
1

Discrete Event Simulation in Java

Keld Helsgaun
E-mail: keld@ruc.dk

Department of Computer Science
Roskilde University

 DK-4000 Roskilde, Denmark

Abstract

This report describes javaSimulation, a Java package for
process-based discrete event simulation. The facilities of the
package are based on the simulation facilities provided by the
programming language SIMULA. The design of the package
follows the SIMULA design very closely. The package is easy to
use and relatively efficient. In addition, Java packages for co-
routine sequencing, event-based simulation and activity-based
simulation are presented.

Keywords: simulation, Java, process, discrete event, coroutine

1.  Introduction

The Java platform comes with several standard packages. No package, how-
ever, is provided for discrete event simulation. This is unfortunate since dis-
crete event simulation constitutes an important application area of object ori-
ented programming. This fact has convincingly been demonstrated by
SIMULA, one of the first object-oriented programming languages [1][2][3].

SIMULA provides the standard class SIMULATION, a very powerful tool
for discrete event simulation. A simulation encompasses a set of interacting
processes. A process is an object associated with a sequence of activities or-
dered logically in simulated time. Each process has its own life cycle and may
undergo active and inactive phases during its lifetime.



2

Processes represent the active entities in the real world, e.g., customers in a
supermarket. Thus, the process concept may be used to describe systems in a
natural way.

This report describes javaSimulation, a Java package for process-based
discrete event simulation. The package may be seen as an implementation of
class SIMULATION in Java. In addition to the simulation facilities, the pack-
age also includes the facilities for list manipulation and random number
drawing as found in SIMULA.

When designing the package, great emphasis has been put into following the
SIMULA design as closely as possible. The advantage of this approach is that
the semantics of facilities are well-known and thoroughly tested through
many years’ use of SIMULA. A SIMULA user should easily learn to use the
package.

The rest of this report is structured as follows.

Chapter 2 provides a short introduction to discrete event simulation by means
of a concrete example, a car wash simulation. The example is used to demon-
strate the use of three different approaches to discrete event simulation: event-
based, activity-based and process-based. In relation to these approaches sev-
eral packages have been developed. These packages are described from the
user’s point of view and their use is demonstrated by means of the car wash
example.

Implementing a process-based simulation package in Java is not a trivial task.
A process must be able to suspend its execution and have it resumed at some
later time. In other words, a process should be able to act like a coroutine.
Chapter 3 describes the development of a package, javaCoroutine, for
coroutine sequencing in Java. The package provides the same coroutine fa-
cilities as can be found in SIMULA. Its implementation is based on Java’s
threads.

This coroutine package is then used in Chapter 4 for the implementation of a
package for process-based simulation, javaSimulation.

javaSimulation is evaluated in Chapter 5, and some conclusions are
made in Chapter 6.

The appendices contain Java source code and documentation.



3

2.  Discrete event simulation in Java

Simulation may be defined as the experimentation with a model in order to
obtain information about the dynamic behavior of a system. Instead of ex-
perimenting with the system, the experiments are performed with a model of
the system. Simulation is typically used when experimentation with the real
system is too expensive, too dangerous, or not possible (e.g., if the real sys-
tem does not exist).

The system components chosen for inclusion in the model are termed entities.
Associated with each entity are zero or more attributes that describe the state
of the entity. The collection of all these attributes at any given time defines the
system state at that time.

There are three categories of simulation models, defined by the way the sys-
tem state changes:

• Continuous: the state varies continuously with time. Such systems are
usually described by sets of differential equations.

• Discrete: the state changes only at discrete instances of time (event times).



4

• Combined continuous and discrete: the state changes instantaneously at
event times; in between consecutive event times the system state may vary
continuously [4].

In this report we will only consider so-called discrete event simulation. In
discrete event simulation the model is discrete, and the simulated clock always
jumps from one event time to the most imminent event time. At each event
time the corresponding action (state change) is performed, and simulated time
is advanced to the next time when some action is to occur. Thus, discrete
event simulation assumes that nothing happens between successive state
changes.

In order to make the following description easier to comprehend, a concrete
simulation example will now be presented.

2.1  The  car wash problem

This example has been taken from [1].

A garage owner has installed an automatic car wash that services cars one at a
time. When a car arrives, it goes straight into the car wash if this is idle; oth-
erwise, it must wait in a queue. The car washer starts his day in a tearoom
and return there each time he has no work to do. As long as cars are waiting,
the car wash is in continuous operation serving on a first-come, first-served
basis. All cars that have arrived before the garage closes down are washed.

Each service takes exactly 10 minutes. The average time between car arrivals
has been estimated at 11 minutes.

The garage owner is interested in predicting the maximum queue length and
average waiting time if he installs one more car wash and employs one more
car washer.



5

2.2  Three approaches for discrete event simulation

There are basically three approaches that can be used for discrete event simu-
lation: the event-based, the activity-based and the process-based approach [5].

(1) The event-based approach

In the event-based approach the model consists of a collection of events. Each
event models a state change and is responsible for scheduling other events
that depend on that event.

Each event has associated an event time and some actions to be executed
when the event occurs.

In the car wash problem the arrival of a car is an example of an event. Actions
associated with this event are the inclusion of the car into the waiting line and
the scheduling of the next car arrival.

Event-based simulation is the simplest and most common implementation
style of discrete event simulation because it can be implemented in any pro-
gramming language.

(2) The activity-based approach

In the activity-based approach the model consists of a collection of activities.
Each activity models some time-consuming action performed by an entity.

Each activity has associated a starting condition, some actions to be executed
when the activity starts, the duration of the activity, and some actions to be
executed when the activity finishes.

In the car wash problem the washing of a car is an example of an activity. The
condition for starting this activity is that one of car washers is idle and the
waiting line is not empty. When the activity starts, an idle car washer is re-
moved from the tearoom, and the first waiting car is removed from the wait-
ing line. The duration of the activity is 10 units of simulated time. When it
ends, the car washer is put back into the tearoom.

Whilst the activity approach is relatively easy to understand, it normally suf-
fers from poor execution efficiency compared to the event-based approach.



6

(3) The process-based approach

In the process-based approach the model consists of a collection of processes.
Each process models the life cycle of an entity and is a sequence of logically
related activities ordered in time.

In the car wash problem a car is an example of a process. Each car performs
the following sequence of activities: wait in queue, get washed.

Since processes resemble objects in the real world, process-based simulation
is often easy to understand. Implementation, however, is not easy and exe-
cution efficiency may be poor if the implementation is not done properly.

The figure below illustrates the relation between the concepts event, activity
and process.

In the remaining part of this chapter we will show how the car wash problem
can be solved in Java using each of the three simulation approaches.

event

process

time

wait in queue get washed

activity

event event

activity



7

2.3  Solving the car wash problem by event-based simulation

To provide a simple tool for event-based simulation a small Java package
called simulation.event has been developed.

When using this package the events of a model are described in one or more
subclasses of class Event. An outline of this class is shown below.

public abstract class Event {
    protected abstract void actions();

    public void schedule(double evTime);
    public void cancel();
    public static double time();
    public static void runSimulation(double period);
    public static void stopSimulation();
}

The actions method represents the actions associated with the event. These
actions will be executed when the event occurs.

An event is scheduled to occur at a specified point in simulated time by calling
its schedule method. The desired event time is passed as an argument to
the method.

A scheduled event may be cancelled by calling its cancel method.

The time method returns the current simulated time.

The runSimulation method is used to run a simulation for a specified pe-
riod of simulated time. Time will start at 0 and jump from event time to event
time until either this period is over, there are no more scheduled events, or the
stopSimulation method is called.

Below we will show how the package may be used for solving the car wash
problem. For this purpose we will exploit two other packages, simset and
random. The simset package provides the same facilities for list manipu-
lation as class SIMSET of SIMULA. The random package provides all of
SIMULA’s methods for drawing random numbers. The source code and
documentation of these two packages can be found in the appendices A, B,
C and D.



8

We will represent the entities of the system (car washers and cars) by the two
classes CarWasher and Car.

class CarWasher extends Link {}

class Car extends Link {
    double entryTime = time();
}

Both classes extend the Link class from the simset package. This has the
effect that any object of these classes is capable of being a member of a
queue. Thus, a CarWasher may be put into a queue of idle car washers, and
a Car may be put into a line of waiting cars.

The attribute entryTime of the Car class is used for each Car to record the
time it entered the garage.

The two queues are defined using the Head class of the simset package:

Head tearoom = new Head();
Head waitingLine = new Head();

Next, we define the following events:

• A car arrives
• A car washer starts washing a car
• A car washer finishes washing a car

These events are specified in three subclasses of class Event.

A car arrival is described in class CarArrival as shown below.

class CarArrival extends Event {
    public void actions() {
        if (time() <= simPeriod) {
            Car theCar = new Car();
            theCar.into(waitingLine);
            int qLength = waitingLine.cardinal();
            if (maxLength < qLength)
                maxLength = qLength;
            if (!tearoom.empty())
                new StartCarWashing().schedule(time());
            new CarArrival().schedule(
                time() + random.negexp(1/11.0));
        }
    }
}



9

The actions method specifies what happens when a car arrives at the ga-
rage. Unless the garage has closed, a Car is created and put into the waiting
line. Next, if any car washer is idle (is waiting in the tearoom), the starting of
a wash is scheduled to occur immediately. Finally the next car arrival is
scheduled using the random package. Here, it is assumed that the number of
minutes between arrivals is distributed according to a negative exponential
distribution with a mean of 11 minutes.

Actually, it is not necessary for a CarArrival object to create a new
CarArrival object before it finishes. It could simply reschedule itself by
executing the following statement

schedule(time() + random.negexp(1.0/11.0));

The starting of a car wash is described in class StartCarWash shown be-
low.

class StartCarWashing extends Event {
    public void actions() {
        CarWasher theCarWasher =
            (CarWasher) tearoom.first();
        theCarWasher.out();
        Car theCar = (Car) waitingLine.first();
        theCar.out();
        new StopCarWashing(theCarWasher, theCar).
            schedule(time() + 10);
    }
}

When this event takes place, an idle car washer is removed from the tearoom,
and the first waiting car is removed from the waiting line.

A car wash takes 10 minutes. Accordingly, a StopCarWashing event is
scheduled to occur 10 time units later.



10

Class StopCarWashing is shown below.

class StopCarWashing extends Event {
    CarWasher theCarWasher;
    Car theCar;

    StopCarWashing(CarWasher cw, Car c)
      { theCarWasher = cw; theCar = c; }

    public void actions() {
        theCarWasher.into(tearoom);
        if (!waitingLine.empty())
            new StartCarWashing().schedule(time());
        noOfCustomers++;
        throughTime += time() - theCar.entryTime;
    }
}

When a car washer has finished washing a car, he goes into the tearoom.
However, if there are cars waiting to be washed,  a new StartCarWashing
event is scheduled to occur at once. So he will have a break, unless another
idle car washer can do the job.

In order to make a report when the simulation has ended the following vari-
ables are updated:

     noOfCustomers: the number of cars through the system
     throughTime:         the sum of elapsed times of the cars



11

The simulation program is shown below (excluding the classes described
above). Note the use of inner classes.

import simulation.event.*;
import simset.*;
import random.*;

public class CarWashSimulation extends Simulation {
    double simPeriod = 200;
    Head tearoom = new Head();
    Head waitingLine = new Head();
    Random random = new Random(5);
    int noOfCustomers, maxLength;
    double throughTime;

    CarWashSimulation(int n) {
        noOfCarWashers = n;
        for (int i = 1; i <= noOfCarWashers; i++)
            new CarWasher().into(tearoom);
        new CarArrival().schedule(0);
        runSimulation(simPeriod + 1000000);
        report();
    }

    void report() { ... }

    class CarWasher extends Link {}
    class Car extends Link { ... }

    class CarArrival extends Event { ... }
    class StartCarWashing extends Event { ... }
    class StopCarWashing extends Event { ... }

    public static void main(String args[]) {
        new CarWashSimulation(1);
        new CarWashSimulation(2);
    }
}

The main method of the program performs two simulations, the first with
one car washer, the second with two car washers.

When a CarWashSimulation object is created, all car washers are put
into the tearoom, the first car is scheduled to arrive immediately, and the sys-
tem is simulated for a specified period of time.

The parameter passed to the runSimulation method has to do with fin-
ishing-off the simulation. When simPeriod time units have passed the ga-
rage closes and no more cars arrive, but all cars in the queue at that time will
eventually be served. In the program simPeriod has been set to 200.



12

When a simulation has finished, the method report is called in order to
write statistics generated by the model. This method appears as follows:

void report() {
    System.out.println(noOfCarWashers
        + " car washer simulation");
    System.out.println("No.of cars through the system = "
        + noOfCustomers);
    java.text.NumberFormat fmt =
        java.text.NumberFormat.getNumberInstance();
    fmt.setMaximumFractionDigits(2);
    System.out.println("Av.elapsed time = "
        + fmt.format(throughTime/noOfCustomers));
    System.out.println("Maximum queue length = "
        + maxLength + “\n”);
}

A run of the program produced the following output:

1 car washer simulation
No.of cars through the system = 22
Av.elapsed time = 30.22
Maximum queue length = 5

2 car washer simulation
No.of cars through the system = 22
Av.elapsed time = 10.74
Maximum queue length = 1

The implementation of this package is straightforward. All scheduled events
are held in a list (SQS) ordered by their associated event times. As long as
there are more scheduled events, and the simulation period is not over, the
first event of SQS is removed, time is updated to this event time, and the ac-
tions of this event are executed.

This algorithm is implemented in the runSimulation method shown be-
low.

public static void runSimulation(double period) {
    while (SQS.suc != SQS) {
        Event ev = SQS.suc;
        if ((time = ev.eventTime) > period) break;
        ev.cancel();
        ev.actions();
    }
    stopSimulation();
}

The complete source code of the package is provided in Appendix E.



13

2.4  Solving the car wash problem by activity-based simulation

The activity-based approach tries to capture the notion of connected start and
finish events, clustering descriptions of actions to be executed at the start and
finish of some time-consuming activity. The programmer must specify condi-
tions under which such clusters of actions will occur.

