Discrete Event Simulation in Java

Keld Helsgaun
E-mail: keld@ruc.dk

Department of Computer Science
Roskilde University
DK-4000 Roskilde, Denmark

Abstract

This report describes j avaSi nul ati on, a Java package for
process-based discrete event simulation. The facilities of the
package are based on the simulation facilities provided by the
programming language SIMULA. The design of the package
follows the SIMULA design very closely. The package is easy to
use and relatively efficient. In addition, Java packages for co-
routine sequencing, event-based simulation and activity-based
simulation are presented.

Keywords: simulation, Java, process, discrete event, coroutine

1. Introduction

The Java platform comes with several standard packages. No package, how-
ever, is provided for discrete event simulation. Thisis unfortunate since dis-
crete event simulation constitutes an important application area of object ori-
ented progranmming. This fact has convincingly been demonstrated by
SIMULA, one of thefirst object-oriented programming languages [1][2][3].

SIMULA provides the standard class SSIMULATION, a very powerful tool
for discrete event simulation. A simulation encompasses a set of interacting
processes A processis an object associated with a sequence of activities or-
dered logically in smulated time. Each process hasits own life cycle and may
undergo active and inactive phases during its lifetime.

Processes represent the active entities in the real world, e.g., customersin a
supermarket. Thus, the process concept may be used to describe systemsin a
natural way.

Thisreport describesj avaSi mul at i on, a Java package for process-based
discrete event simulation. The package may be seen as an implementation of
class SIMULATION in Java. In addition to the simulation facilities, the pack-
age also includes the facilities for list manipulation and random number
drawing asfound in SIMULA.

When designing the package, great emphasis has been put into following the
SIMULA design as closely as possible. The advantage of this approach is that
the semantics of facilities are well-known and thoroughly tested through
many years' use of SIMULA. A SIMULA user should easily learn to use the
package.

Therest of thisreport is structured as follows.

Chapter 2 provides a short introduction to discrete event simulation by means
of a concrete example, a car wash simulation. The example is used to demon-
strate the use of three different approaches to discrete event smulation: event-
based, activity-based and process-based. In relation to these approaches sev-
eral packages have been developed. These packages are described from the
user’s point of view and their use is demonstrated by means of the car wash
example.

Implementing a process-based simulation package in Javais not atrivia task.
A process must be able to suspend its execution and have it resumed at some
later time. In other words, a process should be able to act like a coroutine.
Chapter 3 describes the development of a package, j avaCor out i ne, for
coroutine sequencing in Java. The package provides the same coroutine fa-
cilities as can be found in SIMULA. Itsimplementation is based on Java' s
threads.

This coroutine package is then used in Chapter 4 for the implementation of a
package for process-based ssimulation, j avaSi nul ati on.

j avaSi mul ati on isevaluated in Chapter 5, and some conclusions are
made in Chapter 6.

The appendices contain Java source code and documentation.

2. Discrete event simulation in Java

Simulation may be defined as the experimentation with a model in order to
obtain information about the dynamic behavior of a system. Instead of ex-
perimenting with the system, the experiments are performed with a model of
the system. Simulation is typically used when experimentation with the real
system istoo expensive, too dangerous, or not possible (e.g., if therea sys-
tem does not exist).

The system components chosen for inclusion in the model are termed entities.
Associated with each entity are zero or more attributes that describe the state
of the entity. The collection of all these attributes at any given time defines the
system state at that time.

There are three categories of simulation models, defined by the way the sys-
tem state changes:

Continuous. the state varies continuously with time. Such systems are
usually described by sets of differential equations.

&

N

B
»

lime

Discrete: the state changes only at discrete instances of time (event times).

F 3

Combined continuous and discrete: the state changes instantaneously at
event times; in between consecutive event times the system state may vary
continuously [4].

A

b /_\

e
L
tim

In this report we will only consider so-called discrete event simulation. In
discrete event smulation the model is discrete, and the simulated clock aways
jumps from one event time to the most imminent event time. At each event
time the corresponding action (state change) is performed, and simulated time
is advanced to the next time when some action is to occur. Thus, discrete
event simulation assumes that nothing happens between successive state
changes.

In order to make the following description easier to comprehend, a concrete
simulation example will now be presented.

2.1 The car wash problem

This example has been taken from [1].

A garage owner hasinstalled an automatic car wash that services carsone at a
time. When a car arrives, it goes straight into the car wash if thisisidle; oth-
erwise, it must wait in a queue. The car washer starts his day in atearoom
and return there each time he has no work to do. Aslong as cars are waiting,
the car wash is in continuous operation serving on afirst-come, first-served
basis. All carsthat have arrived before the garage closes down are washed.

Each service takes exactly 10 minutes. The average time between car arrivals
has been estimated at 11 minutes.

The garage owner isinterested in predicting the maximum queue length and
average waiting time if he installs one more car wash and employs one more
car washer.

2.2 Three approaches for discrete event simulation

There are basically three approaches that can be used for discrete event ssmu-
lation: the event-based, the activity-based and the process-based approach [5].

(1) The event-based approach

In the event-based approach the model consists of a collection of events. Each
event models a state change and is responsible for scheduling other events
that depend on that event.

Each event has associated an event time and some actions to be executed
when the event occurs.

In the car wash problem the arrival of a car is an example of an event. Actions
associated with this event are the inclusion of the car into the waiting line and
the scheduling of the next car arrival.

Event-based smulation is the smplest and most common implementation
style of discrete event simulation because it can be implemented in any pro-
gramming language.

(2) The activity-based approach

In the activity-based approach the model consists of a collection of activities.
Each activity models some time-consuming action performed by an entity.

Each activity has associated a starting condition, some actions to be executed
when the activity starts, the duration of the activity, and some actions to be
executed when the activity finishes.

In the car wash problem the washing of a car is an example of an activity. The
condition for starting this activity is that one of car washersisidle and the
waiting line is not empty. When the activity starts, an idle car washer isre-
moved from the tearoom, and the first waiting car is removed from the wait-
ing line. The duration of the activity is 10 units of simulated time. When it
ends, the car washer is put back into the tearoom.

