatem (1/2
1/2+

1/2
1/2

1/2).

Composite fractions thus seem to go naturally with this problem type. On the
other hand, they occur nowhere else, neither in the problems which point to the
»Silk Road corpus«, nor those which remind of one or the other group from the
Anthologia graeca, nor in the inheritance problem. One observes that al-Khwāriz-
mı̄’s predilection for taking successive halves instead of a simple fourth is equally
present here, and is even extended to the use of 1/2 of 1/3 instead of 1/6. This is
all the more remarkable since the simple terms quadrans and sextans were at
hand,22 and the composite quarta pars and sexta pars are actually used in other
parts of the text (e.g., Nos 8 and 47). It will also be noticed that three of the four
cases are rudimentary ascending continued fractions.

IV. BABYLONIA

Some scattered instances of »parts of parts« and of simple ascending
continued fractions can thus be dug out from sources belonging to or pointing
back to classical Antiquity though not to the core of Greek mathematical
culture.23 Antecedents for the fuller use of ascending continued fractions, on

21 Another group from the Propositiones, consisting of Nos 36, 44 and 48, deviates
from both models but comes closest to the hekat-type.
22 In the sense that the use of these subdivisions of the as as names for abstract
fractions is described explicitly in the preface to the fifth-century Calculus of
Victorius of Aquitania (ed. Friedlein 1871: 58f).
23 This peripheral status of the Greek »parts of parts« is borne out by Ananias
of Shirak’s 7th century arithmetical collection (ed., transl. Kokian 1919), a work
strongly dependent on contemporary Byzantine teaching. »Parts of parts« are



the other hand, must be looked for further back in time – much further, indeed.
They can be found in the Babylonian tablet MLC 1731, which was analyzed

by Abraham Sachs,24 and which dates from the Old Babylonian period (c. 2000
to c. 1600 B.C.; the mathematical texts belong to the second half of the period).
It presents us with the following examples of composite fractions:25

– No 1: »One-sixth of one-fourth of [the unit] a barleycorn«.

– No 3: »One-fourth of a barleycorn and one-fourth of a fourth of a barleycorn«.

– No 4: »One-third of a barleycorn and one-eighth of a third of 20«.26

– No 5: »Two-thirds of 20 and one-eighth of two-thirds«.

– No 6: »A barleycorn and one-sixth of a fourth of 20«.

– No 7: »A barleycorn, two-thirds of 20 and one-eighth of two-thirds of 20«.

– No 9: »17 bar<leycorns>, one-third of 20, and one-fourth of a third of a
barleycorn«.

All these composite expressions result from the conversion of numbers
belonging to the »abstract« sexagesimal system into metrological units. Sachs
has convincingly pointing out that the notation in question is used because no
unit below the barleycorn existed27 – fractions could not be expressed in terms
of a smaller unit, as done in other conversions to metrological notation. Still,
the tablet shows that the parlance of »parts of parts« was at hand, and even that
there was an outspoken tendency to make use of ascending continued fractions

as absent from this work as from the »Greek« problems of the Anthologia graeca.
24 Sachs 1946. Besides the fractional expressions of that tablet, the article presents
and discusses similar usages in other Babylonian tablets.
25 In my translation of Babylonian texts, I follow the following conventions:
- »The n’th part« renders the expression » i g i - n - g á l « .
- Fractions and numbers written with numerals (2/3,

1/2, etc.; 1, 2, etc.) renders
special cuneiform signs for these fractions and numbers.

- Fractions and numbers written as words render corresponding expressions
in syllabic writing.

26 In all metrological systems, the barleycorn is 0;0,0,20 times the fundamental
unit. »20« is thus a shorter way to write »a barleycorn«.
27 Except in the system of weights, where ½ barleycorn existed as a separate unit –
cf. Sachs 1946: 208f and note 16. Most likely, however, the text is concerned with
area units (among other things because the numbers to be converted are obtained
as products of two factors, both of which vary from problem to problem).



rather than of sums of unit fractions with denominators below 10.28 We observe
that two-thirds is the only general fraction to turn up, while everything else
consists of unit fractions and their combinations,29 and that »al-Qalasādı̄’s
canon« is inverted – be it accidentally or by principle.

This tablet presents us with the most systematic Old Babylonian use of
composite fractions. It is not quite isolated, however, and scattered occurrences
can be found here and there in other Old Babylonian tablets.

One instance was pointed out by Sachs: YBC 7164 No 7 (line 18), where the
time required for a piece of work is found to be »2/3 of a day, and the 5th part
of 2/3 of a day«.30

In another text from the Yale collection, »parts of parts« (though no ascending
continued fractions) occur in all five times: YBC 4652 Nos 19-22,31 problems of
riddle-character dealing with the unknown weight of a stone. Here, »the 3d part
of the 7th part«, »the 3d part of the 13th part«, »the 3d part of the 8th part«
(twice) and »2/3 of the 6th part« turn up. We observe that the ordering of factors
agrees with »al-Qalasādı̄’s canon«, and that even a »13th part« is present.
(Babylonian, in contrast to Arabic, had a name for this fraction).