Every activity should be associated with a start condition, a specification of
the duration of the activity, and some start and finish actions. The start actions
of an activity will be executed as soon as its associated condition becomes
true. The finish actions will be executed when the activity ends (after a time
period equal to the duration of the activity).

To provide a simple tool for activity-based simulation, a small Java package
called simulation.activity has been developed.

When using this package the activities of a model are described in one or
more subclasses of class Activity. An outline of this class is given below.

public abstract class Activity {
    protected abstract boolean condition();
    protected abstract void startActions();
    protected abstract double duration();
    protected abstract void finishActions();

    public static double time();
    public static void runSimulation(double period);
    public static void stopSimulation();
}

In order to specify an activity, all four abstract methods should be overridden
in subclasses of class Activity.

The time method returns the current simulated time.

The runSimulation method is used to run a simulation for a specified pe-
riod of simulated time. Time will start at 0 and jump from event time to event
time until either this period is over, there are no more actions to be executed,
or the stopSimulation method is called.

Below we will show how the package may be used for solving the car wash
problem.



14

Queues, car washers and cars are represented as follows:

Head tearoom = new Head();
Head waitingLine = new Head();

class CarWasher extends Link {}

class Car extends Link {
    double entryTime = time();
}

The dynamics of the system may be described by the following activities in-
volving the passing of time:

• Washing a car
• Waiting for the next car to arrive

These activities are specified in two subclasses of class Activity.

The washing of a car is described in class CarWashing shown below.

class CarWashing extends Activity {
    Car theCar;
    CarWasher theCarWasher;

    CarWashing(Car c) { theCar = c; }

    public boolean condition() {
        return theCar == (Car) waitingLine.first() &&
               !tearoom.empty();
    }

    public void startActions() {
        theCar.out();
        theCarWasher = (CarWasher) tearoom.first();
        theCarWasher.out();
    }

    public double duration() {
        return 10;
    }

    public void finishActions() {
        theCarWasher.into(tearoom);
        noOfCustomers++;
        throughTime += time() - theCar.entryTime;
    }
}



15

In order for the washing of a car to start, the car must be in front of the wait-
ing line and there must be an idle car washer (i.e., the tearoom must not be
empty). When the washing activity is started the car is removed from the
waiting line and one of the idle car washers is removed from the tearoom. The
wash takes 10 minutes after which the car washer goes back to the tearoom.

The class CarArrival shown below models the time-passing activity of
waiting for the next car to arrive.

class CarArrival extends Activity
    public boolean condition() {
        return true;
    }

    public void startActions() {
        Car theCar = new Car();
        theCar.into(waitingLine);
        new CarWashing(theCar);
        int qLength = waitingLine.cardinal();
        if (maxLength < qLength)
            maxLength = qLength;
    }

    public double duration() {
        return random.negexp(1/11.0);
    }

    public void finishActions() {
        if (time() <= simPeriod)
            new CarArrival();
    }
}

A CarArrival activity starts immediately when created. This is accom-
plished by letting the condition method return true. The activity starts
by inserting a new car as the last member of the waiting line and creates a
CarWashing activity for this car. After a time period, chosen at random
from a negative exponential distribution, the activity finishes by generating a
new CarArrival activity.



16

The simulation program is shown below (excluding the classes described
above).

import simulation.activity;
import simset.*;
import random.*;

public class CarWashSimulation extends Simulation {
    int noOfCarWashers;
    double simPeriod = 200;
    Head tearoom = new Head();
    Head waitingLine = new Head();
    Random random = new Random(5);
    int noOfCustomers, maxLength;
    double throughTime;

    CarWashSimulation(int n) {
        noOfCarWashers = n;
        for (int i = 1; i <= noOfCarWashers; i++)
            new CarWasher().into(tearoom);
        new CarArrival();
        runSimulation(simPeriod + 1000000);
        report();
    }

    void report() { ... }

    class CarWasher extends Link {}
    class Car extends Link { ... }

    class CarWashing extends Activity { ... }
    class CarArrival extends Activity { ... }

    public static void main(String args[]) {
        new CarWashSimulation(1);
        new CarWashSimulation(2);
    }
}

The main method of the program performs two simulations, the first with
one car washer, the second with two car washers. Each simulation is per-
formed by the creation of an object of class CarWashSimulation (a sub-
class of class Simulation).

The program produces the same output as the program in Section 2.3.



17

The implementation of this package is straightforward. All activities waiting
to start are held in a list, waitList. All activities that are scheduled to finish
are held in a list, SQS, ordered by their associated finish times. At each event
time, the wait list is examined to see whether any activity is eligible to start. If
so, the activity is removed from the list, its start actions are executed, and a
finish event is scheduled to occur when the activity finishes. When no more
activities are eligible to start, time advances to the next imminent event, and
the associated finish actions are executed. This continues until the simulation
ends.

This algorithm is implemented in the runSimulation method shown be-
low.

public static void runSimulation(double period) {
    while (true) {
        for (Activity a = waitList.suc;
             a != waitList;
             a = a.suc) {
            if (a.condition()) {
                a.cancel();
                a.schedule(time + a.duration());
                a.startActions();
                a = waitList;
            }
        }
        if (SQS.suc == SQS)
            break;
        Activity a = SQS.suc;
        time = a.eventTime;
        a.cancel();
        if (time > period)
            break;
        a.finishActions();
    }
    stopSimulation();
}

The complete source code of the package is provided in Appendix G.



18

2.5  Solving the car wash problem by mixed event-activity-based
simulation

The different simulation approaches are not mutually exclusive. Mixed ap-
proaches may also be used.

In this section we will demonstrate how the event-approach and ingredients of
the activity-approach may be combined into one single approach. For this
purpose we will extend the event concept with the following definitions:

A time event is an event scheduled to occur at a specified point in time.

A state event is an event scheduled to occur when the state of the sys-
tem fulfills a specified condition (a so-called state condition).

These two event types are used to model the dynamics of a system.

In order to provide a tool for using this simulation approach a small Java
package called simulation.events has been developed.

When using this package the events of a model are described in one or more
subclasses of the classes TimeEvent and StateEvent, which themselves
are subclasses of the abstract class Event.

The class hierarchy is shown below.

public abstract class Event {
    protected abstract void actions();

    public static double time();
    public static void runSimulation(double period);
    public static void stopSimulation();
}

public abstract class TimeEvent extends Event {
    public void schedule(double evTime);
}

public abstract class StateEvent extends Event {
    protected abstract boolean condition();

    public void schedule();
}



19

The meaning and usage of the methods should be clear from the previous
sections. Below we will show how the package can be used for solving the
car wash problem.

Queues, car washers and cars are specified as in the previous two sections,
i.e.:

Head tearoom = new Head();
Head waitingLine = new Head();

class CarWasher extends Link {}

class Car extends Link {
    double entryTime = time();
}

We will use the same three events as were used in the event-based approach:

• A car arrives    (carArrival)
• A car washer starts washing a car    (startCarWashing)
• A car washer finishes washing a car    (stopCarWashing)

However, in this mixed approach we must also specify which of these events
are time events, and which are state events.

It is easy to see that the arrival of a car and the finishing of a car wash are
both time events. On the other hand, the starting of a car wash must be a state
event, since its time of occurrence can not be predetermined.

This leads to the following class declarations for the three event types:

class CarArrival extends TimeEvent {
    public void actions() {
        if (time() <= simPeriod) {
            Car theCar = new Car();
            theCar.into(waitingLine);
            int qLength = waitingLine.cardinal();
            if (maxLength < qLength)
                maxLength = qLength;
            new StartCarWashing(theCar).schedule();
            schedule(time() +  random.negexp(1/11.0));
        }
    }
}



20

class StartCarWashing extends StateEvent {
    Car theCar;

    CarWashing(Car c) { theCar = c; }

    public boolean condition() {
        return theCar == (Car) waitingLine.first() &&
               !tearoom.empty();
    }

    public void actions() {
        theCar.out();
        CarWasher theCarWasher =
            (CarWasher) tearoom.first();
        theCarWasher.out();
        new StopCarWashing(theCarWasher, theCar).
            schedule(time() + 10);
    }
}

class StopCarWashing extends TimeEvent {
    CarWasher theCarWasher;
    Car theCar;

    StopCarWashing(CarWasher cw, Car c)
      { theCarWasher = cw; theCar = c; }

        public void actions() {
            noOfCustomers++;
            throughTime += time() - theCar.entryTime;
            theCarWasher.into(tearoom);
        }
    }
}

The simulation program follows the same pattern as used in the previous two
sections. See Appendix J for the complete source code.

The implementation of this package is straightforward. All scheduled state
events are held in a list, waitList, and all scheduled time events are held in
a list, SQS, ordered by their associated event times. At each event time, the
wait list is examined to see whether any state event has its condition fulfilled.
If so, the event is removed from the list and its actions are executed. When no
more state events occur, time advances to the next imminent time event, and
the associated actions of this time event are executed This continues until the
simulation ends.



21

This algorithm is implemented in the runSimulation method as shown
below.

public static void runSimulation(double period) {
    while (true) {
        for (StateEvent a = (StateEvent) waitList.suc;
             a != waitList;
             a = (StateEvent) a.suc) {
            if (a.condition()) {
                a.cancel();
                a.actions();
                a = waitList;
            }
        }
        if (SQS.suc == SQS)
            break;
        TimeEvent ev = (TimeEvent) SQS.suc;
        time = ev.eventTime;
        ev.cancel();
        if (time > period)
            break;
        ev.actions();
    }
    stopSimulation();
}

The complete source code of the package is provided in Appendix I.



22

2.6  Solving the car wash problem by process-based simulation

The process-based approach is often the easiest to use. In this approach the
active entities of a system are modeled in a very natural way. A process de-
scribes the life cycle of an entity of the system. Any process is associated
with actions to be performed by the process during its lifetime. A process
may be suspended temporarily and may be resumed later from where it left
off.

In order to provide a tool for the process-based approach a Java package
called javaSimulation has been developed.

When using this package the processes of a model are described in one or
more subclasses of class Process. An outline of this class is given below.
In this outline only facilities that are actually used in solving the car wash
problem have been included. A more comprehensive version is given at the
end of this section.

public abstract class Process extends Link {
    protected abstract void actions();

    public static double time();
    public static void activate(Process p);
    public static void hold(double t);
    public static void passivate();
    public static void wait(Head q);
}

Since Process is a subclass of Link, each process has the capability of
being a member of a two-way list. This is useful, for example, when proc-
esses must wait in a queue. The javaSimulation package includes all the
list manipulation facilities of the simset package.

The actions method represents the actions associated with a process.

The time method returns the current simulated time.

The activate method is used to make a specified process start executing its
actions.

The hold method suspends the execution of the calling process for a speci-
fied period of time.

The passivate method suspends the execution of the calling process for an
unknown period of time. Its execution may later be resumed by calling
activate with the process as argument.



23

The wait method suspends the calling process and adds it to a queue.

Below we will show how the package can be used for solving the car wash
problem.

First, the processes are identified and their actions are described in subclasses
of class Process by overriding the actions method

A car washer is described in the following subclass of Process:

class CarWasher extends Process {
    public void actions() {
        while (true) {
            out();
            while (!waitingLine.empty()) {
                Car served =
                    (Car) waitingLine.first();
                served.out();
                hold(10);
                activate(served);
            }
            wait(tearoom);
        }
    }
}

The actions of a car washer are contained in an infinite loop (the length of the
simulation is supposed to be determined by the main program). Each time a
car washer is activated, he leaves the tearoom and starts serving the cars in the
waiting line. He takes the first car out of the waiting line, washes it for ten
minutes before he activates the car. The car washer will continue servicing, as
long as there are cars waiting in the queue. If the waiting line becomes empty,
he returns to the tearoom and waits.



24

A car may be described by the following subclass of Process:

class Car extends Process {
    public void actions() {
        double entryTime = time();
        into(waitingLine);
        int qLength = waitingLine.cardinal();
        if (maxLength < qLength)
            maxLength = qLength;
        if (!tearoom.empty())
            activate((CarWasher) tearoom.first());
        passivate();
        noOfCustomers++;
        throughTime += time() - entryTime;
    }
}

On arrival each car enters the waiting line and, if the tearoom is not empty, it
activates the idle car washer in the tearoom. The car then passively waits until
it has been washed. When the car has been washed (signaled by an activation
by the car washer), it leaves the system.

The following subclass of Process is used to make the cars arrive at the ga-
rage with an average inter-arrival time of 11 minutes:

class CarGenerator extends Process {
    public void actions() {
        while (time() <= simPeriod) {
            activate(new Car());
            hold(random.negexp(1/11.0));
        }
    }
}

All random drawing facilities of the random package have been included in
the javaSimulation package. In the present simulation the inter-arrival
times of the cars are distributed according to a negative exponential distribu-
tion.



25

The simulation program is shown below (excluding the classes described
above).

import javaSimulation.*;
import javaSimulation.Process;

public class CarWashSimulation extends Process {
    int noOfCarWashers;
    double simPeriod = 200;
    Head tearoom = new Head();
    Head waitingLine = new Head();
    Random random = new Random(5);
    double throughTime;
    int noOfCustomers, maxLength;

    CarWashSimulation(int n) {
        noOfCarWashers = n;
    }

    public void actions() {
        for (int i = 1; i <= noOfCarWashers; i++)
            new CarWasher().into(tearoom);
        activate(new CarGenerator());
        hold(simPeriod + 1000000);
        report();
    }

    void report() { ... }

    class Car extends Process { ... }
    class CarWasher extends Process { ... }
    class CarGenerator extends Process { ... }

    public static void main(String args[]) {
        activate(new CarWashSimulation(1));
        activate(new CarWashSimulation(2));
    }
}

The program imports all classes of the javaSimulation package. Note,
however, that class Process must be imported explicitly in order to avoid
the name conflict caused by the co-existence of the class Process of the
java.lang package.

The main method of the program performs two simulations, the first with
one car washer, the second with two car washers.

Each simulation is performed by the creation and activation of an object of
class CarWashSimulation.