Whilst the activity approach isrelatively easy to understand, it normally suf-
fersfrom poor execution efficiency compared to the event-based approach.

(3) The process-based approach

In the process-based approach the model consists of a collection of processes.
Each process models the life cycle of an entity and is a sequence of logically
related activities ordered in time.

In the car wash problem a car is an example of a process. Each car performs
the following sequence of activities: wait in queue, get washed.

Since processes resembl e objects in the real world, process-based simulation
Is often easy to understand. | mplementation, however, is not easy and exe-
cution efficiency may be poor if the implementation is not done properly.

The figure below illustrates the relation between the concepts event, activity
and process.

event event event
, , v
wait in queue get washed
>
activity activity time
N V.
process

In the remaining part of this chapter we will show how the car wash problem
can be solved in Java using each of the three simulation approaches.

2.3 Solving the car wash problem by event-based simulation

To provide asimple tool for event-based simulation a small Java package
cadledsi mul ati on. event hasbeen developed.

When using this package the events of amodel are described in one or more
subclasses of classEvent . An outline of this classis shown below.

public abstract class Event {
protected abstract void actions();

public void schedul e(doubl e evTine);

public void cancel ();

public static double tine();

public static void runSinul ati on(doubl e peri od);
public static void stopSinulation();

}

Theact i ons method represents the actions associated with the event. These
actions will be executed when the event occurs.

An event is scheduled to occur at a specified point in smulated time by calling
itsschedul e method. The desired event time is passed as an argument to
the method.

A scheduled event may be cancelled by callingitscancel method.
Thet i me method returns the current simulated time.

Ther unSi nul at i on method is used to run asimulation for a specified pe-
riod of smulated time. Time will start at 0 and jump from event time to event
time until either this period is over, there are no more scheduled events, or the
st opSi nul at i on method iscalled.

Below we will show how the package may be used for solving the car wash
problem. For this purpose we will exploit two other packages, si nset and
random The si nset package provides the same facilities for list manipu-
lation as class SIMSET of SIMULA. The r andompackage provides all of
SIMULA’s methods for drawing random numbers. The source code and
documentation of these two packages can be found in the appendices A, B,
CandD.

We will represent the entities of the system (car washers and cars) by the two
classesCar Washer and Car .

cl ass CarWasher extends Link {}

cl ass Car extends Link {
doubl e entryTine = time();
}

Both classes extend the Li nk class from the si nset package. This has the
effect that any object of these classesis capable of being a member of a
gueue. Thus, aCar Washer may be put into aqueue of idle car washers, and
aCar may be put into aline of waiting cars.

Theattributeent r yTi me of theCar classisused for each Car to record the
time it entered the garage.

The two queues are defined using the Head class of thesi nset package:

Head tearoom = new Head();
Head waitingLi ne = new Head();

Next, we define the following events:

A car arrives
A car washer starts washing a car
A car washer finishes washing a car

These events are specified in three subclasses of classEvent .

A car arrival isdescribed inclassCar Ar ri val as shown below.

class CarArrival extends Event {
public void actions() {
if (time() <= sinPeriod) {
Car theCar = new Car();
theCar.into(waitingLine);
int gLength = waitingLine.cardinal ();
i f (maxLength < glLength)
maxLengt h = qlLengt h;
if (!tearoomenpty())
new St art Car Washi ng(). schedul e(tine());
new Car Arrival (). schedul e(
time() + random negexp(1/11.0));

Theact i ons method specifies what happens when a car arrives at the ga-
rage. Unless the garage has closed, a Car iscreated and put into the waiting
line. Next, if any car washer isidle (iswaiting in the tearoom), the starting of
awash is scheduled to occur immediately. Finally the next car arrival is
scheduled using ther andompackage. Here, it is assumed that the number of
minutes between arrivals is distributed according to a negative exponentid
distribution with amean of 11 minutes.

Actually, it is not necessary for a Car Arri val object to creste a new
Car Arri val object beforeit finishes. It could simply reschedule itself by
executing the following statement

schedul e(tine() + random negexp(1l.0/11.0));

The starting of a car wash is described in class St ar t Car Wash shown be-
low.

cl ass StartCarWashi ng extends Event {
public void actions() {

Car Washer theCarWasher =
(CarWasher) tearoomfirst();

t heCar Washer . out () ;

Car theCar = (Car) waitingLine.first();

theCar. out ();

new St opCar Washi ng(t heCar Washer, theCar).
schedul e(tinme() + 10);

}

When this event takes place, an idle car washer is removed from the tearoom,
and thefirst waiting car is removed from the waiting line.

A car wash takes 10 minutes. Accordingly, a St opCar Washi ng event is
scheduled to occur 10 time units later.

Class St opCar Washi ng is shown below.

cl ass StopCarWashi ng extends Event {
Car Washer theCarWasher;
Car theCar;

St opCar Washi ng(Car Washer cw, Car c)
{ theCarWasher = cw, theCar = c; }

public void actions() {
t heCar Washer . i nt o(tearoon);
if (!waitingLine.empty())
new Start CarWashi ng(). schedul e(tine());
noCf Cust omer s++;

throughTime += time() - theCar.entryTing;
}

When a car washer has finished washing a car, he goes into the tearoom.
However, if there are cars waiting to be washed, anew St ar t Car Washi ng

event is scheduled to occur at once. So he will have a break, unless another
idle car washer can do the job.

In order to make a report when the simulation has ended the following vari-
ables are updated:

noOf Cust oners: the number of carsthrough the system
t hr oughTi me: the sum of elapsed times of the cars

10

The simulation program is shown below (excluding the classes described
above). Note the use of inner classes.

i mport sinmulation.event.*;
i mport simset.*;
i mport random *;

public class CarWashSi mul ati on extends Sinulation {
doubl e sinmPeriod = 200;
Head tearoom = new Head();
Head waitingLi ne = new Head();
Random r andom = new Random(5);
i nt noOf Custoners, maxLengt h;
doubl e t hroughTi ne;

CarWashSi mul ation(int n) {
noCf Car Washers = n;
for (int i =1; i <= noOf CarWashers; i ++)
new CarWasher ().into(tearoom;
new CarArrival (). schedul e(0);
runSi nul ati on(si nPeri od + 1000000);

report();
}
void report() { ... }
cl ass CarWasher extends Link {}
class Car extends Link { ... }
class CarArrival extends Event { ... }
cl ass Start CarWashi ng extends Event { ... }
cl ass St opCarWashing extends Event { ... }

public static void main(String args[]) {
new CarWashSi mul ati on(1);
new Car WashSi mul ati on(2);

}

The mai n method of the program performs two simulations, the first with
one car washer, the second with two car washers.

