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Abstract 
 

It is well known that many arc routing problems can be transformed into the Equality 
Generalized Traveling Salesman Problem (E-GTSP), which in turn can be transformed into 
a standard Asymmetric Traveling Salesman Problem (TSP).  This opens up the possibility 
of solving arc routing problems using existing solvers for TSP. This paper evaluates the 
performance of the state-of-the art TSP solver Lin-Kernighan-Helsgaun (LKH) on a broad 
class of transformed arc routing instances. It is shown that LKH makes it possible to find 
solutions of good quality to large-scale undirected, mixed, and windy postman and general 
routing problem instances. 
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1. Introduction 
 
The goal of arc routing problems (ARPs) is to determine a minimum cost closed walk passing 
through some arcs and edges of a graph. Formally, ARPs are defined on a graph G = (V, A, E) 
where V = {v1, ..., vn} is a set of vertices, A is a set of (directed) arcs aij (i ≠ j), and E is a set of 
(undirected) edges eij (i < j). Non-negative costs cij and dij are associated with arcs aij and with 
edges eij, respectively. It is not necessary to traverse all arcs or edges. Denote by AR and ER the 
subsets of required arcs and edges, respectively. The aim is to determine a least cost closed 
walk on G including all required arcs and edges at least once.  
 
If the walk also has to pass through a certain subset of required vertices, VR ⊆ V, we have the 
general routing problem (GRP).  
 
Depending on problem properties, some well-known classes of routing problems can be ob-
tained from this definition. In this paper the following classes will be tackled: 
 
• The Mixed Chinese Postman Problem (MCPP): AR = A ≠ ∅, ER = E ≠ ∅, dij = dji for 

all i, j, VR =∅. 
• The Windy Postman Problem (WPP): A =∅, ER = E ≠ ∅, dij ≠ dji for at least one edge 

eij, VR =∅. 



 2 

• The Undirected, Mixed and Windy Rural Postman Problems (URPP, MRPP, WRPP), 
which are defined similarly, except that now AR ⊂ A or ER ⊂ E. 

• The General Routing Problem (GRP): A = ∅, ER = E ≠ ∅, dij = dji for all i, j, VR ≠ ∅. 
• The Mixed General Routing Problem (MGRP): A =∅, ER = E ≠ ∅, dij = dji for all i, j, 

VR ≠ ∅. 
• The Windy General Routing Problem (WGRP): A =∅, ER = E ≠ ∅, dij ≠ dji for at 

least one edge eij, VR ≠ ∅. 
 
All these problems can easily be transformed into E-GTSP [1]. The transformed problem is 
defined on a graph H = (W, B). In this graph W consists of one vertex wij for each required arc 
vij of G, one vertex wii for each required vertex vi, and two vertices wij and wji for each re-
quired edge eij (one for each of the corresponding opposite arcs, only one of which is re-
quired). B is the set of all arcs linking two vertices of W. Each vertex pair (wki, wlj) in the 
transformed problem defines an arc of W with a cost equal to sil + clj, where sil denotes the cost 
of a shortest path from vi to vl on G. 
 
We have thus transformed the original arc routing problem into the Equality Generalized 
Traveling Salesman Problem (E-GTSP), where each cluster consists of either one or two 
vertices. Clusters consisting of two vertices correspond to required edges in the original 
problem, whereas single vertex clusters correspond to required arcs and required vertices in 
the original problem. 
 
A recent paper [2] has described GLKH, an effective solver for E-GTSP based on the Lin-
Kernighan-Helsgaun algorithm, LKH [3]. GLKH will be used in the following computational 
study.   
 
2. Computational Results 
 
The program was coded in C and run under Linux on an iMac 3.4 GHz Intel Core i7 with 32 
GB RAM. Version 1.0 of GLKH was used. The program uses only one of the computer’s four 
CPU cores.  
 
