Project Ideas in Computer Science

Keld Helsgaun
Keld Helsgaun

Research:

• Combinatorial optimization
• Heuristic search (artificial intelligence)
• Simulation
• Programming tools

Teaching:

• Programming, algorithms and data structures
OPT-art

27486 points
One out of 10^{10079} possible tours
Space filling curve

A curve that passes every point of a square

Sierpinski curve
Finding a tour

Visit the **points** in the same order as they appear on the curve
Sierpinski - Mona Lisa

$O(n \log n)$ time
Self-organizing neural networks

$O(n)$ time

10 cells

50 cells

500 cells

2000 cells
Triangulized Mona Lisa
Delaunay triangulation

For each triangle, the circumcircle does not contain any other points of the pointset.
Genetic algorithms

Darwin’s principle of evolution (“survival of the fittest”) may be used to construct effective optimization algorithms
Genetic algorithms

An individual (chromosome) represents a candidate solution for the problem at hand.

A collection of individuals currently "alive", called population is evolved from one generation to another depending on the fitness of individuals, indicating how fit an individual is, in other words, how close it is to an optimal solution.

At each evolutionary step, crossover and mutation (Genetic Operators) are applied on individuals, respectively.
Swarm intelligence

Social insects - such as ants and bees - give us a powerful metaphor for developing decentralized problem solving systems consisting of simple co-operating agents.

Ant colony optimization

Each ant leaves a trail of pheromones when it explores the solution landscape. This trail is meant to guide other ants.

The trail will be taken into account when an ant chooses the next location to move to, making it more prone to walk the path with the strongest pheromone trail.
Timetabling

Assign a number of events to a limited number of time periods.

Course planning: Assign each lecture to some period of the week in such a way that no student is required to take more than one lecture at a time.

International Timetabling Competition:
http://www.idsia.ch/Files/ttcomp2002/
Problem solving

Write a **general** Java package for problem solving.

For example, the package must be applicable to solving the so-called 15-puzzle:
Rubik’s cube
Automatic theorem proving

- **Theorem proving:** to show that a statement follows logically from some other statements

- **Automatic theorem proving:** a mechanization of the proof
Example

• Given the following 2 statements:

 All humans are mortal.
 Socrates is a human.

• Show that we may conclude that:

 Socrates is mortal.
Project idea

Development of a program that reads a series of logical statements, checks their correctness, and converts them into a form that may be used in an existing program for automatic theorem proving.

Input: Logical statements in first order predicate
Output: The statements transformed into disjunctive normal form

Subjects: Syntax, semantics and translation
Data mining

Analysis of large data sets with the purpose of finding meaningful patterns in the data.

Example: cluster analysis
Distributed algorithms

Application of **xgrid** for distributed solution of some chosen problem.
Simulation of a computer

Development of a simulator for Donald Knuth’s MMIX machine.
Image compression

Compression of images be means of block truncation.
Symbolic differentiation

Given a symbolic expression as the following:

\[\sin^2(3x-2) + \frac{3-2x}{3+2x} \]

Input the expression. Output the differential quotient with respect to x:

\[-\frac{3}{2}(\cos(6x-9) - \cos(2x-3)) - \frac{12}{(3+2x)^2} \]
Representation of images

Development of a program that, given a description as this one:

```
Picture spiral = new Picture(50);
spiral.plus(square).plus(spiral.origon(0,1).turned(10).
magnified(0.95, 0.95));

Picture ram = new Picture(1);
ram.plus(spiral).plus(spiral.origon(1,0).magnified(-1,1));
```

draws the picture

[Image of the spiral drawing]
Given a figure as the one shown below:

Determine which edges that make up the outline of the figure (→), and which inner edges that are oriented towards (+) or away (-) from the viewer.
Adventure games

Development of an adventure game program in Java.
Optimization of simulation models

Development of a general tool for optimization in connection with simulation.

Example: Optimization of traffic lights.
The simulation language DEMOS

A Java implementation of DEMOS (Discrete Event Modelling on Simula).
The game OCTI

Don Green (2002)
Bioinformatics

Involves:
• Modeling of biological processes
• Formulation of computational problems
• Design and analysis of algorithms
• Development and use of programs

Focus on genetic sequence analysis.
Example: How similar are two gene sequences?
Sorting by reversals

Given a permutation of the integers 1 to \(n \).
Determine the shortest sequence of reversals that transforms the permutation into \((1 \ 2 \ 3 \ldots \ n)\).

Example:

\[
\begin{align*}
4 & \ 3 & 2 & 8 & 7 & 1 & 5 & 6 \\
4 & 3 & 2 & 1 & 7 & 8 & 5 & 6 \\
1 & 2 & 3 & 4 & 7 & 8 & 5 & 6 \\
1 & 2 & 3 & 4 & 8 & 7 & 5 & 6 \\
1 & 2 & 3 & 4 & 8 & 7 & 6 & 5 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{align*}
\]

5 reversals
Additional inspiration

See the web page:

www.akira.ruc.dk/~keld/teaching/Projektforslag

- Ten proposals in artificial intelligence
- Twelve mixed proposals (in Danish)
Contact

Office 42.2
e-mail: keld@ruc.dk