When a Car WashSi mul at i on object is created, all car washers are put
into the tearoom, the first car is scheduled to arrive immediately, and the sys-
tem issimulated for a specified period of time.

The parameter passed to the r unSi nul at i on method has to do with fin-
ishing-off the simulation. When si nPer i od time units have passed the ga-
rage closes and no more cars arrive, but al carsin the queue at that time will
eventually be served. In the program si mPer i od has been set to 200.

11

When a simulation has finished, the method r eport iscalled in order to
write statistics generated by the model. This method appears as follows:

void report() {
System out . printl n(noCXf Car Washer s
+ " car washer sinulation");
System out.println("No.of cars through the system="
+ noCr Cust oners) ;
java.text.Nunber Format fmt =
j ava. t ext. Nunber For mat . get Nunber | nst ance() ;
fnt.set Maxi nunfracti onDi gi ts(2);
Systemout.println("Av. el apsed tine ="
+ fm.format (throughTi ne/ noCf Cust oners));
System out. printl n("Maxi mum queue length ="
+ maxLength + “\n");

}

A run of the program produced the following output:

1 car washer sinulation

No. of cars through the system = 22
Av. el apsed time = 30.22
Maxi mum queue length =5
2 car washer sinulation
No. of cars through the system = 22

Av. el apsed tine = 10.74
Maxi mum queue length = 1

The implementation of this package is straightforward. All scheduled events
are held in alist (SQS) ordered by their associated event times. Aslong as
there are more scheduled events, and the simulation period is not over, the
first event of SQS isremoved, timeis updated to this event time, and the ac-
tions of this event are executed.

Thisagorithmisimplemented in ther unSi mul at i on method shown be-
low.

public static void runSimul ati on(doubl e period) {
while (SQ@S. suc = SQS) {
Event ev = S@S. suc;
if ((tinme = ev.eventTinme) > period) break
ev. cancel ();
ev. actions();

stopSi nul ation();

}
The complete source code of the package is provided in Appendix E.

12

2.4 Solving the car wash problem by activity-based simulation

The activity-based approach tries to capture the notion of connected start and
finish events, clustering descriptions of actions to be executed at the start and
finish of some time-consuming activity. The programmer must specify condi-
tions under which such clusters of actions will occur.

Every activity should be associated with astart condition, a specification of
the duration of the activity, and some start and finish actions. The start actions
of an activity will be executed as soon as its associated condition becomes
true. The finish actionswill be executed when the activity ends (after atime
period equal to the duration of the activity).

To provide asimple tool for activity-based simulation, a small Java package
caledsi mul ati on. acti vi ty has been developed.

When using this package the activities of amodel are described in one or
more subclasses of classAct i vi t y. Anoutline of thisclassis given below.

public abstract class Activity {
protected abstract bool ean condition();
protected abstract void startActions();
protected abstract double duration();
protected abstract void finishActions();

public static double tine();
public static void runSinul ati on(doubl e peri od);
public static void stopSinulation();

}

In order to specify an activity, all four abstract methods should be overridden
in subclasses of classActi vity.

Thet i me method returns the current smulated time.

Ther unSi nmul at i on method is used to run asimulation for a specified pe-
riod of smulated time. Time will start at 0 and jump from event time to event
time until either this period is over, there are no more actions to be executed,
or thest opSi mul at i on method iscalled.

Below we will show how the package may be used for solving the car wash
problem.

13

Queues, car washers and cars are represented as follows:

Head tearoom = new Head();
Head waitingLi ne = new Head();

cl ass CarWasher extends Link {}
class Car extends Link {

doubl e entryTine = tinme();
}

The dynamics of the system may be described by the following activities in-
volving the passing of time:

Washing a car
Waiting for the next car to arrive

These activities are specified in two subclasses of classActi vity.

The washing of acar isdescribed in class Car Washi ng shown below.

cl ass CarWashi ng extends Activity {
Car theCar;
Car Washer theCar Washer

CarWashing(Car c) { theCar =c; }

public bool ean condition() {
return theCar == (Car) waitingLine.first() &&
I'tearoom enpty();

}

public void startActions() {
theCar. out ();
t heCar Washer = (CarWasher) tearoomfirst();
t heCar Washer . out () ;

}

public double duration() {
return 10;

}

public void finishActions() {
t heCar Washer . i nt o(tearoon);
noCf Cust onmer s++;
throughTime += time() - theCar.entryTine;

14

In order for the washing of a car to start, the car must be in front of the wait-
ing line and there must be an idle car washer (i.e., the tearoom must not be
empty). When the washing activity is started the car is removed from the
waiting line and one of theidle car washers is removed from the tearoom. The
wash takes 10 minutes after which the car washer goes back to the tearoom.

Theclass Car Arri val shown below models the time-passing activity of
waiting for the next car to arrive.

class CarArrival extends Activity
public bool ean condition() {
return true;
}

public void startActions() {
Car theCar = new Car();
t heCar.into(waitingLine);
new CarWashi ng(theCar);
int gLength = waitingLine.cardinal ();
i f (maxLength < glLength)
maxLengt h = qlLengt h;
}

public double duration() {
return random negexp(1l/11.0);
}

public void finishActions() {
if (time() <= sinPeriod)
new CarArrival ();

}

A Car Arrival activity startsimmediately when created. This is accom-
plished by letting the condi t i on method return t r ue. The activity starts
by inserting a new car as the last member of the waiting line and creates a
Car Washi ng activity for this car. After atime period, chosen at random
from a negative exponential distribution, the activity finishes by generating a
new Car Arri val activity.