In the series text YBC 4714, No 28, line 10 (and probably also in the damaged
text of No 27), »a half of the 3d part« turns up in the statement.32 This is
evidently meant as a step toward greater complexity from the previous problems
having »the n’th part« (n=7, 4, and 5) in the same place.

28 In No 4, the result could have been given as »1/4+
1/8« (or as »1/4+

1/2
1/4«). In Nos

5 and 7, »1/2+
1/4« (or »1/2+

1/2
1/2«), and in No 9, »1/4+

1/6« would have been possible.
The actual choices of the texts secure that the first member alone approxi-

mates the true value as closely as possible. They demonstrate that »al-Qalasādı̄’s
canon«, even though ensuring that the first member of the expansion is a fair
approximation, of course does not guarantee it to be optimal.
29 Naturally enough, this reminded Sachs of the Egyptian unit fraction system
(as also borrowed by the Greeks): Even there, 2/3 is treated on a par with the sub-
multiples 1/2,

1/3,
1/4, etc. He did not make much of the fact that »1/3 of 1/5« would

be no number to an Egyptian scribe but a problem with the solution »1/15«. Nor
was he apparently aware that much closer parallels to his notation could be found
in the Arabic orbit.
30 MCT, 82. Discussed in Sachs 1946: 212.
31 MCT, 101.
32 MKT I, 490.



A text of special interest is the Susa tablet TMS V.33 All the way through
the tablet, sequences of numbers are used as abbreviations for complex numerical
expressions involving parts of parts. Recurrent from section to section (albeit
with some variation), 13 times in total, is the following series (the right column
gives the interpretation)

a: »2« 2

b: »3« 3

c: »4« 4 (cf. the different meaning in g)

d: »2/3«
2/3

e: »1/2«
1/2

f: »1/3«
1/3

g: »4« 1/4

h: »1/3 4« 1/3 of 1/4

i: »7« 1/7

j: »2 7« 2 times 1/7

k: »7 7« 1/7 of 1/7

l: »2 7 7« 2 times 1/7 of 1/7

m: »11« 1/11

n: »2 11« 2 times 1/11

o: »11 11« 1/11 of 1/11

p: »2 11 11« 2 times 1/11 of 1/11

q: »11 7« 1/11 of 1/7

r: »2 11 7« 2 times 1/11 of 1/7

s: »2/3
1/2

1/3 11 7« 2/3 of 1/2 of 1/3 of 1/11 of 1/7

t: »2 2/3
1/2

1/3 11 7« 2 times 2/3 of 1/2 of 1/3 of 1/11 of 1/7

In section 10 we also find

A: »1 2/3« 1 plus 2/3

B: »1 1/2« 1 plus 1/2

33 TMS, 35-49. The tablet has probably been prepared toward the end of the Old
Babylonian period.



C: »1 1/3« 1 plus 1/3

D: »1 4« 1 plus 1/4

E: »1 1/3 4« 1 plus 1/3 of 1/4

F: »1 7« 1 plus 1/7

G: »1 2 7« 1 plus 2 times 1/7

H: »1 7 7« 1 plus 1/7 of 1/7

I: »1 2 7 7« 1 plus 2 times 1/7 of 1/7

J: »2 1/2« 2 plus 1/2

K: »3 1/3« 3 plus 1/3

L: »4 4« 4 plus 1/4 (not 1/4 of 1/4)

M: »7 igi-7« 7 plus 1/7

N: »7 2 igi-7« 7 plus 2 times 1/7

In all cases, the expressions multiply the side of a square (literally: count the
number of times the side is to be taken).

In order to make his text as unambiguous as possible, the scribe has followed
a fairly strict format, most clearly to be seen in t and N: starting from the right,
he lists (with increasing denominator) those fractions which in full writing would
be written i g i - n - g á l , and which he abbreviates as the integer numeral n; next
come, in increasing magnitude, fractions possessing their own ideogram (1/3,

1/2

and 2/3). This entire section of the sequence is to be understood as »parts of parts«.
Then follows an (optional) integer numerator (>1), and finally an (equally
optional) integer addend. As long as the numerator is kept at 2 and the addend
at 1, the system is unambiguous. If we violate these restrictions (as in c and L),
however, it stops being so. Inside the text, the systematic progress eliminates
the ambiguities; if used as a general notation, on the other hand, the system
would lead to total confusion – a fact which is obviously recognized by the scribe,
since he introduces ad hoc the sign i g i in M and N.