Coberán et al. have provided a large library of test instances for arc routing problems [4]. The 
library includes 1042 instances of URPP, GRP, MCPP, MRPP, MGRP, WPP, WRPP and 
WGRP. All these instances have be transformed into E-GTSP and then solved by GLKH us-
ing the following non-default parameter settings: 
 

ASCENT_CANDIDATES = 500 
INITIAL_PERIOD = 1000 

 MAX_CANDIDATES = 12 
 MAX_TRIALS = 1000 

OPTIMUM = <best known cost>  
 RUNS = 1 
 
Table 4 summarizes the computational results. The table contains average values over all 
considered instances of the respective type. The columns ‘n’ and ‘m’ report the average num-
ber of vertices and clusters in the E-GTSP instances. 
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The following observations can be made: 
 

• The solution quality is good for all instances. Optima are found for about half of the 
instances and the average deviation from the optimal solution is less than 3%. 
 

• The instances in MCPP and WPP are the most difficult for GLKH. Other parameter 
settings might lead to a better solution quality. However, this will probably be at the 
expense of unacceptable running times. For these large instances, GLKH cannot com-
pete with the highly sophisticated exact algorithm of Corberán et al. [5]. 

 
• Tests similar to those reported in Table 1 have been conducted by Drexl [6, p. 10]. Us-

ing Gutin and Karapetyan’s heuristic E-GTSP solver GK [7], he found that GK per-
formed acceptable for instances with up to about 200 clusters. However, for instances 
with more than 500 clusters, the gap to the optimal solutions usually exceeded 10%. 
As seen, GLKH performs better than GK for instances with many clusters. 

 
Currently, optima are known for 998 out of the 1042 instances. It may be mentioned, that un-
til now GLKH has been able to find new best upper bounds for 22 of the remaining 44 in-
stances: 
  
 MCPP MA3067 6,529,588 WPP WB3061: 178,684 
 MCCP MB2052:    125,566 WPP WB3062: 177,765  
 MCPP MB3052:    151,284  WRPP C422:   21,181 
 MCPP MB3065:    201,187  WRPP D322:   23,784 
 MGRP GD422:      32,057 WRPP D421:   24,539 
 MGRP GD425:      37,581 WRPP D422:   23,943 
 MGRP GD522:      34,482 WGRP GB321:   20,549 
 MGRP GD525:      40,077 WGRP GB322:   20,328 
 WPP WA3065: 4,500,431 WGRP GB421:   20,774 
 WPP WB3035:      83,596  WGRP GB422:   20,452 
 WPP WB3055:    133,501 WGRP GB622:   24,102    
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Instance classes # of inst. |V| |A|+|E| |AR|+|ER| n m Error (%) Opt. (%) Time (s) 
URPP: UR500 12 446 1129 616 1232 616 0.32 41.7 141.1 
URPP: UR750 12 666 1698 907 1813 907 0.40 25.0 231.4 
URPP: UR1000 12 886 2290 1215 2430 1215 0.50 25.0 358.4 
GRP: Alba 15 116 174 86 196 110 0.00 100.0 0.2 
GRP: Madr 15 196 316 158 347 189 0.00 100.0 1.5 
GRP: GRP 10 116 174 75 178 102 0.00 100.0 0.2 
MCPP: MA05 12 500 1158 1158 1773 1158 0.56 8.3 1028.9 
MCPP: MB05     12 500 1210 1210 1836 1210 0.24 25.0 740.2 
MCPP: MA10 12 1000 2319 2319 3555 2319 0.86 0.0 2958.7 
MCPP: MB10 12 1000 2442 2442 3702 2442 0.61 16.7 2283.6 
MCPP: MA15 12 1500 3479 3479 5330 3479 1.06 0.0 4686.8 
MCPP: MB15 12 1500 3631 3631 5511 3631 0.57 8.3 3726.4 
MCPP: MA20 12 2000 4645 4645 7108 4645 1.09 0.0 7031.0 
MCPP: MB20 12 2000 4829 4829 7329 4829 0.58 0.0 5226.9 
MCPP: MA30 12 3000 6959 6959 10664 6959 1.20 0.0 12627.1 
MCPP: MB30 12 3000 7131 7131 10877 7131 0.75 0.0 8511.3 
MRPP: RB 18 449 1134 610 1376 610 0.02 72.2 141.0 
MRPP: RD 18 900 2315 1230 2759 1230 0.08 33.3 530.9 
MGRP: Alba 25 116 174 88 177 118 0.00 100.0 0.2 
MGRP: Alda 31 214 351 168 324 217 0.00 93.5 7.1 
MGRP: Madr 25 196 316 158 301 205 0.00 100.0 1.7 
MGRP: GB 18 500 1218 610 980 661 0.03 83.3 110.5 
MGRP: GD 18 1000 2450 1230 1958 1330 0.08 44.4 558.3 
WPP: WA05 12 500 1160 1160 2321 1160 2.00 0.0 489.8 
WPP: WB05 12 500 1213 1213 2426 1213 1.28 0.0 386.3 
WPP: WA10 12 1000 2317 2317 4634 2317 2.44 0.0 1230.2 
WPP: WB10 12 1000 2434 2434 4868 2434 2.15 0.0 899.4 
WPP: WA15 12 1500 3493 3493 6986 3493 2.68 0.0 2229.5 
WPP: WB15 12 1500 3655 3655 7309 3655 2.17 0.0 1678.3 
WPP: WA20 12 2000 4645 4645 9289 4645 2.86 0.0 3412.7 
WPP: WB20 12 2000 4826 4826 9652 4826 2.36 0.0 2561.3 
WPP: WA30 12 3000 6961 6961 13922 6961 2.97 0.0 7375.6 
WPP: WB30 12 3000 7141 7141 14282 7141 2.35 0.0 5060.1 
WRPP: A100 72 116  174 102 204 102 0.01 94.4 1.1 
WRPP: A500 27 401 1268 481 963 481 1.13 3.7 134.8 
WRPP: A1000  27 848 2522 1149 2297 1149 1.71 0.0 505.4 
WRPP: B 24 446 1132 610 1220 610 0.28 12.5 125.2 
WRPP: C    24 673 1706 918 1837 918 0.40 8.3 170.8 
WRPP: D 24 895 2287 1222 2443 1222 0.58 12.5 251.1 
WRPP: M 72 196 316 187 374 187 0.04 68.1 10.8 
WRPP: HD 54 86 173 85 170 85 0.01 96.3 0.9 
WRPP: HG 54 83 149 77 154 77 0.00 100.0 0.6 
WRPP: P       144 25 59 28 56 28 0.00 100.0 0.0 
WGRP: A 27 500 1135 575 1223 648 1.18 0.0 191.1 
WGRP: G 24 500 1210 599 1255 656 0.30 12.5 124.8 
 