15

The simulation program is shown below (excluding the classes described
above).

i mport sinmulation.activity;
i mport simset.*;
i mport random *;

public class CarWashSi mul ati on extends Sinulation {
i nt noCf Car Washer s;
doubl e sinmPeriod = 200;
Head tearoom = new Head();
Head waitingLi ne = new Head();
Random r andom = new Randon(5);
i nt noCf Custoners, naxLengt h;
doubl e t hroughTi ne;

CarWashSi mul ation(int n) {
noCf Car Washers = n;
for (int i =1; i <= noO CarWashers; i++)
new CarWasher ().into(tearoom;
new CarArrival ();
runSi mul ati on(si nPeriod + 1000000) ;

report();
}
void report() { ... }
cl ass CarWasher extends Link {}
class Car extends Link { ... }
cl ass CarWashing extends Activity { ... }
class CarArrival extends Activity { ... }

public static void main(String args[]) {
new CarWashSi mul ati on(1);
new Car WashSi mul ati on(2);

}

The mai n method of the program performs two simulations, the first with
one car washer, the second with two car washers. Each simulation is per-
formed by the creation of an object of class Car WashSi nul ati on (asub-
classof classSi mul ati on).

The program produces the same output as the program in Section 2.3.

16

The implementation of this package is straightforward. All activities waiting
tostart areheldinalist, wai t Li st . All activitiesthat are scheduled to finish
areheldinalist, SQS, ordered by their associated finish times. At each event
time, the wait list is examined to see whether any activity isdligible to start. If
S0, the activity isremoved from the list, its start actions are executed, and a
finish event is scheduled to occur when the activity finishes. When no more
activities are eligible to start, time advances to the next imminent event, and
the associated finish actions are executed. This continues until the ssmulation
ends.

This algorithm isimplemented in ther unSi mul at i on method shown be-
low.

public static void runSimul ati on(doubl e period) {
while (true) {
for (Activity a = waitlList.suc;

a !'= waitlList;

a = a.suc) {

if (a.condition()) {
a. cancel ();
a.schedul e(tinme + a.duration());
a.startActions();
a = waitList;

}
}
if (S@S. suc == SQB)

br eak;
Activity a = SQS. suc;
time = a.eventTine;
a. cancel ();
if (time > period)

br eak;
a. finishActions();

}

stopSi nul ation();

}
The complete source code of the package is provided in Appendix G.

17

2.5 Solving the car wash problem by mixed event-activity-based
simulation

The different simulation approaches are not mutually exclusive. Mixed ap-
proaches may also be used.

In this section we will demonstrate how the event-approach and ingredients of
the activity-approach may be combined into one single approach. For this
purpose we will extend the event concept with the following definitions:

A time eventis an event scheduled to occur at a specified point in time.

A state event is an event scheduled to occur when the state of the sys-
tem fulfills a specified condition (a so-called state condition).

These two event types are used to model the dynamics of a system.

In order to provide atool for using this simulation approach a small Java
packagecdledsi mul ati on. event s has been devel oped.

When using this package the events of amodel are described in one or more
subclasses of the classesTi neEvent and St at eEvent , which themselves
are subclasses of the abstract classEvent .

The class hierarchy is shown below.

public abstract class Event {
protected abstract void actions();

public static double tine();
public static void runSimul ati on(doubl e period);
public static void stopSinulation();

}

public abstract class Ti mneEvent extends Event {
public void schedul e(doubl e evTine);
}

public abstract class StateEvent extends Event ({
protected abstract bool ean condition();

public void schedul e();

18

The meaning and usage of the methods should be clear from the previous
sections. Below we will show how the package can be used for solving the
car wash problem.

Queues, car washers and cars are specified asin the previous two sections,
ie.:

Head tearoom = new Head();
Head waitingLi ne = new Head();

cl ass CarWasher extends Link {}

class Car extends Link {
doubl e entryTine = tinme();
}

We will use the same three events as were used in the event-based approach:

A car arrives (carArrival)
A car washer starts washing acar (st art Car Washi ng)
A car washer finisheswashingacar (st opCar Washi ng)

However, in this mixed approach we must also specify which of these events
are time events, and which are state events.

It is easy to see that the arrival of a car and the finishing of a car wash are
both time events. On the other hand, the starting of a car wash must be a state
event, since itstime of occurrence can not be predetermined.

Thisleads to the following class declarations for the three event types.

class CarArrival extends TineEvent ({
public void actions() {
if (time() <= sinPeriod) {
Car theCar = new Car();
theCar.into(waitingLine);
int gLength = waitingLine. cardinal ();
i f (maxLength < glLength)
maxLengt h = qlLengt h;
new St art Car Washi ng(t heCar). schedul e();
schedul e(tinme() + random negexp(1l/11.0));

19

cl ass StartCarWashi ng extends StateEvent {
Car theCar;

CarWashing(Car c) { theCar =c; }

public bool ean condition() {
return theCar == (Car) waitingLine.first() &&
I'tearoom enpty();

}

public void actions() {
theCar.out ();
Car Washer theCarWasher =
(CarWasher) tearoomfirst();
t heCar Washer . out () ;
new St opCar Washi ng(t heCarWasher, theCar).
schedul e(tinme() + 10);

}

cl ass St opCarWashi ng extends Ti neEvent {
Car Washer t heCarWasher
Car theCar;

St opCar Washi ng(Car Washer cw, Car c)
{ theCarwasher = cw, theCar = c; }

public void actions() {
noCf Cust omer s++;
throughTime += tinme() - theCar.entryTine;
t heCar Washer . i nt o(t earoon);

}

The simulation program follows the same pattern as used in the previous two

sections. See Appendix Jfor the compl ete source code.

The implementation of this package is straightforward. All scheduled state
eventsareheldinalist, wai t Li st , and al scheduled time events are held in
alist, SQS, ordered by their associated event times. At each event time, the
walit list is examined to see whether any state event has its condition fulfilled.
If so, the event isremoved from the list and its actions are executed. When no
more state events occur, time advances to the next imminent time event, and
the associated actions of this time event are executed This continues until the

simulation ends.