26

Class CarWashSimulation is a subclass of Process. Thus, the
actions method of the class may be used describe the actions associated
with the main program. Here, a number of car washers and a car generator
are activated before the main program waits for the simulation to finish. The
variable simPeriod denotes the total opening time of the garage (200 min-
utes). All cars that have arrived before the garage closes are washed.

Before a simulation finishes, the report method is called. The method is
identical to the report method given in Section 2.3. It prints the number of
cars washed, the average elapsed time (wait time plus service time), and the
maximum queue length. The program produces the same output as the pro-
grams of the previous sections.

The design of the javaSimulation package follows very closely the de-
sign of the built-in package for discrete event simulation in SIMULA, class
SIMULATION.

A program is composed of a set of processes that undergo scheduled and un-
scheduled phases. When a process is scheduled, it has an event time associ-
ated with it. This is the time at which its next active phase is scheduled to oc-
cur. When the active phase of a process ends, it may be rescheduled, or
descheduled (either because all its actions have been executed, or the time of
its next active phase is not known). In either case, the scheduled process with
the least event time is resumed.

The currently active process always has the least event time associated with it.
This time, the simulation time, moves in jumps to the event time of the next
scheduled process.

Scheduled events are contained in an event list. The processes are ordered in
accordance with increasing event times. The process at the front of the event
list is always the one, which is active. Processes not in the event list are either
terminated or passive.

At any point in simulation time, a process can be in one (and only one) of the
following four states:

(1) active: the process is at the front of the event list. Its actions are being
executed

(2) suspended: the process is in the event list, but not at the front

(3) passive: the process is not in the event list and has further actions to
execute

(4) terminated: the process is not in the event list and has no further actions
to execute.



27

All the public parts of the Process class are shown in the class outline below.

public abstract class Process extends Link {
    protected abstract void actions();

    public static final Process current();
    public static final double time();
    public static final void hold(double t); 
    public static final void wait(Head q);
    public static final void cancel(Process p);
    public static final Process main();

    public static final At     at;
    public static final Delay  delay;
    public static final Before before;
    public static final After  after;
    public static final Prior  prior;

    public static final void activate(Process p);
    public static final void activate(Process p,
                             At at, double t);
    public static final void activate(Process p,
                             Delay delay, double t);
    public static final void activate(Process p,
                             At at, double t, Prior prior);
    public static final void activate(Process p,
                             Delay d, double t, Prior prior);
    public static final void activate(Process p1,
                             Before before, Process p2);
    public static final void activate(Process p1,
                             After after, Process p2);

    public static final void reactivate(Process p);
    public static final void reactivate(Process p,
                             At at, double t);
    public static final void reactivate(Process p,
                             Delay delay, double t);
    public static final void reactivate(Process p,
                             At at, double t, Prior prior);
    public static final void reactivate(Process p,
                             Delay d, double t, Prior prior);
    public static final void reactivate(Process p1,
                             Before before, Process p2);
    public static final void reactivate(Process p1,
                             After after, Process p2);

    public final boolean idle();
    public final boolean terminated();
    public final double evTime(); 
    public final Process nextEv();
}



28

Below is given a short description of each of the methods.

current() returns a reference to the Process object at the
front of the event list (the currently active process).

time() returns the current simulation time.

hold(t) schedules Current for reactivation at time() + t.

passivate() removes current() from the event list and re-
sumes the actions of the new current().

wait(q) includes current() into the two-way list q, and then
calls passivate().

cancel(p) removes the process p from the event list. If p is
currently active or suspended, it becomes passive. If p is a passive
or terminated process or null, the call has no effect.

It is desirable to have the main program participating in the simulation as a
process. This is achieved by an impersonating Process object that can be
manipulated like any other Process object. This object, called the main
process, is the first process activated in a simulation.

main() returns a reference to the main process.

There are seven ways to activate a currently passive process:

activate(p): activates process p at the current simulation time.

activate(p1, before, p2): positions process p1 in the
event list before process p2, and gives it the same event time as
p2.

activate(p1, after, p2): positions process p1 in the event
list after process p2, and gives it the same event time as p2.

activate(p, at, t): the process p is inserted into the event
list at the position corresponding to the event time specified by t.
The process is inserted after any processes with the same event
time which may already be present in the list.

activate(p, at, t, prior): the process p is inserted into
the event list at the position corresponding to the event time speci-
fied by t. The process is inserted before any processes with the
same event time which may already be present in the list.



29

activate(p, delay, t): the process p is activated after a
specified delay, t. The process is inserted in the event list with the
new event time, and after any processes with the same simulation
time which may already be present in the list.

activate(p, delay, t, prior): the process p is activated
after a specified delay, t. The process is inserted in the event list
with the new event time, and before any processes with the same
simulation time which may already be present in the list.

Correspondingly, there are seven reactivate methods, which work on
either active, suspended or passive processes. They have similar signatures to
their activate counterparts and work in the same way.

All methods described above are class methods of class Process. The fol-
lowing four instance methods are available:

idle() returns true if the process is not currently in the event
list. Otherwise false.

terminated() returns true if the process has executed all its
actions. Otherwise false.

evTime() returns the time at which the process is scheduled for
activation. A runtime exception is thrown if the process is not
scheduled.

nextEv() returns a reference to the next process, if any, in the
event list.

The complete source code of class Process is provided in Appendix K.

The javaSimulation package not only supports the process-based ap-
proach of simulation; event-based and activity-based approaches may also be
used. The process-based approach encompasses the two other approaches
[6][7]. This is demonstrated in appendices M and N.



30

3.  A package for coroutine sequencing in Java

3.1  The  coroutine concept

In a process-based simulation the processes undergo active and interactive
phases during their lifetimes. A process may be suspended temporarily and
resumed later from where it left off. Thus, a process has the properties of a
coroutine.

A coroutine may temporarily suspend its execution and another coroutine may
be executed. A suspended coroutine may later be resumed at the point where
it was suspended. This form of sequencing is called alternation. The figure
below shows a simple example of alternation between two coroutines.

It is easy to see that processes may be implemented using coroutines. Below
we sketch the implementation of three of the most central scheduling methods
of the javaSimulation package: activate, passivate and hold.

void activate(Process p) {
    p.intoEventListAt(time());
    resume(current());
}

void passivate() {
    current().outOfEventList();
    resume(current());
}

resume(a)

resume(b) resume(a)

resume(a)

coroutine a coroutine b



31

void hold(double t) {
    current().intoEventListAt(time() + t);
    resume(current());
}

The intoEventListAt method inserts the process into the event list at the
position corresponding to a specified event time.

The outOfEventList method removes the process from the event list.

The current method returns a reference to the process currently at the front
of the event list.

As a basis for the implementation of javaSimulation a package for co-
routine sequencing in Java has been developed. This package, called
javaCoroutine, is based on the coroutine primitives provided by
SIMULA. By supporting semi-symmetric as well as symmetric coroutine se-
quencing it provides more functionality than actually needed for the imple-
mentation of javaSimulation. Only symmetric coroutine sequencing (by
means of the resume primitive) is needed.

The following section describes the javaCoroutine package from the
user’s point of view.



32

3.2  The  user facilities of  the javaCoroutine package

A coroutine program is composed of a collection of coroutines, which run in
quasi-parallel with one another. Each coroutine is an object with its own exe-
cution-state, so that it may be suspended and resumed. A coroutine object
provides the execution context for a method, called body, which describes
the actions of the coroutine.

The package provides the class Coroutine for writing coroutine programs.
Coroutines can be created as instances of Coroutine-derived classes that
override the abstract body method. As a consequence of creation, the current
execution location of the coroutine is initialized at the start point of body.

Class Coroutine is sketched below.

public abstract class Coroutine {
    protected abstract void body();

    public static void resume(Coroutine c);
    public static void call(Coroutine c);
    public static void detach();

    public static Coroutine currentCoroutine();
    public static Coroutine mainCoroutine();
}

Control can be transferred to a coroutine c by one of two operations:

resume(c)
call(c)

Both operations cause c to resume its execution from its current execution
location, which normally coincides with the point where it last left off.

The call operation furthermore establishes the currently executing coroutine
as c’s caller. A subordinate relationship exists between the caller and the
called coroutine. c is said to be attached to its caller.

The currently executing coroutine can relinquish control to its caller by means
of the operation

detach()

The caller then resumes its execution from the point where it last left off.

The currentCoroutine method may be used to get a reference to the cur-
rently executing coroutine.



33

The first coroutine activated in a system of coroutines is denoted the main co-
routine. If the main coroutine terminates, all other coroutines will terminate. A
reference to this coroutine is provided through the mainCoroutine
method.

Below is shown a complete coroutine program. The program shows the use
of the resume method for coroutine alternation as illustrated in the figure on
page 30 .

import javaCoroutine.*;

public class CoroutineProgram extends Coroutine {
    Coroutine a, b;

    public void body() {
        a = new A();
        b = new B();
        resume(a);
        System.out.print("STOP1 ");
    }

    class A extends Coroutine {
        public void body() {
            System.out.print("A1 ");
            resume(b);
            System.out.print("A2 ");
            resume(b);
            System.out.print("A3 ");
        }
    }

    class B extends Coroutine {
        public void body() {
            System.out.print("B1 ");
            resume(a);
            System.out.print("B2 ");
            resume(a);
            System.out.print("B3 ");
        }
    }

    public static void main(String args[]) {
        resume(new CoroutineProgram());
        System.out.println("STOP2");
    }
}



34

Execution of this program produces the following (correct) output:

A1 B1 A2 B2 A3 STOP1 STOP2

A coroutine may be in one of four states of execution at any time: attached,
detached, resumed or terminated. The figure below shows the possible state
transitions of a coroutine.

A coroutine program consists of components. Each component is a chain of
coroutines. The head of the component is a detached or resumed coroutine.
The other coroutines are attached to the head, either directly or through other
coroutines.

The main program corresponds to a detached coroutine, and as such it is the
head of a component. This component is called the main component. The
head of the main component is the main coroutine.

Exactly one component is operative at any time. Any non-operative compo-
nent has an associated reactivation point, which identifies the program point
where execution will continue if and when the component is activated (by
resume or call).

When calling detach there are two cases:

• The coroutine is attached. In this case, the coroutine is detached, its exe-
cution is suspended, and execution continues at the reactivation point of
the component to which the coroutine was attached.

• The coroutine is resumed. In this case, its execution is suspended, and
execution continues at the reactivation point of the main component.

detached

attached terminated

resumed

new
resume

detach

exit body

exit bodycall

detach



35

Termination of a coroutine's body method has the same effect as a detach
call, except that the coroutine is terminated, not detached. As a consequence,
it attains no reactivation point and it loses its status as a component head.

A call resume(c) causes the execution of the current operative component
to be suspended and execution to be continued at the reactivation point of c.
The call constitutes an error in the following cases:

c is null
c is attached
c is terminated

A call call(c) causes the execution of the current operative component to
be suspended and execution to be continued at the reactivation point of c. In
addition, c becomes attached to the calling component. The call constitutes an
error in the following cases:

c is null
c is attached
c is resumed
c is terminated

A coroutine program using only resume and detach is said to use sym-
metric coroutine sequencing. If only call and detach are used, the pro-
gram is said to use semi-symmetric coroutine sequencing.



36

3.3  Implementation of  the javaCoroutine package

A coroutine is characterized mainly by its execution state consisting of its cur-
rent execution location and a stack of activation records. The bottom element
of the stack is the activation record for the call of body. The remaining part
of the stack contains activation records corresponding to method activations
triggered by body.

When control is transferred to a coroutine (by means of resume, call or
detach), the coroutine must be able to carry on where it left off. Thus, its
execution state must persist between successive occasions on which control
enters it. Its execution state must be “frozen”, so to speak.

When a coroutine transfers from one execution state to another, it is called a
context switch. This implies the saving of the execution state of the suspend-
ing coroutine and its replacement with the execution state of the other corou-
tine.

The central issue when implementing coroutines is how to achieve such con-
text switches. The goal is to implement the primitive enter with the follow-
ing semantics [8]:

enter(c) The execution point for the currently executing coroutine
is set to the next statement to be executed, after which
this coroutine becomes suspended and the coroutine c
(re-)commences execution at its execution point.

Having implemented this primitive, it is easy to implement the primitives
resume, call and detach (or similar primitives).

An implementation of resume, call and detach by means of enter is
shown below. For clarity all error handling has been left out.



37

public abstract class Coroutine {
    protected abstract void body();

    private static Coroutine current, main;
    private Coroutine caller, callee;
    protected boolean terminated;

    public static void resume(Coroutine next) {
        if (next == current)
            return;
        while (next.callee != null)
            next = next.callee;
        next.enter(); 
    }

    public static void call(Coroutine next) {
        current.callee = next;
        next.caller = current;
        while (next.callee != null)
            next = next.callee;
        next.enter();
    }

    public static void detach() {
        Coroutine next = current.caller;
        if (next != null) {
            current.caller = next.callee = null;
            next.enter();
        }
        else if (main != null && current != main)
            main.enter();
    }

    private void enter() { ... }
}

Here current is a reference to the currently executing coroutine, and main
is a reference to the main coroutine. The references caller and callee are
used for chaining coroutines in a component. The boolean terminated is
true when the coroutine has terminated.

The question is now how to implement the enter method.

As a multithreaded language Java provides support for multiple threads of
execution (sometimes called lightweight processes). A thread can perform a
task independent of other threads. Each thread has its own execution state
consisting of its current execution location and a stack of activation records.
In that respect, a thread is similar to a coroutine.



38

Threads, however, are more powerful than coroutines. Any number of
threads may be executing simultaneously, whereas only one coroutine at a
time may be executing.

Thus, threads may act as coroutines, if

• it is possible to control their execution in such a way that only
one is executing at any time,

• control can be transferred from one thread to another.

In the following sections we will demonstrate how this is possible in Java. A
series of possible implementations will be given, ending with the actual im-
plementation of the javaCoroutine package.