Table 1 Results for arc routing problems. 
 
  



 5 

3.  Conclusion 
 
The computational results show that LKH makes it possible to find solutions of good quality 
to large-scale undirected, mixed, and windy postman and general routing problem instances. 
 
The developed software is free of charge for academic and non-commercial use and can be 
downloaded in source code together with test instances via    
http://www.ruc.dk/~keld/research/GLKH/. 
 
 
  



 6 

References 
 

1. Blais, M., Laporte, G.: Exact Solution of the Generalized Routing Problem through 
Graph Transformations. J. Oper. Res. Soc., 54(8):906-910 (2003) 
 

2. Helsgaun, K.: Solving the Equality Generalized Traveling Salesman Problem Using 
the Lin-Kernighan-Helsgaun Algorithm. Computer Science Report #141, Roskilde 
University (2014) 

 
3. Helsgaun, K.: An Effective Implementation of the Lin-Kernighan Traveling Salesman 

Heuristic. Eur. J. Oper. Res., 126(1):106-130 (2000) 
 

4. Corberán, Á., Plana I., Sanchis, J.M.: Arc Routing Problems: Data Instances. 
http://www.uv.es/corberan/instancias.htm 

 
5. Corberán, A., Oswald, M., Plana I., Reinelt, G., Sanchis, J.M.: New results on the 

Windy Postman Problem, Math. Program., Ser. A 132:309–332 (2012) 
 

6. Drexl, M.: On the generalized directed rural postman problem. J. Oper. Res. Soc., 
doi:10.1057/jors.2013.60 (2013) 

 
7. Gutin, G., Karapetyan, D.: A memetic algorithm for the generalized traveling sales-

man problem. Nat. Comput., 9(1):47-60 (2010) 