20

This algorithm isimplemented in the r unSi mul at i on method as shown
below.

public static void runSimul ati on(doubl e period) {
while (true) {
for (StateEvent a = (StateEvent) waitlList. suc;

a !'= waitlList;

a = (StateEvent) a.suc) {

if (a.condition()) {
a. cancel ();
a.actions();
a = waitlList;

}
}
if (S@S.suc == SQS)

br eak;
Ti meEvent ev = (Ti neEvent) SQS. suc;
time = ev.eventTine;
ev. cancel ();
if (time > period)
br eak;
ev. actions();

}

stopSi mul ation();

}

The compl ete source code of the packageis provided in Appendix I.

21

2.6 Solving the car wash problem by process-based simulation

The process-based approach is often the easiest to use. In this approach the
active entities of a system are modeled in avery natural way. A process de-
scribes the life cycle of an entity of the system. Any process is associated
with actions to be performed by the process during its lifetime. A process
may be suspended temporarily and may be resumed later from where it left
off.

In order to provide atool for the process-based approach a Java package
caledj avaSi nmul at i on has been developed.

When using this package the processes of a model are described in one or
more subclasses of class Pr ocess. An outline of this classis given below.
In this outline only facilities that are actually used in solving the car wash
problem have been included. A more comprehensive version is given at the
end of this section.

public abstract class Process extends Link {
protected abstract void actions();

public static double tine();

public static void activate(Process p);
public static void hol d(double t);
public static void passivate();

public static void wait(Head q);

}

Since Pr ocess isasubclass of Li nk, each process has the capability of
being a member of atwo-way list. Thisis useful, for example, when proc-
esses must wait in aqueue. Thej avasSi nul at i on package includes all the
list manipulation facilities of thesi mset package.

Theact i ons method represents the actions associated with a process.
Thet i me method returns the current smulated time.

Theact i vat e method is used to make a specified process start executing its
actions.

Thehol d method suspends the execution of the calling process for a speci-
fied period of time.

Thepassi vat e method suspends the execution of the calling process for an

unknown period of time. Its execution may later be resumed by caling
act i vat e with the process as argument.

22

Thewai t method suspends the calling process and adds it to a queue.

Below we will show how the package can be used for solving the car wash
problem.

First, the processes are identified and their actions are described in subclasses
of classPr ocess by overridingtheact i ons method

A car washer is described in the following subclass of Pr ocess:

cl ass CarWasher extends Process {
public void actions() {
while (true) {

out ();

while (!'waitingLine.empty()) {
Car served =

(Car) waitingLine.first();

served. out ();
hol d(10) ;
activate(served);

}

wai t (tearoon;

}

The actions of acar washer are contained in an infinite loop (the length of the
simulation is supposed to be determined by the main program). Each time a
car washer is activated, he leaves the tearoom and starts serving the carsin the
waiting line. He takes the first car out of the waiting line, washes it for ten
minutes before he activates the car. The car washer will continue servicing, as
long as there are cars waiting in the queue. If the waiting line becomes empty,
he returns to the tearoom and waits.

23

A car may be described by the following subclass of Pr ocess:

cl ass Car extends Process {
public void actions() {
doubl e entryTinme = time();
i nto(wai tingLine);
int qgLength = waitingLine.cardinal ();
i f (maxLength < glLength)
maxLength = glLengt h;
if (!tearoomenpty())
activate((CarWasher) tearoomfirst());
passi vate();
noCf Cust onmer s++;
throughTinme += time() - entryTi ne;

}

On arrival each car enters the waiting line and, if the tearoom is not empty, it
activates the idle car washer in the tearoom. The car then passively waits until
It has been washed. When the car has been washed (signaled by an activation

by the car washer), it leaves the system.

The following subclass of Processis used to make the cars arrive at the ga-

rage with an average inter-arrival time of 11 minutes:

cl ass Car Generator extends Process {
public void actions() {
while (tinme() <= sinPeriod) {
activate(new Car());
hol d(random negexp(1/11.0));

}

All random drawing facilities of the random package have been included in
thej avaSi mul ati on package. In the present simulation the inter-arrival
times of the cars are distributed according to a negative exponential distribu-

tion.

24

The simulation program is shown below (excluding the classes described
above).

i mport javaSi nul ation.*;
i mport javaSi nul ati on. Process;

public class CarWashSi mnul ati on extends Process {
i nt noCf Car Washer s;
doubl e sinmPeriod = 200;
Head tearoom = new Head();
Head waitingLi ne = new Head();
Random r andom = new Random(5);
doubl e t hroughTi ne;
i nt noCf Custoners, naxLengt h;

CarWashSi mul ation(int n) {
noCf Car Washers = n;

}
public void actions() {
for (int i =1; i <= noCf CarWashers; i++)
new Car Washer ().into(tearoom;
activate(new CarCGenerator());
hol d(si nPeri od + 1000000) ;
report();
}
void report() { ... }
cl ass Car extends Process { ... }
cl ass CarWasher extends Process { ... }
cl ass CarGenerator extends Process { ... }

public static void main(String args[])
activat e(new CarWashSi nul ation(1));
activat e(new Car WashSi nul ati on(2))

{

The program imports all classes of the j avaSi nul at i on package. Note,
however, that class Pr ocess must be imported explicitly in order to avoid
the name conflict caused by the co-existence of the class Pr ocess of the
j ava. | ang package.

The mai n method of the program performs two simulations, the first with
one car washer, the second with two car washers.

Each simulation is performed by the creation and activation of an object of
classCar WashSi nmul ati on.

25

Class CarWashSi nmul ation is a subclass of Process. Thus, the
act i ons method of the class may be used describe the actions associated
with the main program. Here, a number of car washers and a car generator
are activated before the main program waits for the simulation to finish. The
variablesi nmPer i od denotes the total opening time of the garage (200 min-
utes). All carsthat have arrived before the garage closes are washed.

Before asimulation finishes, the r epor t method is called. The method is
identical tother epor t method given in Section 2.3. It prints the number of
cars washed, the average elapsed time (wait time plus service time), and the
maximum queue length. The program produces the same output as the pro-
grams of the previous sections.