These observations entail the conclusion that we are confronted with a
specific, context-dependent shorthand, not with a standardized notation for
general fractions, as claimed by Evert Bruins.34 Behind the shorthand, moreover,
sticks not just general fractions but the system of »parts of parts«; the summation
required by the ascending continued fractions, on the other hand, is not visible

34 TMS, 36.



through the notation.

In the end of the above-mentioned article, Sachs35 reviews a number of
Seleucid notarial documents making use of composite expressions often involving
»parts of parts« (all examples apart from No 15 deal with the sale of temple
prebends corresponding to parts of the day):

(1) »A fifth of a day and a third from a 15th of a day«.

(2) »A sixth, an 18th, and a 60th«.

(3) »A 30th, and a third from a 60th«.

(4) »A half from three quarters«.

(5) »A fifth from two thirds«.

(6) »Two thirds of a day and an 18th of a day«.

(7) »A sixth and a ninth of a day«.

(8) »A 20th from one day, of which a sixth from a 60th of a day is lacking«.

(9) »A 16th and a 30th of a day«, added to »a 16th of a day«, giving »an
eighth and a 30th of a day«.

(10) »An eighth from a seventh«.

(11) »A half from an eighteenth«.

(12) »A third from a twelfth«.

(13) »An 18th from a seventh«.

(14) »A twelfth from a seventh«.

(15) »A half from a twelfth« (as a share of real estate).

Sachs rightly observes that the system seems less strict than the old one. In cases
where the number is expressed as a sum, no particular effort is made to assure
that the first member is an optimal approximation, nor to follow the strict pattern
of an ascending continued fraction.36 From the present perspective, it may be
of interest that all »parts of parts« except those involving the irregular 1/7 respect

35 1946: 213f. In the present case I take over Sachs’s translation, except that I
translate ina as »from« instead of »in«.
36 Thus, No 2 could have been rearranged as 1/5+

1/45+
1/60 or, alternatively, as 1/5+/6

1/6
1/5;

No 7 either as 1/4+
1/9

1/4 or as 2 1/9+
1/2

1/9. Nos 3 and 6 only need reformulation
and no rearrangement in order to agree with the pattern of ascending continued
fractions.



»al-Qalasādı̄’s canon«.37 The Arabic avoidance of denominators larger than 10,
of course, is not observed.

V. EGYPT

Its building stones being unit fractions with small denominators, the »parts
of parts« scheme has often been connected to the Egyptian unit fraction system.
In its mature form, as we know it from Middle Kingdom through Demotic
sources, however, the Egyptian system had no predilection for those small
denominators which it is the purpose of the »parts of parts« scheme to achieve.
The Egyptians, furthermore, were not interested in such splittings where the
first member can serve as a good first approximation, whereas a fair first
approximation is a key point in the extension of the »parts of parts« into
ascending continued fractions (as we met it already in the Old Babylonian tablet,
cf. note 28). Attempts to explain the schemes of »parts of parts« and ascending
continued fractions by reference to the Egyptian unit fractions system thus appear
to be misguided.

»Parts of parts« as discussed above are not common in Egypt. In fact, I only
know of three places where the usage is employed to indicate a number38 (cf.
below on other applications). The first of these is Rhind Mathematical Papyrus
(RMP), Problem 37, one of the hekat-problems which were mentioned above in
connection with the Propositiones ad acuendos iuvenes: »Go down I [i.e., a jug of
unknown capacity] times 3 into the hekat-measure, 1/3 of me is added to me, 1/3
of 1/3 of me is added to me, 1/9 of me is added to me; return I, filled am I. Then

37 »May be of interest« but need not, at least as far as the history of mathematical
ideas and notations is concerned. Indeed, in an article discussing some of the
same examples and a number of others Denise Cocquerillat (1965) points out
that the expressions are chosen in a way which will make the merchandise look
as impressing as possible to a mathematically naive customer. The governing
principle may thus have been sales psychology rather than any general idiomatic
preference.
38 True enough, as pointed out by a referee, these numbers are no pure numbers:
they represent the value of one quantity measured by another – a hekat-measure
gauged by a jug, the toll on a herd of cattle as part of the original herd, the
number 22/3 measured by the number 20. But this is precisely what numbers are
mostly used for in daily practice, in Ancient Egypt as elsewhere, and also the
way numbers most often occur within calculations in Egyptian mathematical
texts.



what says it?«.39 The second is Problem 67 of the same papyrus, »Now a
herdsman came to the cattle-numbering, bringing with him 70 heads of cattle.
The accountant of cattle said to the herdsman, Small indeed is the cattle-amount
that thou hast brought. Where is then thy great amount of cattle? The herdsman
said to him, What I have brought to thee is: 2/3 of 1/3 of the cattle which thou hast
committed to me ...«.40 The third example of »parts of parts« used to indicate
a number, finally, belongs in the Moscow Mathematical Papyrus (MMP), Problem
20, where 22/3 is told to be 1/5 of 2/3 of 20.41