39

3 .3 .1  Version 1: Synchronization by busy waiting

The first version, shown below, is very simple.

public abstract class Coroutine extends Thread {
    final public void run() {
        body();
        if (!terminated) {
            terminated = true;
            detach();
        }
    }

    abstract public void body();

    private static Coroutine current, main;

    public static void resume(Coroutine c) { ... }
    public static void call(Coroutine c) { ... }
    public static void detach() { ... }

    private void enter() {
        if (current == null) {
            current = main = this;
            start();
            return;
        }
        Coroutine old_current = current;
        current = this;
        if (!isAlive())
            start();
        if (old_current.terminated)
            return;
        while (old_current != current)
            yield();
    }
}

Class Coroutine is here defined as an extension of the Thread class of
the standard Java libraries. When the start method of Thread is invoked,
the thread begins executing its run method. As can be seen from the code,
this has the effect that the body method of the coroutine starts executing. If
body ever returns, the coroutine invokes the detach method and termi-
nates.



40

The enter method performs a context switch. The call c.enter() re-
sumes the coroutine c and suspends the calling coroutine.

When the method is invoked for the first time, there is no coroutine currently
executing, and the execution of c is started by starting the thread associated
with c. In all other cases, control is transferred from the currently executing
coroutine to c. This is achieved by letting every coroutine that is not cur-
rent execute a while-loop that only terminates if it is decided that this co-
routine should become the next current (by setting current to this).

The yield method of Thread is called inside the while-loop in order to
make the executing thread give up control to any other threads that are willing
to execute. In this way, thread starvation is avoided.

It is easy to see that this implementation will work. It is ensured that at any
time, exactly one coroutine, current, will be executing its body.

On the other hand, the implementation is very inefficient. When used for an
implementation of the javaSimulation package it took 132 seconds to
run a car wash simulation (with one car washer and simPeriod set to
1000000) on a 400 MHz G4 Macintosh computer running MRJ 2.2.

In comparison, it took less than 2 seconds to run the same simulation using
any of the event/activity-based simulation packages of this report.

One explanation to this inefficiency is that suspended coroutines are executing
code. Each suspended coroutine is constantly checking whether is has been
selected as the coroutine to become the next current. In other words, all
suspended coroutines are busy waiting.



41

3 .3 .2  Version 2: Synchronization by resume and suspend

An obvious idea is to use the resume and suspend methods of Java’s class
Thread for implementing the enter method.

The method suspend temporarily halts a thread; resume allows it to re-
sume.

This idea is carried out in the code shown below.

private void enter() {
    if (current == null) {
        current = main = this;
        start();
        return;
    }
    Coroutine old_current = current;
    current = this;
    if (!isAlive())
        start();
    else
        resume();
    if (old_current.terminated)
        return;
    old_current.suspend();
}

The currently executing thread suspends itself after having resumed (or
started) the thread that has been chosen to take over.

At first sight, this implementation seems to work. But this is not the case. A
race condition exists. Before old_current has suspended, the new
current may have had time to call its resume method. Resuming a thread
that is not suspended, however, has no effect. The result is that both
old_current and the next current will be suspended, and the coroutine
system will stop.

We can solve this problem if we can assure that old_current will suspend
only if it is not current. The last sentence of enter might be replaced by
the following:

if (old_current != current)
    old_current.suspend();



42

However, this will not work either. A race condition still exists. Between the
test old_current != current and the suspension of old_current,
the next current may get time to set current to old_current. But
without the desired effect, old_current still suspends itself.

We can solve the problem if we can assure that old_current suspends
itself before the next current actually continues its execution. But how can
we achieve such an assurance?

One solution is to give old_current a higher priority than the next
current, as shown in the program fragment below.

old_current.setPriority(Thread.MAX_PRIORITY;
if (!isAlive())
    start();
else
    resume();
if (old_current.terminated)
    return;
if (old_current != current)
    old_current.suspend();
old_current.setPriority(Thread.NORM_PRIORITY);

The last line ensures that when old_current is resumed, its priority is set
back to its original value (NORM_PRIORITY).

This will work, as long as the Java runtime system will let lower-priority
threads run only when all higher-priority threads are blocked. However, you
cannot rely on this. Some Java runtime systems might let lower-priority
threads run, even when there are unblocked higher-priority threads, in order
to prevent starvation.

Moreover, the use of the Thread methods resume and suspend is not
recommended. Their use may easily result in deadlocks. For this reason these
methods now have deprecated in Java.

Anyway, using this version of enter the car wash simulation program pro-
duced the correct output on these three platforms: Macintosh, PC and Sun.
The CPU time was 85 seconds on the Macintosh, a reduction in CPU time of
37% in relation to version 1.



43

3 .3 .3  Version 3: Synchronization by wait and interrupt

Instead of using resume and suspend we can use the methods wait and
interrupt in a similar manner. This is the shown below.

private void enter() {
    if (current == null) {
        main = current = this;
        start();
        return;
    }
    Coroutine old_current = current;
    current = this;
    if (!isAlive())
        start();
    else
        interrupt();
    if (old_current.terminated)
        return;
    synchronized(old_current) {
        try {
            old_current.wait();
        } catch(InterruptedException e) {}
    }
}

Here, old_current suspends itself by calling wait. Since the call has
been enclosed in a try block that catches an InterruptedException,
old_current will leave the try block and resume its execution if it is inter-
rupted.

At first sight, this implementation does not seem to work. There is an appar-
ent problem in that old_current may be interrupted before it has called
wait. However, this is not so. If this happens, the interrupt will be remem-
bered and wait will not be executed.

Using this version of the enter method the car wash simulation program
produced the correct output. The CPU time, however, was now 116 seconds
on the Macintosh, an increase in CPU time of 36% in relation to version 2
(the resume-suspend version), and only 12% faster than version 1 (the busy-
waiting version). The interrupt mechanism of Java seems to require a consid-
erable computational overhead.



44

3 .3 .4  Version 4: Synchronization by wait and notifyAll

A more efficient version may be obtained by using the wait method in com-
bination with the notifyAll method.

The wait method is used to let one thread wait until a condition occurs, and
the notification method notifyAll is used to tell all waiting threads that
something has occurred that might satisfy that condition.

Below is shown a version of enter that uses these two methods.

private void enter() {
    if (current == null) {
        current = main = this;
        start();
        return;
    }
    Coroutine old_current = current;
    synchronized(Coroutine.class) {
        current = this;
        if (!isAlive())
            start();
        else
            Coroutine.class.notifyAll();
        if (old_current.terminated)
            return;
        try {
            while (old_current != current)
                Coroutine.class.wait();
        } catch (InterruptedException e) {}
    }
}

Each waiting thread waits to be selected as the next current. The threads
are synchronized by means of the Class object of Coroutine. In the code
above, a thread will be waiting to enter the synchronized statement until the
lock on this object is released. This happens when a thread calls wait. In
this way it is ensured that no thread is notified before it has called wait. This
is important, since a notification is not remembered (in contrast to an inter-
rupt).

Using this version of enter the car wash simulation program took 130 sec-
onds on the Macintosh. This is about the same CPU time as used by version
1 (the busy-waiting version). In fact, version 3 has some busy-waiting too.
When notifyAll is called, all waiting threads wake up temporarily and ex-
amine their condition (old_current != current).



45

3 .3 .5  Version 5: Synchronization by wait and notify

To increase efficiency we will use nofity in place of notifyAll. Instead
of notifying all waiting threads, only the next current will be notified. This
requires synchronization on the individual Coroutine objects.

A version of enter that uses this method is shown below.

private void enter() {
    if (main == null) {
        main = current = this;
        start();
        return;
    }
    Coroutine old_current = current;
    synchronized(old_current) {
        current = this;
        if (!isAlive())
            start();
        else
        synchronized(this) {
            notify();
        }
        if (old_current.terminated)
            return;
        try {
           old_current.wait();
        } catch(InterruptedException e) {}
    }
}

It is easy to prove that this version works correctly. The outer synchroniza-
tion expression (old_current) ensures that no running thread can be noti-
fied before it has released the lock on itself, by calling wait or by exiting.

Using this version of enter the car wash simulation program took 82 sec-
onds on the Macintosh. This is about the same CPU time as used by version
2 (the resume-suspend version).

The following versions of enter are all improvements on this version.



46

3 .3 .6  Version 6: Protecting the coroutines

Instead of extending class Thread a Coroutine may implement the
Runnable interface:

public abstract class Coroutine implements Runnable

A Coroutine may then be executed in its own thread by passing it to a
Thread constructor.

The following attribute is added to the Coroutine class:

private Thread myThread;

and the enter method is redefined as follows:

private void enter() {
    if (myThread == null)
        myThread = new Thread(this);
    if (current == null) {
        current = main = this;
        myThread.start();
        return;
    }
    Coroutine old_current = current;
    synchronized(old_current) {
        current = this;
        if (!myThread.isAlive())
            myThread.start();
        else
        synchronized(this) {
            notify();
        }
        if (old_current.terminated)
            return;
        try {
            old_current.wait();
        } catch(InterruptedException e) {}
    }
}

An advantage of this version is that the threads are protected from user ma-
nipulation.



47

3 .3 .7  Version 7: Improving the efficiency

The efficiency of the previous versions is rather low. Using any of these ver-
sions the car wash simulation program took more than 40 times longer to exe-
cute than a corresponding program that used an event-based package. This is
clearly unsatisfactory.

The threads of Java seem to require a considerable overhead. How much was
evaluated by running the small program shown below.

public class ThreadOverhead {
    static public class DummyThread extends Thread {
        public void run() {}
    }

    public static void main(String args[]) {
        for (int i = 1; i <= 90945; i++)
            new DummyThread().start();
    }
}

The program creates and starts 90945 threads, as many as the number of
processes created by the car wash simulation program (with one car washer
and simPeriod equal to 1000000). Each of the threads has actually nothing
to do and terminates immediately after being started.

The CPU time was 78 seconds. In comparison, it took 82 seconds to run the
car wash simulation program using the coroutine version of the previous sec-
tion. So there is in fact a considerable overhead connected with the use of
threads. Can we reduce this overhead in any way?

One possibility would be to advise the user not to use too many threads (or
processes) in his program. For example, a car wash simulation program
might be written which uses only a few processes; namely, the car generator
and the car washers. Such a version of the program is outlined below.



48

 public class CarWashSimulation extends Process {
    simPeriod = 1000000; ...

    public void actions() {
        for (int i = 1; i <= noOfCarWashers; i++)
            new CarWasher().into(tearoom);
        activate(new CarGenerator());
        hold(simPeriod + 1000000);
        report();
    }

    void report() { ... }

    class Car extends Link {
        double entryTime = time();
    }

    class CarWasher extends Process {
        public void actions() {
            while (true) {
                out();
                while (!waitingLine.empty()) {
                    Car served = (Car) waitingLine.first();
                    served.out();
                    hold(10);
                    noOfCustomers++;
                    throughTime += time() - served.entryTime;
                }
                wait(tearoom);
            }
        }
    }

    class CarGenerator extends Process {
        public void actions() {
            while (time() <= simPeriod) {
                new Car().into(waitingLine);
                int qLength = waitingLine.cardinal();
                if (maxLength < qLength)
                    maxLength = qLength;
                if (!tearoom.empty())
                    activate((CarWasher) tearoom.first());
                hold(random.negexp(1/11.0));
            }
        }
    }

    public static void main(String args[]) {
        activate(new CarWashSimulation(1));
    }
}



49

The CPU time used for running this program was only 2 seconds.

However, it is not always that easy to economize on processes. What, for
example, should we do if a large number of car washers were engaged? A
further reduction on the number of processes would probably make the pro-
gram difficult to read.

A better method for reducing thread overhead is to let the coroutine package
itself economize on the use of threads. When a coroutine has terminated, its
thread is not discarded but, if necessary, reused to run other coroutines. In
this way the number of generated threads is held to a minimum.

Unused threads are held in a free list. When a new coroutine starts, the first
thread on the list is removed and used for coroutine execution.

Threads are represented as objects of class Runner, a subclass and inner
class of class Thread. An outline of this class is shown below.

class Runner extends Thread {
    Coroutine myCoroutine;
    Runner next;

    public void run() {
        myCoroutine.body();
        ...
        next = firstFree;
        firstFree = this;
        ...
    }

    void go() { ... }
}

As long as a Runner is active it executes the body method of the coroutine
referenced by myCoroutine. Having finished this job, the Runner inserts
itself into the free list and waits.

The next reference is a link to the next Runner in the free list.

The go method is used to start or resume the execution of a Runner.

The following two references are declared in class Coroutine:

private Runner myRunner;
private static Runner firstFree;

Here myRunner references the Runner for the Coroutine object, and
firstFree references the first Runner in the free list.



50

Below is given the complete code of the Runner class.

class Runner extends Thread {
    Coroutine myCoroutine;
    Runner next;

    Runner(Coroutine c) {
        myCoroutine = c;
    }

    public void run() {
        while (true) {
            myCoroutine.body();
            if (!myCoroutine.terminated) {
                myCoroutine.terminated = true;
                detach();
            }
            if (myCoroutine == Coroutine.main) {
                myCoroutine = null;
                Coroutine.main = null;
                Coroutine.current = null;
                return;
            }
            myCoroutine = null;
            next = firstFree;
            firstFree = this;
            synchronized(this) {
                try {
                    wait();
                } catch (InterruptedException e) {}
            }
        }
    }

    void go() {
        if (!isAlive())
            start();
        else
            notify();
    }
}

When a Runner has been used to execute the body of a coroutine, it waits
(by calling wait) until it is woken up (by calling notify in the go
method).



51

The enter method of class Coroutine now looks as follows:

private void enter() {
    if (myRunner == null) {
        if (firstFree != null) {
            myRunner = firstFree;
            firstFree = firstFree.next;
            myRunner.myCoroutine = this;
        } else
            myRunner = new Runner(this);
    }
    if (main == null) {
        main = current = this;
        myRunner.go();
        return;
    }
    Coroutine old_current = current;
    synchronized(old_current.myRunner) {
        current = this;
        myRunner.go();
        if (old_current.terminated)
            return;
        try {
            old_current.myRunner.wait();
        } catch(InterruptedException e) {}
    }
}

When a Runner is needed, it is taken from the free list, if possible. Other-
wise, a new one is created.

When this version was used for the implementation of javaSimulation,
the execution of the car wash simulation program took only 6 seconds on the
Macintosh. Thus the recycling of threads has reduced the running time for
this example substantially.