The design of the j avaSi mul at i on package follows very closely the de-
sign of the built-in package for discrete event ssmulation in SIMULA, class
SIMULATION.

A program is composed of a set of processes that undergo scheduled and un-
scheduled phases. When a process is scheduled, it has an event time associ-
ated with it. Thisisthe time at which its next active phase is scheduled to oc-
cur. When the active phase of a process ends, it may be rescheduled, or
descheduled (either because al its actions have been executed, or the time of
its next active phase is not known). In either case, the scheduled process with
the least event time is resumed.

The currently active process always has the least event time associated with it.
This time, the simulation time, moves in jumps to the event time of the next
scheduled process.

Scheduled events are contained in an event list. The processes are ordered in
accordance with increasing event times. The process at the front of the event
list is always the one, which is active. Processes not in the event list are either
terminated or passive.

At any point in simulation time, a process can be in one (and only one) of the
following four stetes:

(1) active: the processis at the front of the event list. Its actions are being
executed

(2) suspended: the processisin the event list, but not at the front

(3) passive: the processisnot in the event list and has further actions to
execute

(4) terminated: the processis not in the event list and has no further actions
to execute.

26

All the public parts of the Pr ocess class are shown in the class outline below.

public abstract class Process extends Link {
protected abstract void actions();

public static final Process current();
public static final double tinme();

public static final void hold(double t);
public static final void wait(Head q);
public static final void cancel (Process p);
public static final Process main();

public static final At at;

public static final Delay delay;

public static final Before before;

public static final After after

public static final Prior prior;

public static final void activate(Process p);

public static final void activate(Process p

At at, double t);
public static final void activate(Process p

Del ay del ay, double t);
public static final void activate(Process p

At at, double t, Prior prior);
public static final void activate(Process p

Delay d, double t, Prior prior);
public static final void activate(Process pl

Bef ore before, Process p2);
public static final void activate(Process pl

After after, Process p2);

public static final void reactivate(Process p);
public static final void reactivate(Process p

At at, double t);
public static final void reactivate(Process p

Del ay del ay, double t);
public static final void reactivate(Process p

At at, double t, Prior prior);
public static final void reactivate(Process p

Del ay d, double t, Prior prior);
public static final void reactivate(Process pl

Bef ore before, Process p2);
public static final void reactivate(Process pl

After after, Process p2);

public final boolean idle();
public final boolean terninated();
public final double evTinme();
public final Process nextEv();

27

Below is given a short description of each of the methods.

current () returnsareferenceto the Process object at the
front of the event list (the currently active process).

ti me() returnsthe current smulation time.
hol d(t) schedulesCurr ent forreactivationatti me() + t.

passi vat e() removescurrent () fromthe event list and re-
sumes the actions of thenew current ().

wai t (q) includescurrent () intothetwo-way list g, and then
calspassi vat e().

cancel (p) removesthe process p fromtheevent list. If p is
currently active or suspended, it becomes passive. If p isapassive
or terminated process or nul | , the call has no effect.

It is desirable to have the main program participating in the simulation as a
process. Thisis achieved by an impersonating Pr ocess object that can be
manipulated like any other Pr ocess object. This object, cadled the main
process, isthefirst process activated in asmulation.

mai n() returnsareference to the main process.
There are seven ways to activate a currently passive process.
activat e(p): activates processp at the current smulation time.

activate(pl, before, p2): positions process pl in the
event list before process p2, and gives it the same event time as
p2.

activate(pl, after, p2): positionsprocesspl inthe event
list after process p2, and givesit the same event timeasp2.

activate(p, at, t):theprocess p isinserted into the event
list at the position corresponding to the event time specified by t .
The processisinserted after any processes with the same event
time which may already be present in the list.

activate(p, at, t, prior):theprocessp isinserted into
the event list at the position corresponding to the event time speci-
fied by t . The processisinserted beforeany processes with the
same event time which may already be present in thelist.

28

activate(p, delay, t):theprocess pis activated after a
specified delay, t . The processisinserted in the event list with the
new event time, and after any processes with the same simulation
time which may aready be present in the list.

activate(p, delay, t, prior):theprocess p isactivated
after aspecified delay, t . The processisinserted in the event list
with the new event time, and before any processes with the same
simulation time which may already be present in the list.

Correspondingly, there are seven r eact i vat e methods, which work on
either active, suspended or passive processes. They have similar signaturesto
theiract i vat e counterparts and work in the same way.

All methods described above are classmethods of class Pr ocess. Thefol-
lowing four instance methods are available:

i dl e() returnst rue if the processis not currently in the event
list. Otherwisef al se.

t ermi nat ed() returnst r ue if the process has executed all its
actions. Otherwisef al se.

evTi me() returnsthe time at which the processis scheduled for
activation. A runtime exception is thrown if the process is not
scheduled.

next Ev() returns areference to the next process, if any, in the
event list.

The complete source code of class Pr ocess isprovided in Appendix K.
ThejavaSi mul at i on package not only supports the process-based ap-
proach of simulation; event-based and activity-based approaches may aso be

used. The process-based approach encompasses the two other approaches
[6][7]. Thisis demonstrated in appendices M and N.

29

3. A package for coroutine sequencing in Java

3.1 The coroutine concept

In aprocess-based simulation the processes undergo active and interactive
phases during their lifetimes. A process may be suspended temporarily and
resumed later from where it left off. Thus, a process has the properties of a
coroutine.

A coroutine may temporarily suspend its execution and another coroutine may
be executed. A suspended coroutine may later be resumed at the point where

it was suspended. This form of sequencing is called alternation. The figure
below shows a simple example of alternation between two coroutines.

coroutine a coroutine b

r esu*e(b) //I}?(a)

ot ||

re *e ’/
surre(a)

L resume(a)

It is easy to see that processes may be implemented using coroutines. Below
we sketch the implementation of three of the most central scheduling methods
of thej avaSi mul at i on package: act i vat e, passi vat e andhol d.

void activate(Process p) {
p.intoEventListAt(tine());
resune(current());

}

voi d passivate() {
current ().out Of Event Li st();
resume(current());

30

voi d hol d(double t) {
current().intoEventListAt(time() + t);
resunme(current());

Thei nt oEvent Li st At method inserts the process into the event list at the
position corresponding to a specified event time.