The latter example is put into perspective in RMP, »Problem« 61B, which
explain the method to find 2/3 of any unit fraction with odd denominator, and
uses 2/3 of 1/5 as a paradigm.42 The 1/5 of 2/3 which appears as a regular number in
the MMP is thus (reversion of factors apart, which was trivial to the Egyptians)
not recognized as such in the RMP, No 61B: a composite expression like 1/5 of 2/3
was be considered a problem and no number per se (a problem whose answer
is 1/10+

1/30). The same observation can be made on RMP, »Problem« 61, which is
in fact a tabulation of a series of solutions to such problems.43

A final use of what appears a first like composite fractional expressions α
of β turns up in the description of reversed metrological computations and

39 Chace et al 1929, Plate 59. The grammatical construction used is 1/3 n 1/3, the
indirect genitive, which is also used in expressions like 1/10 of this 10 (RMP 28),
1/2+

1/4 of cubit (RMP 58), 1/3+
1/5 of this 30 (MMP, 3), etc. (here as in all transcriptions

of Egyptian unit fraction sums I modernize the writing; the original text merely
juxtaposes the denominators with the superscript dot meaning ro, »part«.). This
construction should be distinguished from the reverse construction z n 5, »persons
until [a total of] 5« discussed by Graefe (1979).

We observe that the sequence 1/3 and 1/3 of 1/3 suggests the idea of ascending
continued fractions (as do the successive medietates in the related Propositiones-
problems).
40 Ibid., Plate 67. I have straightened somewhat the opaque language of the
extremely literal translation.
41 Ed., transl. Struve 1930: 95.
42 Chace et al 1929, Plate 83.
43 2/3 of 2/3,

1/3 of 2/3,
2/3 of 1/3,

2/3 of 1/6,
2/3 of 1/2, etc. (loc. cit.). Peet (1923: 103f) makes

a point out of a terminological distinction inside the table, which uses the
construction α of β in cases where α is 2/3 or can be obtained from 2/3 by halving
or successive halvings, but a construction β, its α (β α . f) in other cases. Since
some of the formulations have been corrected by the scribe it seems indeed that
the distinction is determined by a specific canon (which, as we observe, is broken
by the 1/5 of 2/3 of MMP 20).



conversions (RMP 44, 45, 46 and 49). As an example we may take RMP 45,44

which connects the two. A granary is known to contain 1500 khar and is supposed
to have a square base of 10 cubits by 10 cubits (1 khar is 2/3 of a cube cubit), and
the height is looked for. The calculation then proceeds in the following steps:

1 1500;
1/10 150;
1/10 of 1/10 of it 15;
2/3 of 1/10 of 1/10 of it: 10.

The key to the calculation is provided by Problem 44, which supplies the
corresponding direct computation of the content of a cubic container of 10 cubit
by 10 cubit by 10 cubit: the volume is first computed as 10 10 10 [cube cubits]
and then transformed into 1000+½ 500=1500 khar. A solution of the reverse
Problem 45 by geometric reasoning would have to go through these steps in
reverted order, transforming first the volume of 1500 khar into 1000 cubic cubits,
and then dividing by the area of the base or, alternatively, by length and width
separately. The text, as we see, proceeds differently, reversing the multiplications
of Problem 44 one by one without changing their order. The reversal is thus
taking place at the level of computational steps, where the order of divisions
does not matter, and not on that of analytical reasoning. The composite
expression »2/3 of 1/10 of 1/10« is not meant as another way to express the number
1/150 but rather as a way to recapitulate the sequence of computational steps (in
other words: To display the algorithm to be used).45 Its single constituents (2/3,
1/10 and 1/10) are numbers but the composition is neither an authentic number nor
a numerical expression to be transformed into a number (a »problem« in the
sense which makes »2/3 of 1/2« a problem and »1/10+

1/30« the answer in RMP 61B).46

Though exceptional, the few occurrences of composite fractional expressions
used as legitimate numbers are sufficient proof that the schemes of »parts of parts«

44 Chace et al 1929, Plate 67.
45 What looks like »parts of parts« and ascending continued fractions in the Indian
śulva sútras, e.g. in the passage customarily interpreted as an approximation
¹2¸1+1/3+

1/34−
1/3 4 34, has the same character, i.e., it is a prescription of a (geo-

metric) procedure and no arithmetical number in itself (see Baudháyana śulva sútra,
ed. Thibaut 1875: II,21). Genuine »parts of parts« are absent from Indian
mathematics (as confirmed to me by Guy Mazars in a private communication).
46 The non-numerical function of the composite expressions is confirmed by the
non-observance of the canon deduced by Peet from RMP 61 in RMP 44, 45, 46
and 49, which all speak of 1/10 of 1/10 (44-46 also have 2/3 of 1/10 of 1/10).



and ascending continued fractions are indeed connected to Egypt though not
to be explained with reference to the preferred unit fraction notation of the
Egyptian scribes. The Egyptians were able to understand »parts of parts« not
only as problems or as sequential prescriptions but also as numbers in their own
right. When would they do so?