In the remaining two sections of this chapter we will improve further on this
version.



52

 3 .3 .8  Version 8: Mutual  exclusion of  main  coroutines

In some applications it is convenient to have more than one coroutine system
in the same program. This is, for example, the case in the car wash simulation
problem where two simulations are to be performed.

public static void main(String args[]) {
    activate(new CarWashSimulation(1));
    activate(new CarWashSimulation(2));
}

First, the simulation is to be performed with one car washer, and then, with
two car washers.

But since the main method runs in a thread, in competition with the Runner
threads, the two simulations will be intermingled. We have to take special
care to prevent this situation from arising.

We will solve the problem by letting any thread that activates a main coroutine
wait until the main coroutine has finished. The main coroutine signals that it
has finished by setting the reference main to null.

First, we replace this code fragment of the enter method

if (main == null) {
    main = this;
    myRunner.go();
    return;
}

with

if (main == null) {
    main = this;
    myRunner.go();
    synchronized(Runner.class) {
        try {
            while (main != null)
                Runner.class.wait();
        } catch (InterruptedException e) {}
    }
    return;
}



53

Then we replace this code fragment of the run method of class Runner

if (myCoroutine == Coroutine.main) {
    myCoroutine = null;
    Coroutine.current = null;
    Coroutine.main = null;
}

with

if (myCoroutine == Coroutine.main) {
     myCoroutine = null;
     Coroutine.current = null;         
     synchronized(Runner.class) {   
         Coroutine.main = null;
         Runner.class.notify();
     }                         
     return;
}

    



54

3 .3 .9  Version 9: Ending the coroutines

One last problem remains. A Java program will keep running as long as there
are any user threads running. This will prevent any program that uses the
previous coroutine version from ever stopping. Either a thread is being used
for the execution of the body of a coroutine, or it is waiting in the free list for
being used again.

How can we solve this problem? Very simply, just by marking all threads as
daemon threads. Daemon threads are expendable and are stopped, when all
user threads of the program have finished.

The marking is made as follows in the constructor of class Runner:

Runner(Coroutine c) {
    myCoroutine = c;
    setDaemon(true);
}

With this last improvement, the code of the coroutine package is complete.
The complete source code of the javaCoroutine package is given in ap-
pendix O.

A small test program, adapted from [9], is given in Appendix P.



55

4.  Implementation of  javaSimulation

Equipped with the coroutine package described in the previous chapter, im-
plementation of the javaSimulation package is straightforward. The
SIMULA code given for class SIMULATION in reference [1] may be trans-
lated almost directly into Java.

However, during this translation process some minor problems must be
solved. These problems and their solutions will be described briefly below.

(1) How should the dynamics of processes be represented?

Since a process behaves as a coroutine, an obvious idea is to let class
Process be a subclass of class Coroutine. Below is an outline of how to
implement this idea.

public abstract class Process extends Coroutine {
    public abstract void actions();

    protected final void body() {
        ...
        actions();
        ...
    }
}

The life cycle of a process is described in a subclass of Process by over-
riding the abstract method actions. The body method, inherited from class
Coroutine, takes care of its execution.

In this way, each process acquires the capabilities of a coroutine. Thus, the
resumption of a current in the scheduling methods may be implemented as
follows:

resume(current());

This solution, however, has two flaws.

Firstly, SIMULA prescribes that Process must be a subclass of Link. But
since Java does not allow multiple inheritance, Process cannot be a sub-
class of both Link and Coroutine.



56

Secondly, the coroutine capabilities of Process will not be protected from
the user. He may, for example, call the resume method with a Process
object as parameter. The effect of this would be disastrous for the scheduling
mechanisms.

Letting Link be a subclass of Coroutine would eliminate the first of these
flaws, but not the second one.

A better solution is to let each Process object have at its disposal a
Coroutine object. The Coroutine object is responsible for executing the
actions method. This solution is outlined below.

public abstract class Process extends Link {
    public abstract void actions();

    private Coroutine myCoroutine = new Coroutine() {
        protected final void body() {
            ...
            actions();
            ...
        }
    }
}

The resumption of current in the scheduling methods is now implemented
as follows:

Coroutine.resume(current().myCoroutine);

This solution eliminates both flaws. Class Process is now a subclass of
Link, and its coroutine capabilities can no longer be misused by the user.

(2) How should the event list be represented?

In the SIMULA code the event list (called the sequencing set, SQS) is repre-
sented as an ordered list of event notices. Each event notice is an object con-
taining the event time and a reference to the process that has scheduled the
event. Every time a process schedules an event, a new event notice is created
and inserted into the event list. By using this implementation a lot of event
notice objects are created during a simulation.

We will avoid this overhead by providing each process with the capability of
being able to act as an event notice. When a process schedules an event, it
does not create any event notice. It merely inserts itself in the event list. For
this purpose, each Process has the following (private) attributes:

double EVTIME;
Process PRED, SUC;



57

EVTIME is the event time. PRED and SUC are the predecessor and successor
of the process in the event list. If the process has no scheduled event, both
PRED and SUC will be null. An auxiliary process, SQS, is used as a list
head for the circular list of scheduled processes. SQS.SUC always references
the currently active process, current.

 (3) How should the main process be represented?

In SIMULATION the main process, i.e., the process corresponding to the
main program, is represented by an anonymous Process object with the
following body (expressed in Java):

while (true)
           detach();

Each time this process is current, it calls detach, thereby resuming the exe-
cution of the main program.

In javaSimulation we will define the main process as the first process
activated in a simulation and obtain the desired functionality by implementing
the body method of class Process as follows:

final public void body() {
    if (MAIN == null)
        MAIN = this;
    actions();
    TERMINATED = terminated = true;
    if (this == MAIN) {
        while (SQS.SUC != SQS)
            SQS.UNSCHEDULE(SQS.SUC);
        MAIN = null;
        return;
    }
    passivate();
}

When the first process in a simulation is activated, MAIN is set to reference
this process. When the main process terminates, the simulation ends and the
event list is emptied (to prepare for a possible subsequent simulation).

(4) How can we make processes terminate properly?

As seen in the code above, every terminated process calls passivate as its
last action. However, if passivate merely resumes the next current, its
body method never ends. This is unfortunate, since this would prevent the
thread associated with a terminated process from being reused.



58

We can handle this situation by setting the protected boolean variable
terminated (inherited from class Coroutine) to true when a process
terminates. By this means the enter method is told that the associated thread
is no longer needed.

(5) How do we best imitate the syntax of SIMULA’s activation statements?

SIMULA introduces the following special keywords to be used for activation
statements:

activate
reactivate

 at
delay
before
after
prior

For example, the programmer can write

activate p at 35 prior;

in order to schedule an event for the process p to occur at system time 35.
The keyword prior signifies that the event be scheduled in front of any
events with the same system time.

If possible, we should enable the user of javaSimulation to use a similar
syntax.

If we provide the constants at, delay, before, after and prior, it is
possible to get very close to the SIMULA syntax. For example, the user may
express the activation statement above in Java by writing

activate(p, at, 35, prior);

We let each of these constants be a reference to an object of its own class:

public static final At     at;
public static final Delay  delay;
public static final Before before;
public static final After  after;
public static final Prior  prior;



59

Next, we overload the activate and reactivate methods as follows:

public static final void activate(Process p);
public static final void activate(Process p,
                         At at, double t);
public static final void activate(Process p,
                         Delay delay, double t);
public static final void activate(Process p,
                         At at, double t, Prior prior);
public static final void activate(Process p,
                         Delay d, double t, Prior prior);
public static final void activate(Process p1,
                         Before before, Process p2);
public static final void activate(Process p1,
                         After after, Process p2);

public static final void reactivate(Process p);
public static final void reactivate(Process p,
                         At at, double t);
public static final void reactivate(Process p,
                         Delay delay, double t);
public static final void reactivate(Process p,
                         At at, double t, Prior prior);
public static final void reactivate(Process p,
                         Delay d, double t, Prior prior);
public static final void reactivate(Process p1,
                         Before before, Process p2);
public static final void reactivate(Process p1,
                         After after, Process p2);

In this way, we have found a satisfactory solution to the syntax problem.

Note that a possible illegal use of the “keywords” will be detected during the
program compilation.



60

5.  Evaluation of  javaSimulation

The javaSimulation package has been tested on the following platforms:

MAC: Power Macintosh G4 (400 MHz), Java 1.1.8
PC: Dell PowerEdge 1300 (400 MHz), Java 1.2.2
SUN: Sun Enterprise 250 (300 MHz), Java 1.2.2

Performance was measured by running the car wash simulation.

When running a simulation with one car washer and simPeriod set to
1000000, the following CPU times (in seconds) were measured:

MAC  PC SUN
6 13 10

When running the program with a version of the package that did not reuse
threads, the following CPU times were measured:

MAC PC SUN
80 80 42

As can be seen, the technique of reusing threads has great significance for
performance.

The Java runtime system uses the underlying operating system for thread
support, or its own software emulation if the operating system does not sup-
port threads. Apparently, the underlying threading system of Java on Sun is
the best.

The computational overhead of threads may also be assessed by comparing
the runtimes above with the following runtimes, measured when the event-
and activity-based simulation packages of this report were used:

MAC PC SUN
event 2 1 3
activity 2 1 4
events 2 2 6



61

It is well known that Java programs run slower than equivalent programs
written in other programming languages. In order to examine to what extent
this applies in the present case the process-based car wash simulation was
executed on the Sun by use of the following software:

SIMULA: The Lund Simula Compiler (translates into machine code)
cim: A SIMULA compiler that produces C code
COROUTINE: A C++ library for coroutine sequencing [10].

The C++ library exists in two versions: copy-stack and share-stack. Along
with the library comes a simulation library similar to the javaSimulation
package.

The following runtimes were measured:

SUN
javaSimulation 10
SIMULA 2
cim 6
COROUTINE (copy-stack) 5
COROUTINE (share-stack) 3

As can be seen, the program based on javaSimulation ran 5 times
slower than an equivalent SIMULA program compiled by the Lund Simula
compiler. This is not a big factor, considering that the SIMULA program was
compiled into highly optimized machine code.

JavaSim [11] is a Java package similar to javaSimulation. Both pack-
ages provide simulation facilities corresponding to those provided by
SIMULA. When running the car wash simulation using JavaSim the follow-
ing runtimes were measured:

MAC PC SUN
120 89 66

As can be seen, the efficiency of JavaSim is comparatively low.

The computational overhead of thread usage is not only of a computational
nature. Threads may also allocate a substantial amount of memory. Each
thread must allocate enough memory to hold its stack; actually two stacks: one
for Java code and one for C code. As the default size of each of these stacks
may be hundreds of kilobytes, memory consumption will be excessive for
applications with many live threads.



62

The user must be aware of this fact and, if possible, reduce the default stack
size for the threads. On many platforms this can be achieved by using the     
-oss and –ss options of the java interpreter.

We may conclude that the performance of javaSimulation is quite satis-
factory, although not impressive. The implementation of the underlying
threading system of Java plays an important role in this connection. Currently
the overhead induced by using threads is considerable. However, Java is a
very young language, and faster implementations are likely in the future.



63

6.  Conclusions

This report describes javaSimulation, a Java package for process-based
discrete event simulation. The package is based on a Java library for coroutine
sequencing and contains all the simulation facilities of SIMULA.

A central implementation problem, how to make threads representing proc-
esses behave as coroutines, has been solved successfully in the present im-
plementation.

The performance of the package is reasonably good. By recycling the threads
of terminated coroutines, much of the overhead originating from the use of
Java’s threads has been eliminated.



64

References

1. O.-J. Dahl, B. Myhrhaug & K. Nygaard,
COMMON BASE LANGUAGE,
NNC Publication S-22 (1970).

2. G. M. Birtwistle, O.-J. Dahl, B. Myhrhaug & K. Nygaard,
SIMULA     BEGIN     ,
Studentlitteratur (1974).

3. Programspråk – SIMULA, SIS,
Svensk Standard SS 63 61 14 (1987).

4. K. Helsgaun,
DISCO - a SIMULA-based language for combined continuous
and discrete simulation,
SIMULATION, Vol. 34, no. 7, pp. 1-12 (1980).

5. W. Kreutzer,
System simulation: programming styles and languages,
Addison Wesley (1986).

6. P. R. Hills,
An Introduction to Simulation,
NEC Publication S. 55, Oslo (1973).

7. W. R. Franta,
The Process View of Simulation,
North Holland (1977).

8. C. D. Marlin, Coroutines,
Lecture Notes in Computer Science (1980).

9. H. B. Hansen,
SIMULA - et objektorienteret programmeringssprog,
Kompendium, Roskilde Universitetscenter (1990).

10. K. Helsgaun,
A Portable C++ Library for Coroutine Sequencing,
Datalogiske skrifter, No. 87, Roskilde University (1999).

11. R. McNab,
SimJava: a discrete event simulation library for Java,
University of Newcastle upon Tyne (1996).
Available from http://www.javaSim.ncl.ac.uk



Appendices

A. The simset package

B . Source code of the simset package

C. The random package

D. Source code of the random package

E. Source code of the simulation.event package

F. Car wash simulation with simulation.event

G. Source code of the simulation.activity package

H. Car wash simulation with simulation.activity

I. Source code of the simulation.events package

J. Car wash simulation with simulation.events

K. Source code of javaSimulation

L. Process-based car wash simulation with javaSimulation

M. Event-based car wash simulation with javaSimulation

N . Activity-based car wash simulation with javaSimulation

O. Source code of the javaCoroutine package

P. Test program for javaCoroutine



A.  The simset package

This package contains facilities for the manipulation of two-way linked lists. Its func-
tionality corresponds closely to SIMULA's built-in class SIMSET.

List members are objects of subclasses of the class Link.

An object of the class Head is used to represent a list.

The class Linkage is a common superclass for class Link and class Head.