Theout Of Event Li st method removes the process from the event list.

Thecur r ent method returns areference to the process currently at the front
of the event list.

Asabasisfor theimplementation of j avaSi mul at i on a package for co-
routine sequencing in Java has been developed. This package, caled
j avaCoroutine, is based on the coroutine primitives provided by
SIMULA. By supporting semi-symmetric as well as symmetric coroutine se-
quencing it provides more functionality than actually needed for the imple-
mentation of j avaSi mul at i on. Only symmetric coroutine sequencing (by
means of ther esume primitive) is needed.

The following section describes the j avaCor out i ne package from the
user’s point of view.

31

3.2 The user facilities of thej avaCor out i ne package

A coroutine program is composed of a collection of coroutines, which run in
quasi-parallel with one another. Each coroutine is an object with its own exe-
cution-state, so that it may be suspended and resumed. A coroutine object
provides the execution context for amethod, called body, which describes
the actions of the coroutine.

The package providesthe class Cor out i ne for writing coroutine programs.
Coroutines can be created as instances of Cor out i ne-derived classes that
override the abstract body method. As a consequence of creation, the current
execution location of the coroutine isinitialized at the start point of body .

Class Cor out i ne is sketched below.

public abstract class Coroutine {
protected abstract void body();

public static void resune(Coroutine c);
public static void call(Coroutine c);
public static void detach();

public static Coroutine currentCoroutine();
public static Coroutine nai nCoroutine();

}
Control can be transferred to a coroutine ¢ by one of two operations:
resume(c)
call (c)

Both operations cause ¢ to resume its execution from its current execution
location, which normally coincides with the point where it last |eft off.

Thecal | operation furthermore establishes the currently executing coroutine
as c’scaller. A subordinate relationship exists between the caler and the
called coroutine. ¢ issaid to beattached to its caler.

The currently executing coroutine can relinquish control to its caller by means
of the operation

det ach()
The caler then resumes its execution from the point where it last |eft off.

Thecurr ent Cor out i ne method may be used to get areference to the cur-
rently executing coroutine.

32

Thefirst coroutine activated in a system of coroutines is denoted the main co-
routine. If the main coroutine terminates, all other coroutines will terminate. A
reference to this coroutine is provided through the mai nCor outi ne
method.

Below is shown a complete coroutine program. The program shows the use
of ther esume method for coroutine alternation asillustrated in the figure on

page 30 .

i mport javaCoroutine.*;

public class CoroutineProgram extends Coroutine {
Coroutine a, b;

public void body() {
a = new A();
b = new B();
resune(a);
Systemout.print("STOPL ");
}

class A extends Coroutine {
public void body() {
Systemout.print("AlL ");
resune(b);
Systemout.print("A2 ");
resune(b);
Systemout.print("A3 ");

class B extends Coroutine {
public void body() {
Systemout.print("Bl ");
resune(a);
Systemout.print("B2 ");
resune(a);
Systemout.print("B3 ");

}

public static void main(String args[]) {
resune(new CoroutineProgran());
System out. println("STOP2");

33

Execution of this program produces the following (correct) outpuit:
Al Bl A2 B2 A3 STOP1 STOP2
A coroutine may be in one of four states of execution at any time: attached,

detached, resumed or terminated. The figure below shows the possible state
trangitions of a coroutine.

new

\ resune

det ach

call

exit body
det ach

exit body

A coroutine program consists of components. Each component is a chain of
coroutines. The head of the component is a detached or resumed coroutine.
The other coroutines are attached to the head, either directly or through other
coroutines.

The main program corresponds to a detached coroutine, and as such it isthe
head of a component. This component is called the main component. The
head of the main component is the main coroutine.

Exactly one component is operative at any time. Any non-operative compo-
nent has an associated reactivation point, which identifies the program point
where execution will continue if and when the component is activated (by
resume orcal |).

When calling det ach there are two cases.

The coroutine is attached. In this case, the coroutine is detached, its exe-
cution is suspended, and execution continues at the reactivation point of
the component to which the coroutine was attached.

The coroutine isresumed. In this case, its execution is suspended, and
execution continues at the reactivation point of the main component.

Termination of a coroutine€sbody method has the same effect asa det ach
call, except that the coroutine is terminated, not detached. As a consequence,
It attains no reactivation point and it loses its status as a component head.

A cal resunme(c) causesthe execution of the current operative component
to be suspended and execution to be continued at the reactivation point of c.
The call constitutes an error in the following cases:

cisnull
c isattached
c isterminated

A cal cal | (c¢) causesthe execution of the current operative component to
be suspended and execution to be continued at the reactivation point of c. In
addition, c becomes attached to the calling component. The call congtitutes an
error in the following cases:

cisnul |

c isattached

¢ isresumed
c isterminated

A coroutine program using only r esume and det ach is said to use sym-

metric coroutine sequencing. If only cal | and det ach are used, the pro-
gram is said to use semi-symmetric coroutine sequencing.

35

3.3 Implementation of thej avaCor out i ne package

A coroutine is characterized mainly by its execution state consisting of its cur-
rent execution location and a stack of activation records. The bottom element
of the stack is the activation record for the call of body. The remaining part
of the stack contains activation records corresponding to method activations
triggered by body.

When control is transferred to a coroutine (by means of r esune, cal | or
det ach), the coroutine must be able to carry on where it left off. Thus, its
execution state must persist between successive occasions on which control
entersit. Its execution state must be “frozen”, so to speak.

When a coroutine transfers from one execution state to another, it is called a
context switch. Thisimplies the saving of the execution state of the suspend-
ing coroutine and its replacement with the execution state of the other corou-
tine.

The central issue when implementing coroutines is how to achieve such con-
text switches. The god is to implement the primitive ent er with the follow-
ing semantics[8]:

ent er (¢) Theexecution point for the currently executing coroutine
is set to the next statement to be executed, after which
this coroutine becomes suspended and the coroutine ¢
(re-)commences execution at its execution point.