It is difficult to deduce a rule from only three isolated instances. At least
two of the present cases, however, are not isolated but embedded in a specific
context, on which I shall make some observations in order to answer the question.

Firstly, the hekat-problems are formulated as riddles. When searching the
Rhind Papyrus for other riddles I only found one – viz the cattle problem in No

67 (this is actually how I first discovered my second instance). Stylistically, these
five problems are intruders into a problem collection which is otherwise written
in didactically neutral style.

Secondly, we note that the »2/3 of 1/3« of the cattle-problem is put into the
mouth of the herdsman and not into that of the accountant-scribe (similarly, the
»1/3 of 1/3« is put into the mouth of a jug).

Thirdly, the similarity was already noted between the hekat-problems and
those problems of the Propositiones which make use of »parts of parts«. The hekat-
problems are thus connected to the whole fund of recreational mathematics.

All this matches a comprehension of recreational mathematics as a »pure«
outgrowth of practitioner’s mathematics.47 »Parts of parts« appear to have
belonged to non-technical, »folk« parlance, i.e., to the very substrate from which
the riddles of recreational problems were drawn. Scribal mathematics, on the
other hand, made use of the highly sophisticated scheme of unit fractions; this
was a technical language, and the tool which the scribe would use to solve the
recreational riddles even when these were formulated in a different idiom.48

A parallel to the Old Babylonian situation is obvious. Even here, the
ascending continued fractions appeared when the result of calculations in the
»technical system« of sexagesimals had to be transformed into »practical« units,
while the »parts of parts« turned up in the statement of the riddles on stones
of unknown weight, and when supplementary complication had to be added
to purely mathematical problems.

»Parts of parts« could have arisen as a non-technical simplification and

47 See Høyrup 1990: 66-71.
48 The 1/5 of 2/3 of MMP 20, it is true, turns up inside the calculation. It looks like
a slip, like the reformulation of a description of computational steps (which in
the present case would rather give 2/3 of 1/5) inspired by non-scholarly but familiar
idiom.



consecutive extension of the unit fraction system, inspired by the sequential
prescriptions of reversed computational schemes. Alternatively, it could be the
basis from which the unit fraction system had developed. It is as yet not possible
to decide the question with full certainty. Strong chronological arguments can
be given, however, for the priority of the folk parlance and the secondary
character of the unit fraction system. In order to see that we will have to
determine the epoch during which the latter system was developed – a question
which has never been seriously approached before.

The unit fraction system is used in fully developed form in the RMP. The
original from which this papyrus has been copied is dated to the Middle
Kingdom, i.e. to the early 2nd millennium. Other papyri computing by means
of the unit fraction system, some of them genuine accounts and not materials
for teaching or tables for reference, belong to the same period. By this time,
general unit fractions had thus become a standard tool for scribal calculators.49

Older sources, however, are almost devoid of unit fractions. Old Kingdom
scribes made use of metrological sub-units and of those fractions which are not
written in the standardized way (i.e., 1/n written as the numeral n below the sign
ro), viz 2/3,

1/2, and 1/3.
50 Only the Fifth Dynasty Abū Sir Papyri (24th century B.C.)

present us with the unit fractions 1/4,
1/5 and 1/6.

51 At the same time, however,
they present us with striking evidence that the later system was not developed.
The sign for 1/5, indeed, appears in the connection »1/5

1/5«, meaning 2/5. Later, 2(1/5)
(or, as it is expressed in the RMP, »2 called out of 5«) would be no number but
a problem, the solution of which was 1/3+

1/15 – about one-third of the text of the
Rhind Mathematical Papyrus is in fact occupied by the solution of 2/n, n going
from 3 to 101.52 There are thus good reasons to believe that a notation for simple

49 The scribal corrections in RMP 61 would suggest, however, that the canon
deduced by Peet may only have emerged after the writing on the original, but
before the copy was made.
50 My main basis for this description of Old Kingdom sub-unity arithmetic is the
material presented in Sethe 1916.
51 I am indebted to Professor Wolfgang Helck for referring me to the publications
on the Abū Sir Papyri. The fractional signs in question are found in Posener-
Kriéger & de Cenival 1968: Plates 23-25, cf. translation in Posener-Kriéger 1976
and the discussion in Silberman 1975.
52 Silberman (1975: 249) suggests that the writing be explained as a product of
scribal ignorance. In view of the central position occupied in Egyptian arithmetic
by doubling and ensuing conversion of fractions this is about as plausible as
finding a modern accountant ignorant of the place value system.



aliquot parts was gradually being extended toward the end of the Old Kingdom,
but was not yet developed into its mature form. True, Reineke53 thinks that
it will have been needed in the complex administration of the Old Kingdom,
and thus dates the development to the first three dynasties. As far as I can see,
however, real practical tasks are better solved by means of metrological sub-units
(which are standardized and can thus be marked out on measuring instruments).
The advantage of the unit fraction system is theoretical; it will only become
manifest in the context of a school system.