The three classes are described below by means of the following variables:

Head hd;
Link lk;
Linkage lg;

Class Linkage

public class Linkage {
    public final Link pred();
    public final Link suc();
    public final Linkage prev();
}

lk.suc() returns a reference to the list member that is the successor
of lk if lk is a list member and is not the last member of
the list; otherwise null.

hd.suc() returns a reference to the fist member of the list hd, if the
list is not empty; otherwise null.

lk.pred() returns a reference to the list element that is the predeces-
sor of lk if lk is a list member and is not the first mem-
ber of the list; otherwise null.

hd.pred() returns a reference to the last member of the list hd if the
list is not empty; otherwise null.

lk.prev() returns null if lk is not a list member, a reference to the
list head if lk is the first member of a list; otherwise a ref-
erence to lk 's predecessor in the list.

hd.prev() returns a reference to hd if hd is empty; otherwise a ref-
erence to the last member of the list.



Class Head

public class Head extends Linkage {
    public final Link first();
    public final Link last();
    public final boolean empty();
    public final int cardinal();
    public final void clear();
}

hd.first() returns a reference to the first member of the list (null,
if the list is empty).

hd.last() returns a reference to the last member of the list (null, if
the list is empty).

hd.cardinal() returns the number of members in the list  (null, if the
list is empty).

hd.empty() returns true if the list hd has no members; otherwise
null.

hd.clear() removes all members from the list.



Class Link

public class Link extends Linkage {
    public final void out();
    public final void follow(Linkage ptr);
    public final void precede(Linkage ptr);
    public final void into(Head s);
}

lk.out() removes lk from the list (if any) of which it is a mem-
ber. The call has no effect if lk has no membership.

lk.into(hd) removes lk from the list (if any) of which it is a mem-
ber and inserts lk as the last member of the list hd.

lk.precede(lg) removes lk from the list (if any) of which it is a mem-
ber and inserts lk before lg. The effect is the same as
lk.out() if lg is null, or it has no membership
and is not a list head.

lk.follow(lg) removes lk from the list (if any) of which it is a mem-
ber and inserts lk after lg. The effect is the same as
lk.out() if lg is null, or it has no membership
and is not a list head.

  

  



B-1

B.  Source code of  the simset package

public class Linkage {
    public final Link pred() {
        return PRED instanceof Link ? (Link) PRED : null;
    }

    public final Link suc() {
        return SUC instanceof Link ? (Link) SUC : null;
    }

    public final Linkage prev() { return PRED; }

    Linkage PRED, SUC;
}

public class Link extends Linkage {
    public final void out() {
        if (SUC != null) {
            SUC.PRED = PRED;
            PRED.SUC = SUC;
            SUC = PRED = null;
        }
    }

    public final void follow(Linkage ptr) {
        out();
        if (ptr != null && ptr.SUC != null) {
            PRED = ptr;
            SUC = ptr.SUC;
            SUC.PRED = ptr.SUC = this;
        }
    }

    public final void precede(Linkage ptr) {
        out();
        if (ptr != null && ptr.SUC != null) {
            SUC = ptr;
            PRED = ptr.PRED;
            PRED.SUC = ptr.PRED = this;
        }
    }

    public final void into(Head s) {
        precede(s);
    }
}



B-2

public class Head extends Linkage {
    public Head() { PRED = SUC = this; }

    public final Link first() { return suc(); }

    public final Link last() { return pred(); }

    public final boolean empty() { return SUC == this; }

    public final int cardinal() {
        int i = 0;
        for (Link ptr = first(); ptr != null; ptr = ptr.suc())
            i++;
        return i;
    }

    public final void clear() {
        while (first() != null)
            first().out();
    }
}



C-1

C. The random package

This package provides the same methods for random drawing as can be found
in SIMULA. All methods are available in a class called Random. A summary
of this class is shown below.

public class Random extends java.util.Random {
    public Random() { super(); }
    public Random(long seed) { super(seed); }

    public final boolean draw(double a);
    public final int randInt(int a, int b);
    public final double uniform(double a, double b);
    public final double normal(double a, double b);
    public final double negexp(double a);
    public final int poisson(double a);
    public final double erlang(double a, double b);
    public final int discrete(double[] a);
    public final double linear(double[] a, double[] b);
    public final int histd(double[] a);
}

The class is an extension of Java’s standard class java.util.Random.
Thus, all of the facilities of the latter class is also available to the user.

public Random();
   

This constructor creates a Random object with the current time as its
seed value.

public Random(long seed);

This constructor creates a Random object with the given seed value.

Each of the instance methods performs a random drawing of some kind.
Their semantics are as in SIMULA.

boolean draw(double a);

The value is true with the probability a, false with probability 1-a.
It is always true if a ≥ 1, and always false if a ≤ 0.

int randInt(int a, int b);

The value is one of the integers a, a+1, …, b-1, b with equal prob-
ability. If b < a, the call constitutes an error.



C-2

double uniform(double a, double b);

The value is uniformly distributed in the interval a ≤ x < b. If b ≤ a,
the call constitutes an error.

double normal(double a, double b);

The value is normally distributed with mean a and standard deviation
b.   

double negexp(double a);

The value is a drawing from the negative exponential distribution with
mean 1/A. If a is non-positive, a runtime error occurs.

int poisson(double a);

The value is a drawing from the Poisson distribution with parameter
a.

double erlang(double a, double b);

The value is a drawing from the Erlang distribution with mean 1/a
and standard deviation 1/(a* √b). Both a and b must be positive.

int discrete(double[] a);

The one-dimensional array a of n elements of type double, aug-
mented by the element 1 to the right, is interpreted as a step function
of the subscript, defining a discrete (cumulative) distribution function.

The function value satisfies

0 ≤ discrete(a) ≤ n

It is defined as the smallest i such that a[i] > r, where r is a random
number in the interval [0;1] and a[n] = 1.



C-3

double linear(double[] a, double[] b);

The value is a drawing from a (cumulative) distribution function f,
which is obtained by linear interpolation in a non-equidistant table de-
fined by a and b, such that a[i] = f(b[i]).

It is assumed that a and b are one-dimensional arrays of the same
length, that the first and last elements of a are equal to 0 and 1, re-
spectively, and that a[i] ≥ a[j] and b[i] > b[j] for i > j.

public int histd(double[] a);

The value is an integer in the range [0;n-1] where n is the number of
elements in the one-dimensional array a. The latter is interpreted as a
histogram defining the relative frequencies of the values.



D-1

D.  Source code of  the random package

public class Random extends java.util.Random {
    public Random() { super(); }

    public Random(long seed) { super(seed); }

    public boolean draw(double a) {
        return a < nextDouble();
    }

    public int randInt(int a, int b) {
        if (b < a)
            error("randInt: Second parameter is" +
                  " lower than first parameter");
        return (int) (a + nextDouble()*(b - a + 1));
    }

    public double uniform(double a, double b) {
        if (b <= a)
            error("uniform: Second parameter is not" +
                  " greater than first parameter");
        return a + nextDouble()*(b - a);
    }

    public double normal(double a, double b) {
        return a + b*nextGaussian();
    }

    public double negexp(double a) {
        if (a <= 0)
            error("negexp: First parameter is lower" +
                  " than zero");
        return -Math.log(nextDouble())/a;
    }

    public int poisson(double a) {
        double limit = Math.exp(-a), prod = nextDouble();
        int n;
        for (n = 0; prod >= limit; n++)
            prod *= nextDouble();
        return n;
    }



D-2

public double erlang(double a, double b) {
        if (a <= 0)
            error("erlang: First parameter is not greater" +
                  " than zero");
        if (b <= 0)
            error("erlang: Second parameter is not greater" +
                  " than zero");
        long bi = (long) b, ci;
        if (bi == b)
            bi--;
        double sum = 0;
        for (ci = 1; ci <= bi; ci++)
            sum += Math.log(nextDouble());
        return -(sum + (b - (ci-1))*Math.log(nextDouble()))/
                (a*b);
    }

    public int discrete(double[] a) {
        double basic = nextDouble();
        int i;
        for (i = 0; i < a.length; i++)
            if (a[i] > basic)
                break;
        return i;
    }

    public double linear(double[] a, double[] b) {
        if (a.length != b.length)
            error("linear: arrays have different length");
        if (a[0] != 0.0 || a[a.length-1] != 1.0)
            error("linear: Illegal value in first array");
        double basic = nextDouble();
        int i;
        for (i = 1; i < a.length; i++)
             if (a[i] >= basic)
                 break;
        double d = a[i] - a[i-1];
        if (d == 0.0)
            return b[i-1];
        return b[i-1] + (b[i]-b[i-1])*(basic-a[i-1])/d;
    }



D-3

    public int histd(double[] a) {
        double sum = 0.0;
        int i;
        for (i = 0; i < a.length; i++)
            sum += a[i];
        double weight = nextDouble() * sum;
        sum = 0.0;
        for (i = 0; i < a.length - 1; i++) {
            sum += a[i];
            if (sum >= weight)
                break;
        }
        return i;
    }

    private static void error(String msg) {
        throw new RuntimeException(msg);
    }
}



E-1

E.  Source code of  the simulation.event package

public abstract class Event {
    protected abstract void actions();

    public final void schedule(double evTime) {
        if (evTime < time)
            throw new RuntimeException
                ("attempt to schedule event in the past");
        cancel();
        eventTime = evTime;
        Event ev = SQS.pred;
        while (ev.eventTime > eventTime)
            ev = ev.pred;
        pred = ev;
        suc = ev.suc;
        ev.suc = suc.pred = this;
    }

    public final void cancel() {
        if (suc != null) {
            suc.pred = pred;
            pred.suc = suc;
            suc = pred = null;
        }
    }

    public final static double time() { return time; }

    public final static void runSimulation(double period) {
        while (SQS.suc != SQS) {
            Event ev = SQS.suc;
            time = ev.eventTime;
            if (time > period)
                break;
            ev.cancel();
            ev.actions();
        }
        stopSimulation();
    }

    public final static void stopSimulation() {
        while (SQS.suc != SQS)
            SQS.suc.cancel();
        time = 0;
    }

    private final static Event SQS = new Event() {
        { pred = suc = this; }
        protected void actions() {}
    };



E-2

    private static double time = 0;
    private double eventTime;
    private Event pred, suc;
}

public class Simulation extends Event {
    protected final void actions() {}
}



F-1

F. Car wash simulation with simulation.event

import simulation.event.*;
import simset.*;
import random.*;

public class CarWashSimulation extends Simulation {
    int noOfCarWashers;
    double simPeriod = 1000000;
    Head tearoom = new Head();
    Head waitingLine = new Head();
    Random random = new Random(5);
    int noOfCustomers, maxLength;
    double throughTime;
    long startTime = System.currentTimeMillis();

    CarWashSimulation(int n) {
        noOfCarWashers = n;
        for (int i = 1; i <= noOfCarWashers; i++)
            new CarWasher().into(tearoom);
        new CarArrival().schedule(0);
        runSimulation(simPeriod + 1000000);
        report();
    }

    void report() {
        System.out.println(noOfCarWashers +
                           " car washer simulation");
        System.out.println("No.of cars through the system = " +
                           noOfCustomers);
        java.text.NumberFormat fmt =
            java.text.NumberFormat.getNumberInstance();
        fmt.setMaximumFractionDigits(2);
        System.out.println("Av.elapsed time = " +
            fmt.format(throughTime/noOfCustomers));
        System.out.println("Maximum queue length = " +
                           maxLength);
        System.out.println("\nExecution time: " +
            fmt.format((System.currentTimeMillis()
                       - startTime)/1000.0) + " secs.\n");
    }

    class CarWasher extends Link {}

    class Car extends Link {
        double entryTime = time();
    }



F-2

    class CarArrival extends Event {
        public void actions() {
            if (time() <= simPeriod) {

            Car theCar = new Car();
            theCar.into(waitingLine);
            int qLength = waitingLine.cardinal();
            if (maxLength < qLength)
                maxLength = qLength;
            if (!tearoom.empty())
                new StartCarWashing().schedule(time());
           new CarArrival().schedule

                     (time() + random.negexp(1/11.0));
        }

        }
    }

    class StartCarWashing extends Event {
        public void actions() {
            CarWasher theCarWasher =
                (CarWasher) tearoom.first();
            theCarWasher.out();
            Car theCar = (Car) waitingLine.first();
            theCar.out();
            new StopCarWashing(theCarWasher,
                               theCar).schedule(time() + 10);
        }
    }

    class StopCarWashing extends Event {
        CarWasher theCarWasher;
        Car theCar;

        StopCarWashing(CarWasher cw, Car c) {
            theCarWasher = cw; theCar = c;
        }

        public void actions() {
            theCarWasher.into(tearoom);
            if (!waitingLine.empty())
                new StartCarWashing().schedule(time());
            noOfCustomers++;
            throughTime += time() - theCar.entryTime;
        }
    }

    public static void main(String args[]) {
        new CarWashSimulation(1);
        new CarWashSimulation(2);
    }



G-1

G. Source code of  the simulation.acivity package

public abstract class Activity {
    protected abstract boolean condition();
    protected abstract void startActions();
    protected abstract double duration();
    protected abstract void finishActions();

    public Activity() { schedule(); }

    Activity(boolean dummy) {}

    public final static double time() { return time; }

    public final void schedule() {
        cancel();
        suc = waitList.suc;
        suc.pred = waitList.suc = this;
        pred = waitList;
    }

    public final void schedule(double evTime) {
        if (evTime < time)
            throw new RuntimeException
                ("attempt to schedule event in the past");
        cancel();
        eventTime = evTime;
        Activity a = SQS.pred;
        while (a.eventTime > eventTime)
            a = a.pred;
        pred = a;
        suc = a.suc;
        a.suc = suc.pred = this;
    }

    public final void cancel() {
        if (suc != null) {
            suc.pred = pred;
            pred.suc = suc;
            pred = suc = null;
        }
    }

    public final static void stopSimulation() {
        while (waitList.suc != waitList)
            waitList.suc.cancel();
        while (SQS.suc != SQS)
            SQS.suc.cancel();
        time = 0;
    }



G-2

    public final static void runSimulation(double period) {
        while (true) {
            for (Activity a = waitList.suc;
                 a != waitList;
                 a = a.suc) {
                if (a.condition()) {
                    a.cancel();
                    a.schedule(time + a.duration());
                    a.startActions();
                    a = waitList;
                }
            }
            if (SQS.suc == SQS)
                break;
            Activity a = SQS.suc;
            time = a.eventTime;
            a.cancel();
            if (time > period)
                break;
            a.finishActions();
        }
        stopSimulation();
    }

    private final static Activity waitList = new Activity(true) {
        { pred = suc = this; }
        public boolean condition() { return false; }
        public void startActions() {}
        public double duration() { return 0; }
        public void finishActions() {}
    };

    private final static Activity SQS = new Activity(true) {
        { pred = suc = this; }
        public boolean condition() { return false; }
        public void startActions() {}
        public double duration() { return 0; }
        public void finishActions() {}
    };

    private static double time = 0;
    private double eventTime;
    private Activity pred, suc;
}

public class Simulation extends Activity {
    protected final boolean condition() { return true; }
    protected final void startActions() {}
    protected final double duration() { return 0; }
    protected final void finishActions() {}
}



H-1

H. Car wash simulation with simulation.activity

import simulation.activity.*;
import simset.*;
import random.*;

public class CarWashSimulation extends Simulation {
    int noOfCarWashers;
    double simPeriod = 1000000;
    Head tearoom = new Head();
    Head waitingLine = new Head();
    Random random = new Random(5);
    int noOfCustomers, maxLength;
    double throughTime;
    long startTime = System.currentTimeMillis();

    CarWashSimulation(int n) {
        noOfCarWashers = n;
        for (int i = 1; i <= noOfCarWashers; i++)
            new CarWasher().into(tearoom);
        new CarArrival();
        runSimulation(simPeriod + 1000000);
        report();
    }

    void report() {
        System.out.println(noOfCarWashers +
                           " car washer simulation");
        System.out.println("No.of cars through the system = " +
                           noOfCustomers);
        java.text.NumberFormat fmt =
            java.text.NumberFormat.getNumberInstance();
        fmt.setMaximumFractionDigits(2);
        System.out.println("Av.elapsed time = " +
            fmt.format(throughTime/noOfCustomers));
        System.out.println("Maximum queue length = " +
                           maxLength);
        System.out.println("\nExecution time: " +
            fmt.format((System.currentTimeMillis()
                       - startTime)/1000.0) + " secs.\n");
    }

    class CarWasher extends Link {}

    class Car extends Link {
        double entryTime = time();
    }



H-2

    class CarWashing extends Activity {
        Car theCar; CarWasher theCarWasher;

        CarWashing(Car c) { theCar = c; }

        public boolean condition() {
            return theCar == (Car) waitingLine.first() &&
                   !tearoom.empty();
        }

        public void startActions() {
            theCar.out();
            theCarWasher = (CarWasher) tearoom.first();
            theCarWasher.out();
        }

        public double duration() { return 10; }

        public void finishActions() {
            theCarWasher.into(tearoom);
            noOfCustomers++;
            throughTime += time() - theCar.entryTime;
        }
    }

    class CarArrival extends Activity {
        public boolean condition() { return true; }

        public void startActions() {
            Car theCar = new Car();
            theCar.into(waitingLine);
            new CarWashing(theCar);
            int qLength = waitingLine.cardinal();
            if (maxLength < qLength) maxLength = qLength;
        }

        public double duration() {
            return random.negexp(1/11.0);
        }

        public void finishActions() {
            if (time() <= simPeriod)
                new CarArrival();
        }
    }

    public static void main(String args[]) {
        new CarWashSimulation(1);
        new CarWashSimulation(2);
    }
}



I-1

I. Source code of  the simulation.events package

public abstract class Event {
    protected abstract void actions();

    public final static double time() { return time; }

    public final static void runSimulation(double period) {
        while (true) {
            for (StateEvent a = (StateEvent) waitList.suc;
                 a != waitList;
                 a = (StateEvent) a.suc) {
                if (a.condition()) {
                    a.cancel();
                    a.actions();
                    a = waitList;
                }
            }
            if (SQS.suc == SQS)
                break;
            TimeEvent ev = (TimeEvent) SQS.suc;
            time = ev.eventTime;
            ev.cancel();
            if (time > period)
                break;
            ev.actions();
        }
        stopSimulation();
    }

    public final static void stopSimulation() {
        while (SQS.suc != SQS)
            SQS.suc.cancel();
        while (waitList.suc != waitList)
            waitList.suc.cancel();
        time = 0;
    }

    public final void cancel() {
        if (suc != null) {
            suc.pred = pred;
            pred.suc = suc;
            suc = pred = null;
        }
    }



I-2

    static final TimeEvent SQS = new TimeEvent() {
        { pred = suc = this; }
        protected void actions() {}
    };

    static final StateEvent waitList = new StateEvent() {
        { pred = suc = this; }
        protected boolean condition() { return false; }
        protected void actions() {}
    };

    static double time = 0;
    Event pred, suc;
}

public class Simulation extends Event {
    protected final void actions() {}
}



J-1

J. Car wash simulation with simulation.events

import simulation.events.*;
import simset.*;
import random.*;

public class CarWashSimulation extends Simulation {
    int noOfCarWashers;
    double simPeriod = 1000000;
    Head tearoom = new Head();
    Head waitingLine = new Head();
    int noOfCustomers, maxLength;
    double throughTime;
    Random random = new Random(5);
    long startTime = System.currentTimeMillis();

    CarWashSimulation(int n) {
        noOfCarWashers = n;
        for (int i = 1; i <= noOfCarWashers; i++)
            new CarWasher().into(tearoom);
        new CarArrival().schedule(0);
        runSimulation(simPeriod + 1000000);
        report();
    }

    void report() {
        System.out.println(noOfCarWashers +
                           " car washer simulation");
        System.out.println("No.of cars through the system = " +
                           noOfCustomers);
        java.text.NumberFormat fmt =
            java.text.NumberFormat.getNumberInstance();
        fmt.setMaximumFractionDigits(2);
        System.out.println("Av.elapsed time = " +
            fmt.format(throughTime/noOfCustomers));
        System.out.println("Maximum queue length = " +
                           maxLength);
        System.out.println("\nExecution time: " +
            fmt.format((System.currentTimeMillis()
                       - startTime)/1000.0) + " secs.\n");
    }

    class CarWasher extends Link {}

    class Car extends Link {
        double entryTime = time();
    }



J-2

    class CarArrival extends TimeEvent {
        public void actions() {
            if (time() <= simPeriod) {

          Car theCar = new Car();
          theCar.into(waitingLine);
          int qLength = waitingLine.cardinal();
          if (maxLength < qLength) maxLength = qLength;
          new StartCarWashing(theCar).schedule();
          schedule(time() +  random.negexp(1/11.0));
      }

        }
    }

    class StopCarWashing extends TimeEvent {
        CarWasher theCarWasher; Car theCar;

        StopCarWashing(CarWasher cw, Car c)
          { theCarWasher = cw; theCar = c; }

        public void actions() {
            noOfCustomers++;
            throughTime += time() - theCar.entryTime;
            theCarWasher.into(tearoom);
        }
    }

    class StartCarWashing extends StateEvent {
        Car theCar;

        StartCarWashing(Car c) { theCar = c; }

        public boolean condition() {
            return theCar == (Car) waitingLine.first() &&
                   !tearoom.empty();
        }

        public void actions() {
            theCar.out();
            CarWasher theCarWasher =
                (CarWasher) tearoom.first();
            theCarWasher.out();
            new StopCarWashing(theCarWasher,
                               theCar).schedule(time() + 10);
        }
    }

    public static void main(String args[]) {
        new CarWashSimulation(1);
        new CarWashSimulation(2);
    }
}



K-1

K. Source code of  javaSimulation

package javaSimulation;

public abstract class Process extends Link {
    protected abstract void actions();

   
    private final Coroutine myCoroutine = new Coroutine() {
        protected void body() {
            if (MAIN == null)
                MAIN = Process.this;
            actions();
            TERMINATED = terminated = true;
            if (Process.this == MAIN) {
                while (SQS.SUC != SQS)
                    SQS.SUC.cancel();
                MAIN = null;
                return;
            }
            passivate();
        }
    };

    private Process PRED, SUC;
    private double EVTIME;
    private boolean TERMINATED;

    private final static Process SQS = new Process() {
        { EVTIME = -1;  PRED = SUC = this; }
        protected void actions() {}
    };

    private static Process MAIN;

    public final boolean idle() {
        return SUC == null;
    }

    public final boolean terminated() {
        return TERMINATED;
    }

    public final double evTime() {
        if (idle())
            error("No evTime for idle process");
        return EVTIME;
    }

    public final Process nextEv() {
        return SUC == SQS ? null : SUC;
    }



K-2

    public static final Process current() {
        return SQS.SUC != SQS ? SQS.SUC : null;
    }

    public static final double time() {
        return SQS.SUC != SQS ? SQS.SUC.EVTIME : 0;
    }

    public static final Process main() { return MAIN; }

    private static void error(String msg) {
        throw new RuntimeException(msg);
    }

    public static final void hold(double t) {
        if (SQS.SUC == SQS)
           error("Hold: SQS is empty");
        Process Q = SQS.SUC;
        if (t > 0)
            Q.EVTIME += t;
        t = Q.EVTIME;
        if (Q.SUC != SQS && Q.SUC.EVTIME <= t) {
            Q.cancel();
            Process P = SQS.PRED;
            while (P.EVTIME > t)
                P = P.PRED;
            Q.scheduleAfter(P);
            resume(SQS.SUC);
        }
    }

    public static final void passivate() {
        if (SQS.SUC == SQS)
           error("Passivate: SQS is empty");
        Process CURRENT = SQS.SUC;
        CURRENT.cancel();
        if (SQS.SUC == SQS)
            error("passivate causes SQS to become empty");
        resume(SQS.SUC);
    }

    public static final void wait(Head q) {
        if (SQS.SUC == SQS)
           error("Wait: SQS is empty");
         current().into(q);
         Process CURRENT = SQS.SUC;
         CURRENT.cancel();
         if (SQS.SUC == SQS)
             error("wait causes SQS to become empty");
         resume(SQS.SUC);
    }



K-3

    public static final void cancel(Process p) {
        if (p == null || p.SUC == null)
            return;
        Process CURRENT = SQS.SUC;
        p.cancel();
        if (SQS.SUC != CURRENT)
            return;
        if (SQS.SUC == SQS)
            error("cancel causes SQS to become empty");
        resume(SQS.SUC);
    }

    private static final class At     {}
    private static final class Delay  {}
    private static final class Before {}
    private static final class After  {}
    private static final class Prior  {}

    public static final At     at     = new At();
    public static final Delay  delay  = new Delay();
    public static final Before before = new Before();
    public static final After  after  = new After();
    public static final Prior  prior  = new Prior();

    private static final int direct_code = 0;
    private static final int at_code     = 1;
    private static final int delay_code  = 2;
    private static final int before_code = 3;
    private static final int after_code  = 4;



K-4

    private static final void activat(boolean reac, Process x,
                                      int code, double t,
                                      Process y, boolean prio) {
        if (x == null || x.TERMINATED ||
            (!reac && x.SUC != null))
            return;
        Process CURRENT = SQS.SUC, P = null;
        double NOW = time();
        switch(code) {
        case direct_code:
            if (x == CURRENT)
                return;
            t = NOW; P = SQS;
            break;
        case delay_code:
            t += NOW;
        case at_code:
            if (t <= NOW) {
                if (prio && x == CURRENT)
                    return;
                t = NOW;
            }
            break;
        case before_code:
        case after_code:
             if (y == null || y.SUC == null) {
                 x.cancel();
                 if (SQS.SUC == SQS)
                     error("reactivate causes SQS " +
                           "to become empty");
                 return;
             }
             if (x == y)
                 return;
             t = y.EVTIME;
             P = code == before_code ? y.PRED : y;
        }
        if (x.SUC != null)
            x.cancel();
        if (P == null) {
            for (P = SQS.PRED; P.EVTIME > t; P = P.PRED)
                 ;
            if (prio)
                while (P.EVTIME == t)
                    P = P.PRED;
        }
        x.EVTIME = t;
        x.scheduleAfter(P);
        if (SQS.SUC != CURRENT)
            resume(current());
    }



K-5

    public static final void activate(Process p) {
        activat(false, p, direct_code, 0, null, false);
    }

    public static final void activate(Process p,
                          At at, double t) {
        activat(false, p, at_code, t, null, false);
    }

    public static final void activate(Process p,
                          At at, double t, Prior prior) {
        activat(false, p, at_code, t, null, true);
    }

    public static final void activate(Process p,
                          Delay delay, double t) {
        activat(false, p, delay_code, t, null, false);
    }

    public static final void activate(Process p,
                          Delay d, double t, Prior prior) {
        activat(false, p, delay_code, t, null, true);
    }

    public static final void activate(Process p1,
                          Before before, Process p2) {
        activat(false, p1, before_code, 0, p2, false);
    }

    public static final void activate(Process p1,
                          After after, Process p2) {
        activat(false, p1, after_code, 0, p2, false);
    }



K-6

    public static final void reactivate(Process p) {
        activat(true, p, direct_code, 0, null, false);
    }

    public static final void reactivate(Process p,
                         At at, double t) {
        activat(true, p, at_code, t, null, false);
    }

    public static final void reactivate(Process p,
                         At at, double t, Prior prior) {
        activat(true, p, at_code, t, null, true);
    }

    public static final void reactivate(Process p,
                         Delay delay, double t) {
        activat(true, p, delay_code, t, null, false);
    }

    public static final void reactivate(Process p,
                         Delay d, double t, Prior prior) {
        activat(true, p, delay_code, t, null, true);
    }

    public static final void reactivate(Process p1,
                         Before before, Process p2) {
        activat(true, p1, before_code, 0, p2, false);
    }

    public static final void reactivate(Process p1,
                         After after, Process p2) {
        activat(true, p1, after_code, 0, p2, false);
    }

    private final void scheduleAfter(Process p) {
        PRED = p;
        SUC = p.SUC;
        p.SUC = SUC.PRED = this;
    }

    private final void cancel() {
        PRED.SUC = SUC;
        SUC.PRED = PRED;
        PRED = SUC = null;
    }
}