This conclusion is supported by analysis of the pyramid problems of the
RMP (Nos 56, 57, 58, 59A, 59B, 60). Those of them which appear to deal with
»real«, traditional pyramids, i.e., which have a slope close to that of Old Kingdom
pyramids (Nos 56-59B) measure the slope in adequate metrological units (viz
palms [of horizontal retreat per cubit’s ascent].54 The result of No 60, which deals
with some other, unidentified structure, is given as a dimensionless, abstract
number. At the same time, the dimensions of the first five, »real« pyramids are
given without the unit, as it would be adequate for master-builders who knew
what they were speaking about; No 60 states the data as numbers of cubits, as
suitable for a teacher instructing students who do not yet know the concrete
practices and entities spoken about. It is thus likely that the author of the papyrus
took over the first 5 problems with their metrological units from an older source
but created or edited the final, abstract problem himself.55

The time when teaching changed from apprenticeship to organized school
teaching is fairly well-established.56 Schools were unknown in the Old Kingdom
(if we do not count the education of sons of high officials together with the royal
princes), which instead relied upon an apprentice-system. Only after the collapse
of the Old Kingdom do we find the first reference to a school (and the absence
of a God for the school shows that schools only arose when the Pantheon had
reached its definitive structure). By the time of the early Middle Kingdom, on
the other hand, scribal education is school education. There is thus a perfect
coordination between the changing educational patterns, the move from
metrological toward pure number, and the development of the full unit fraction
system as far as it is reflected in the sources.

53 1978: 73f.
54 See the comparison of real and »Rhind« slopes in Reineke 1978: 75 n. 28.
55 This is also plausible from »a serious [conceptual] confusion [which] has taken
place« in the text of No 60, and which is pointed out and discussed by Peet (1923:
101f).
56 See Brunner 1957: 11-15, and Wilson in Kraeling & Adams 1960: 103.



It is therefore fairly certain that the systematic use of unit fractions was a
quite recent development when the original of the Rhind Papyrus was written –
and implausible, as a consequence, that a non-technical usage built on »parts
of parts« should already have been derived from it. On the other hand, the traces
of an incipient use of the unit fraction notation in the Abū Sir Papyri fits a
development starting from a set of elementary aliquot parts in popular use but
extending and systematizing this idiom in agreement with the requirements of
school teaching.

VI. A SCENARIO

The single occurrences of »parts of parts« and ascending continued fractions
are easily established. When it comes to questions of precedence and to possible
connections, however, conclusions will have to be built on indirect evidence and
on plausibility. Instead of proposing candidly a theory and claiming it to be
necessary truth I shall therefore propose a scenario and, in cases where this is
needed, try to evaluate the merits of alternative interpretations. Instead of treating
the matter in chronological order I shall begin with the most obvious, leaving
the more intricate matters to the end.

Most obvious of all are the connections within Western Asia. The Old
Babylonian »parts of parts« and ascending continued fractions are so close to
the usage later testified in Arabic sources that the existence of unbroken habits
in the Babylonian-Aramaic-Arabic-speaking region is beyond reasonable doubt.
The minor differences between canons and materializations of shared principles
can easily be explained as effects of the peculiarities of the single languages and
from the use of different computational tools or techniques.

In the early Islamic period, the composite fractions belonged with the »finger-
reckoning« tradition and thus with the non-scholarly discourse of merchants
and other practical reckoners.57 One may assume this to have been the case
already in earlier times – not least because most of the Old Babylonian occur-
rences suggest so. The intense interaction of merchants along the Silk Road, which
was able to carry a shared culture of recreational problems, will also have been
able to spread a Semitic merchants’ usage to traders and calculators of neighbour-
ing civilizations. The early rôle of the Phoenicians and the persistent participation

57 After the mid-eleventh century, the originally separate »finger-reckoning« and
»Hindu« reckoning« traditions merged (cf. Høyrup 1987: 309-11). Al-Qalasādı̄,
like Leonardo Fibonacci, would hence combine the two.



of Syrian and other Near Eastern merchants in Mediterranean trade, in particular,
will have been an excellent channel for the spread of the system to the West (as
it was probably the channel through which a shared system of finger-reckoning
spread from the Near East to the whole Mediterranean region and as far as Bede’s
Northumbria58). The striking coincidence that problems from the Anthologia
graeca concerning parts of the day refer to the very usage which also turns up
in Seleucid calculations dealing with that subject, as well as the references to
astrology and to dial-makers in the Anthologia, suggests that not only traders
but »Chaldean« astrologers and instrument-makers were involved in the spread
of the usage from the Near Eastern to the Greek orbit.

To the Greek orbit, but not general spread within the orbit of Greek culture.
The reason that we can speak of striking coincidences is, in fact, that no such
spread took place. »Parts of parts« and derived expressions are restricted to those
very domains where their original practitioners employed them, using probably
an idiom borrowed together with other professional instruments from the Near
East. Other domains were not affected.

The above argument presupposes that diffusion took place, and that a channel
for that diffusion has to be found. Caution requires, however, that this presuppo-
sition be itself examined critically. After all, »parts of parts« seem to be an idea
close at hand. Everybody who understands the fractions will also understand
their composition, we should think. Ascending continued fractions, furthermore,
is a generalization of the metrological principle of descending sub-units; any
culture possessing a linearly ordered and multi-layered metrology should be
able to invent them.

So it seems. But the actual evidence contradicts the apparent truisms. Greek
Antiquity, though having demonstrably the schemes before its eyes, did not grasp
at a notation which was so near at hand. It accepted the notation in a few select
places – precisely the ones to where it can be assumed to have been brought.
But the Greeks did not like it. For everyday use, they stuck to the Egyptian
system; for mathematical purposes, they developed something like general
fractions; and in astronomy, they adopted the Babylonian sexagesimal fractions.

The same holds for Latin Europe. The Propositiones became quite popular
and influenced European recreational mathematics for centuries. But a 14th
century problem coming very close to those dealing with medietas et medietas
medietatis transforms this number into »1/2 and 1/4«.59 The usage »at hand« did
not spread – on the contrary, it was resorbed.

58 References in Høyrup 1987: 291.
59 Ms. Columbia X 511 A13, ed. Vogel 1977: 109.



The ascending continued fractions had a similar fate. As told above, they
were taken over from Arabic arithmetic as an obligatory subject in Italian
arithmetic from Leonardo onwards without acquiring ever any importance.
Outside Italy, only Jordanus de Nemore tried to naturalize them as part of
theoretical mathematics. He did so in his treatises on »algorism«, computation
with Hindu numerals. For this purpose he invented a special concept »dissimilar
fractions«. To explain what the concept was about he connected it precisely to
systems of metrological sub-units.60 Not even his closest followers, however,
appear to have found anything attractive in the idea, and no echo whatsoever
can be discovered. Ascending continued fractions, no more than »parts of parts«,
came naturally to the minds of Medieval European reckoners and mathematicians.

If a concept cannot spread inside a given culture but remains restricted to
a very particular use (ultimately to be resorbed) it is not likely to have been
invented by this culture – at least not if there is no specific need for it in the
context where it establishes itself. On this premise the »parts of parts« occurring
in the Anthologia graeca and the Propositiones can safely be assumed to be there
as the result of a borrowing.

In the case of the Anthologia, as we have seen, the only conceivable source
is Western Asia; as far as the Propositiones are concerned, the question of the
direct channel is less easily decided. As we have observed, composite fractions
are absent even from the problems inspired by the Eastern trade. Only one
specific type of riddle employs them – a type which ultimately points toward
Ancient Egypt and not to the trading network. During the Achaemenid and
Hellenistic eras, however, Egyptian and Western Asiatic methods and traditions
had largely been mixed up. Even if the composite fractions of the Propositiones
can ultimately be traced to Egypt, the way from Aachen to Egypt may therefore
have passed through anywhere between Kabul and Seville.

Tracing the composite fractions of the Anthologia to the Semitic-speaking
world of Western Asia and those of the Propositiones to Egyptian sources brings
us back to the most intricate question: How did these (or, more precisely: the
Babylonian and Egyptian usages) relate to each other?

We have found the traces of an Old Kingdom Egyptian and as well as an
Old Babylonian »folk« usage of elementary aliquot parts (including 2/3). We have
seen, moreover, that these were combined in both cultures into »parts of parts«;
that they were expanded at least in Babylonia into a system of ascending
continued fractions, and that they presumably provided Middle Kingdom Egypt

60 See the preface to Demonstratio de minutiis, ed. Eneström 1913. Cf. Høyrup 1988:
337f.



with the foundation on which the full unit fraction system was built.
In principle, the Babylonian and Egyptian composite fractions may have

developed in complete independence; two arguments, however, contradict this
assumption. For one thing, »parts of parts« seem not to come naturally to an
»average« culture, if we trust the Greek, Latin and Italian evidence. The Ancient
Mesopotamian compositions appear, moreover, to be strictly bound to the
Babylonian language. Third millennium Sumerian texts employ elementary unit
fractions freely; but they never combine them as »parts of parts«; these, and the
ascending continued fractions, only appear when mathematical traditions carried
by the Babylonian language took possession of the scribal school in the Old
Babylonian epoch. Shared origins or at least shared roots are thus more credible
than full independence.