L-1

L.  Process-based car wash simulation with javaSimulation

import javaSimulation.*;
import javaSimulation.Process;

public class CarWashSimulation extends Process {
    int noOfCarWashers;
    double simPeriod = 1000000;
    Head tearoom = new Head();
    Head waitingLine = new Head();
    Random random = new Random(5);
    double throughTime;
    int noOfCustomers, maxLength;
    long startTime = System.currentTimeMillis();

    CarWashSimulation(int n) { noOfCarWashers = n; }

    public void actions() {
        for (int i = 1; i <= noOfCarWashers; i++)
            new CarWasher().into(tearoom);
        activate(new CarGenerator());
        hold(simPeriod + 1000000);
        report();
    }

    void report() {
        System.out.println(noOfCarWashers +
                           " car washer simulation");
        System.out.println("No.of cars through the system = " +
                           noOfCustomers);
        java.text.NumberFormat fmt =
            java.text.NumberFormat.getNumberInstance();
        fmt.setMaximumFractionDigits(2);
        System.out.println("Av.elapsed time = " +
            fmt.format(throughTime/noOfCustomers));
        System.out.println("Maximum queue length = " +
                           maxLength);
        System.out.println("\nExecution time: " +
            fmt.format((System.currentTimeMillis()
                       - startTime)/1000.0) + " secs.\n");
     }



L-2

    class Car extends Process {
        public void actions() {
            double entryTime = time();
            into(waitingLine);
            int qLength = waitingLine.cardinal();
            if (maxLength < qLength)
                maxLength = qLength;
            if (!tearoom.empty())
                activate((CarWasher) tearoom.first());
            passivate();
            noOfCustomers++;
            throughTime += time() - entryTime;
        }
    }

    class CarWasher extends Process {
        public void actions() {
            while (true) {
                out();
                while (!waitingLine.empty()) {
                    Car served = (Car) waitingLine.first();
                    served.out();
                    hold(10);
                    activate(served);
                }
                wait(tearoom);
            }
        }
    }

    class CarGenerator extends Process {
        public void actions() {
             while (time() <= simPeriod) {
                  activate(new Car());
                  hold(random.negexp(1/11.0));
             }
        }
    }

    public static void main(String args[]) {
        activate(new CarWashSimulation(1));
        activate(new CarWashSimulation(2));
    }
}



M-1

M. Event-based car wash simulation with javaSimulation

import javaSimulation.*;
import javaSimulation.Process;

public class CarWashSimulation extends Process {
    int noOfCarWashers;
    double simPeriod = 1000000;
    Head tearoom = new Head();
    Head waitingLine = new Head();
    Random random = new Random(5);
    double throughTime;
    int noOfCustomers, maxLength;
    long startTime = System.currentTimeMillis();

    CarWashSimulation(int n) { noOfCarWashers = n; }

    public void actions() {
        for (int i = 1; i <= noOfCarWashers; i++)
            new CarWasher().into(tearoom);
        activate(new CarArrival());
        hold(simPeriod+1000000);
        report();
    }

    void report() {
        System.out.println(noOfCarWashers +
                           " car washer simulation");
        System.out.println("No.of cars through the system = " +
                           noOfCustomers);
        java.text.NumberFormat fmt =
            java.text.NumberFormat.getNumberInstance();
        fmt.setMaximumFractionDigits(2);
        System.out.println("Av.elapsed time = " +
            fmt.format(throughTime/noOfCustomers));
        System.out.println("Maximum queue length = " +
                           maxLength);
        System.out.println("\nExecution time: " +
            fmt.format((System.currentTimeMillis()
                       - startTime)/1000.0) + " secs.\n");
     }

    class CarWasher extends Link {}

    class Car extends Link {
        double entryTime = time();
    }



M-2

    class CarArrival extends Process {
        public void actions() {
            if (time() > simPeriod)
                 return;
            Car theCar = new Car();
            theCar.into(waitingLine);
            int qLength = waitingLine.cardinal();
            if (maxLength < qLength)
                maxLength = qLength;
            if (!tearoom.empty())
                activate(new StartCarWashing(
                             (CarWasher) tearoom.first()));
            activate(new CarArrival(),
                     delay, random.negexp(1/11.0));
        }
    }

    class StartCarWashing extends Process {
        CarWasher theCarWasher;

        StartCarWashing(CarWasher cw) { theCarWasher = cw; }

        public void actions() {
            theCarWasher.out();
            Car theCar = (Car) waitingLine.first();
            theCar.out();
            activate(new StopCarWashing(theCarWasher, theCar),
                     delay, 10);
        }
    }

    class StopCarWashing extends Process {
        CarWasher theCarWasher; Car theCar;

        StopCarWashing(CarWasher cw, Car c)
          { theCarWasher = cw; theCar = c; }

        public void actions() {
            theCarWasher.into(tearoom);
            noOfCustomers++;
            throughTime += time() - theCar.entryTime;
            if (!waitingLine.empty())
                activate(new StartCarWashing(theCarWasher));
        }
    }

    public static void main(String args[]) {
        activate(new CarWashSimulation(1));
        activate(new CarWashSimulation(2));
    }
}



N-1

N.  Activity-based car wash simulation with javaSimulation

import javaSimulation.*;
import javaSimulation.Process;

public class CarWashSimulation extends Process {
    int noOfCarWashers;
    double simPeriod = 1000000;
    Head tearoom = new Head();
    Head waitingLine = new Head();
    Random random = new Random(5);
    double throughTime;
    int noOfCustomers, maxLength;
    long startTime = System.currentTimeMillis();

    CarWashSimulation(int n) {
        noOfCarWashers = n;
    }

     public void actions() {
        for (int i = 1; i <= noOfCarWashers; i++)
            new CarWasher().into(tearoom);
        activate(new CarArrival());
        hold(simPeriod + 1000000);
        report();
    }

    void report() {
        System.out.println(noOfCarWashers +
                           " car washer simulation");
        System.out.println("No.of cars through the system = " +
                           noOfCustomers);
        java.text.NumberFormat fmt =
            java.text.NumberFormat.getNumberInstance();
        fmt.setMaximumFractionDigits(2);
        System.out.println("Av.elapsed time = " +
            fmt.format(throughTime/noOfCustomers));
        System.out.println("Maximum queue length = " +
                           maxLength);
        System.out.println("\nExecution time: " +
            fmt.format((System.currentTimeMillis()
                       - startTime)/1000.0) + " secs.\n");
    }

    class CarWasher extends Link {}

    class Car extends Link {
        double entryTime = time();
    }



N-2

    class CarArrival extends Process {
        public void actions() {
            if (time() <= simPeriod) {
                Car theCar = new Car();
                theCar.into(waitingLine);
                activate(new CarWashing(theCar));
                int qLength = waitingLine.cardinal();
                if (maxLength < qLength)
                    maxLength = qLength;
                hold(random.negexp(1/11.0));
                activate(new CarArrival());
           }
       }
    }

    class CarWashing extends Process {
        Car theCar;
        CarWasher theCarWasher;

        CarWashing(Car c) { theCar = c; }

        public void actions() {
            if (theCar == (Car) waitingLine.first() &&
                !tearoom.empty()) {
                theCar.out();
                theCarWasher = (CarWasher) tearoom.first();
                theCarWasher.out();
                if (!waitingLine.empty())

              activate(new CarWashing(
                                 (Car) waitingLine.first()));
                hold(10);
                theCarWasher.into(tearoom);
                noOfCustomers++;
                throughTime += time() - theCar.entryTime;
                if (!waitingLine.empty())

              activate(new CarWashing(
                                 (Car) waitingLine.first()));
            }
        }
    }

    public static void main(String args[]) {
        activate(new CarWashSimulation(1));
        activate(new CarWashSimulation(2));
    }
}



O-1

O. Source code of  the javaCoroutine package

package javaCoroutine;

public abstract class Coroutine {
    protected abstract void body();

    public static final void resume(Coroutine next) {
         if (next == null)
             error("resume non-existing coroutine");
         if (next.terminated)
             error("resume terminated coroutine");
         if (next.caller != null)
             error("resume attached coroutine");
         if (next == current)
             return;
         while (next.callee != null)
              next = next.callee;
         next.enter(); 
    }

    public static final void call(Coroutine next) {
        if (next == null)
            error("call non-existing coroutine");
        if (next.terminated)
            error("call terminated coroutine");
        if (next.caller != null)
            error("call attached coroutine");
        if (current != null)
            current.callee = next;
        next.caller = current;
        while (next.callee != null)
            next = next.callee;
        if (next == current)
            error("call operating coroutine");
        next.enter();
    }

    public static final void detach() {
        Coroutine next = current.caller;
        if (next != null) {
            current.caller = next.callee = null;
            next.enter();
        }
        else if (main != null && current != main)
            main.enter();
    }



O-2

    public static final Coroutine currentCoroutine() {
        return current;
    }
    public static final Coroutine mainCoroutine() {
        return main;
    }

    private final class Runner extends Thread {
        Coroutine myCoroutine;
        Runner nextFree;

        Runner(Coroutine c) {
            myCoroutine = c;
            setDaemon(true);
        }

        public void run() {
            while (true) {
                myCoroutine.body();
                if (!myCoroutine.terminated) {
                    myCoroutine.terminated = true;
                    detach();
                }
                if (myCoroutine == Coroutine.main) {
                    Coroutine.current = null;
                    synchronized(Runner.class) {
                        Coroutine.main = null;
                        Runner.class.notify();
                    }
                    return;
                }
                nextFree = firstFree;
                firstFree = this;
                try {
                    synchronized(this) {
                        wait();
                    }
                } catch (InterruptedException e) {}
            }
        }

        void go() {
            if (!isAlive())
                start();
            else
            synchronized(this) {
                notify();
            }
        }
    }



O-3

    private static void error(String msg) {
        throw new RuntimeException(msg);
    }

    private static Coroutine current, main;
    private Coroutine caller, callee;
    protected boolean terminated;
    private Runner myRunner;
    private static Runner firstFree;

    private void enter() {
        if (myRunner == null) {
            if (firstFree == null)
                myRunner = new Runner(this);
            else {
                myRunner = firstFree;
                firstFree = firstFree.nextFree;
                myRunner.myCoroutine = this;
            }
        }
        if (main == null) {
            main = current = this;
            myRunner.go();
            synchronized(Runner.class) {
                try {
                    while (main != null)
                        Runner.class.wait();
                } catch (InterruptedException e) {}
            }
            return;
        }
        Coroutine old_current = current;
        synchronized(old_current.myRunner) {
            current = this;
            myRunner.go();
            if (old_current.terminated)
                return;
            try {
                old_current.myRunner.wait();
            } catch(InterruptedException e) {}
        }
    }
} 



P-1

P. Test program for javaCoroutine

import javaCoroutine.*;

public class CoroutineTest extends Coroutine {
    CoroutineTest(char cmd) { command = cmd; }

    Coroutine a, b, c;
    char command;

    class A extends Coroutine {
        public void body() {
            System.out.print("a1"); detach();

  System.out.print("a2"); call(c = new C());
            System.out.print("a3"); call(b);
            System.out.print("a4"); detach();
        }
    }

    class B extends Coroutine {
        public void body() {
            System.out.print("b1"); detach();
            System.out.print("b2"); resume(c);
            System.out.print("b3"); detach();
        }
    }

    class C extends Coroutine {
        public void body() {
            System.out.print("c1"); detach();
            System.out.print("c2\n");
            System.out.println("==> " + command);
            if (command == 'r')
                resume(a);
            else if (command == 'c')
                call(a);
            else
                detach();
            System.out.print("c3"); detach();
            System.out.print("c4");
        }
    }

    public void body() {
        System.out.print("m1"); call(a = new A());
        System.out.print("m2"); call(b = new B());
        System.out.print("m3"); resume(a);
        System.out.print("m4"); resume(c);
        System.out.print("m5\n");
    }



P-2

    public static void main(String args[]) {
        resume(new CoroutineTest('r'));
        resume(new CoroutineTest('c'));
        resume(new CoroutineTest('x'));
    }
}

/*

Expected output:

m1a1m2b1m3a2c1a3b2c2
==> r
b3a4m4c3m5

m1a1m2b1m3a2c1a3b2c2
==> c
b3a4c3m4c4m5

m1a1m2b1m3a2c1a3b2c2
==> x
m4c3m5

*/


	1. Introduction
	2. Discrete event simulation in Java
	2.1 The car wash problem
	2.2 Three approaches for discrete event simulation
	2.3 Solving the car wash problem by event-based simulation
	2.4 Solving the car wash problem by activity-based simulation
	2.5 Solving the car wash problem by mixed event-activity-based simulation
	2.6 Solving the car wash problem by process-based simulation

	3. A package for coroutine sequencing in Java
	3.1 The coroutine concept
	3.2 The user facilities of the javaCoroutine package
	3.3 Implementation of the javaCoroutine pacakge
	3.3.1 Version 1: Synchronization by busy waiting
	3.3.2 Version 2: Synchronization by resume and suspend
	3.3.3 Version 3: Synchonization by wait and interrupt
	3.3.4 Version 4: Synchronization by wait and notifyAll
	3.3.5 Version 5: Synchronization by wait and notify
	3.3.6 Version 6: Protecting the coroutines
	3.3.7 Version 7: Improving the efficiency
	3.3.8 Version 8: Mutual exclusion of main coroutines
	3.3.9 Version 9: Ending the coroutines


	4. Implementation of javaSimulation
	5. Evaluation of javaSimulation
	6. Conclusions
	References
	Appendices
	A. The simset package
	B. Source code of the simset package
	C. The random package
	D. Source code of the random package
	E. Source code of the simulation.event package
	F. Car wash simulation with simulation.event
	G. Source code of the simulation.activity package
	H. Car wash simulation with simulation.activity
	I. Source code of the simulation.events package
	J. Car wash simulation with simulation.events
	K. Source code of javaSimulation
	L. Process-based car wash simulation with javaSimulation
	M. Event-based car wash simulation with javaSimulation
	N. Activity-based car wash simulation with javaSimulation
	O. Source code of the javaCoroutine package
	P. Test program for javaCoroutine