Shared origins are by no means excluded. Both the Semitic (including the
Babylonian) and the Ancient Egyptian languages belong to the Hamito-Semitic
language family. Furthermore, a socio-cultural need for simple fractions can
reasonably be ascribed to the (presumably pastoral) carriers of the language
before the Semitic and the Egyptian branch broke away from each other.61

Already at this early epoch, the habit of combining them as »parts of parts« may
also have existed, even though the (scarce) comparative evidence suggest no
need for such arithmetical subtleties in a non-monetary economy. Alternatively,
diffusion of the habit via trade routes from one culture to the other at a later
moment can be imagined: during the fourth and as well as the third millennium
B.C., connections existed, in all probability via Syrian territory.62

Yet whether such commercial links were able to influence the development
of arithmetical idioms is an open question. They may have involved a whole
chain of intermediaries. An argument in favour of diffusion through trading
contacts one way or the other (or from an intermediary) could be the common
»institution« of recreational mathematics, which is not likely to have existed when
the Semitic and Egyptian branches of the family separated (probably no later
than the fifth millennium); but since Babylonian and Egyptian scribes have only
the institution but no members (i.e., problem-types) in common, independent
development of the recreational genre as a response to the similar social
environments of professional reckoners – i.e., shared (sociological) roots of the
genre is an alternative explanation at least as near at hand as shared origins

61 See the table of shared vocabulary in Diakonoff 1965: 42-49, and other shared
vocables mentioned elsewhere in the book. Common property is, inter alia, the
term hsb, »to count«, »to reckon«, »to calculate«.
62 See Moorey 1987 on the 4th millennium, and Klengel 1979: 61-72 on the third.



through common descent or through diffusion.
Similarly, shared roots (though linguistic or computational and not sociological)

may be the better explanation that composite fractions are found in both Egypt
and Babylonia. As one will remember, the objection against fully independent
development of systems of composite fractions was founded on the observation
that the creation of a scheme of »parts of parts« is not near at hand, in spite of
what might look like reasonable a priori expectancies. Strictly speaking, however,
this observation was only made on a Greek, Latin, or Italian linguistic background
and on the background of the computational techniques and tools in common
use in classical Antiquity and Medieval Europe. But developments in Egypt and
Babylonia will not have been fully independent: they will have taken place on
structurally similar linguistic backgrounds, and maybe on the background of
shared techniques and tools. A common heritage of Babylonians and Egyptians
could be a set of elementary fractions and a pattern of linguistic or computational
habits being naturally open to specific developments – in particular the
development of a scheme of »parts of parts«.63 This would be parallel develop-
ments from shared roots.

Summing up we may conclude with a high degree of certainty that later
occurrences of »parts of parts« and ascending continued fractions outside the
Egypto-Semitic area are due to borrowings from developed usages (in some cases
distorting or rudimentary borrowings). We may also assume that the parallel
Semitic and Egyptian idioms can be ascribed to a shared heritage. But we cannot
know whether the shared heritage was an actual way to speak about fractional
entities or only a potential scheme inherent in language structures or computational
practices. Personally, I confess to be inclined toward belief in the potential

63 In his book (1965) on the Hamito-Semitic language family, Diakonoff mentions
many instances where different languages of the family have developed similar
features independently; thus as complex a phenomenon as the pluralis fractus
(p. 68). We might speak of »structural causation«, the effect of shared linguistic
structures determining that specific developments are near at hand and
compatible with general linguistic habits.

»Structural causation«, however, need not be linguistic. Non-linguistic
instruments for accounting and computation (be they mental or material) may
in the same way open the way for specific inventions and block others which
are not compatible with existing habits, tools or conceptualizations.

Knowledge of the way fractions are spoken about in other Hamito-Semitic
languages might seem to offer a way to distinguish linguistic from non-linguistic
causation. However, native and ethnically conscious Berber speakers studying
mathematics whom I interviewed in Algeria confessed to speak about fractions
in Arabic and to be ignorant of any Berber idiom for fractions.



scheme.
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Addendum

An error in Hero’s Metrika I.xxxi [ed. Schöne 1903: 76 l.13] suggests thinking
in terms of composite fractions: 2/7 (β ζ’)is replaced by 1/14 (ιδ’)