Having implemented this primitive, it is easy to implement the primitives
resume, cal | anddet ach (or smilar primitives).

Animplementation of r esunme, cal | and det ach by meansof ent er is
shown below. For clarity al error handling has been left out.

36

public abstract class Coroutine {
protected abstract void body();

private static Coroutine current, main;
private Coroutine caller, callee;
prot ected bool ean term nated;

public static void resune(Coroutine next) {

if (next == current)
return;
while (next.callee != null)

next = next.call ee;
next.enter();

public static void call (Coroutine next) {
current.call ee = next;
next.caller = current;
while (next.callee !'= null)
next = next.call ee;
next.enter();

public static void detach() {
Coroutine next = current.caller
if (next !'=null) {
current.caller = next.callee = null
next.enter();

else if (main!=null & current != nmin)
mai n. enter();
}
private void enter() { ... }

}

Herecur r ent isareference to the currently executing coroutine, and mai n
Is areference to the main coroutine. Thereferencescal | er and cal | ee are
used for chaining coroutines in a component. The boolean t er m nat ed is

t r ue when the coroutine has terminated.

The question is now how to implement theent er method.

As amultithreaded language Java provides support for multiple threads of
execution (sometimes called lightweight processes). A thread can perform a
task independent of other threads. Each thread has its own execution state
consisting of its current execution location and a stack of activation records.

In that respect, athread is sSimilar to a coroutine.

37

Threads, however, are more powerful than coroutines. Any number of
threads may be executing simultaneously, whereas only one coroutine at a
time may be executing.

Thus, threads may act as coroutines, if

it is possible to control their execution in such away that only
oneisexecuting at any time,

control can be transferred from one thread to another.
In the following sections we will demonstrate how thisis possiblein Java. A

series of possible implementations will be given, ending with the actual im-
plementation of thej avaCor out i ne package.

38

3.3.1 Version 1: Synchronization by busy waiting

The first version, shown below, isvery simple.

public abstract class Coroutine extends Thread {
final public void run() {
body() ;
if (!termnated) {
term nated = true;
det ach();

}
abstract public void body();

private static Coroutine current, main;

public static void resune(Coroutine c) { ... }
public static void call(Coroutinec) { ... }
public static void detach() { ... }
private void enter() {
if (current == null) {
current = main = this;
start();
return;

}

Coroutine old current = current;
current = this;

if (lisAlive())

start();

if (old_current.termn nated)
return;

while (old current !'= current)
yield();

}

Class Cor out i ne is here defined as an extension of the Thr ead class of
the standard Java libraries. Whenthe st ar t method of Thr ead is invoked,
the thread begins executing its r un method. As can be seen from the code,
this has the effect that the body method of the coroutine starts executing. If
body ever returns, the coroutine invokes the det ach method and termi-
nates.

39

The ent er method performs a context switch. The cdl c. enter () re
sumes the coroutine ¢ and suspends the calling coroutine.

When the method isinvoked for the first time, there is no coroutine currently
executing, and the execution of ¢ is started by starting the thread associated
with c. In all other cases, control is transferred from the currently executing
coroutineto c. Thisis achieved by letting every coroutine that isnot cur -

rent execute awhile-loop that only terminatesif it is decided that t hi s co-
routine should becomethenext cur r ent (by settingcur rent tot hi s).

Theyi el d method of Thr ead is called inside the while-loop in order to
make the executing thread give up control to any other threads that are willing
to execute. In thisway, thread starvation is avoided.

It is easy to see that this implementation will work. It is ensured that at any
time, exactly one coroutine, cur r ent , will be executingitsbody.

On the other hand, the implementation is very inefficient. When used for an
implementation of the j avaSi nul at i on package it took 132 seconds to
run acar wash smulation (with one car washer and si nPeri od set to
1000000) on a400 MHz G4 Macintosh computer running MRJ 2.2.

In comparison, it took less than 2 seconds to run the same simulation using
any of the event/activity-based simulation packages of this report.

One explanation to thisinefficiency is that suspended coroutines are executing
code. Each suspended coroutine is constantly checking whether is has been
selected as the coroutine to become the next cur r ent . In other words, all
suspended coroutines are busy waiting.

40

3.3.2 Version 2: Synchronization by r esunme and suspend

An obviousideaisto usether esunme and suspend methods of Java's class
Thr ead for implementing theent er method.

The method suspend temporarily halts athread; r esune allowsit to re-
sume.

Thisideais carried out in the code shown below.

private void enter() {

if (current == null) {
current = main = this;
start();
return;

}

Coroutine old _current = current;

current = this;

if (lisAlive())
start();

el se
resunme();

if (old_current.term nated)
return;

ol d_current. suspend();

}

The currently executing thread suspends itself after having resumed (or
started) the thread that has been chosen to take over.

At first sight, thisimplementation seems to work. But thisis not the case. A
race condition exists. Before ol d_current has suspended, the new
cur r ent may have had timeto cal its r esume method. Resuming a thread
that is not suspended, however, has no effect. The result is that both
ol d_current andthenext curr ent will be suspended, and the coroutine
system will stop.

We can solve this problem if we can assurethat ol d_cur r ent will suspend
only if itisnot cur r ent . The last sentence of ent er might be replaced by
the following:

if (old_current !'= current)
ol d_current. suspend();

41

However, thiswill not work either. A race condition still exists. Between the
testol d_current != current andthe suspension of ol d_current,
thenext current may get timeto set current to ol d_current. But
without the desired effect, ol d_cur r ent still suspends itself.

We can solve the problem if we can assure that ol d_curr ent suspends
itself before the next cur r ent actually continues its execution. But how can
we achieve such an assurance?

One solution is to give ol d_current a higher priority than the next
cur r ent , asshown in the program fragment below.

old current.setPriority(Thread. MAX PRI ORI TY;
if (lisAlive())
start();

el se
resune();

if (old_current.termn nated)
return;

if (old_current != current)

old current. suspend();
old _current.setPriority(Thread. NORM PRI ORI TY) ;

Thelast line ensuresthat when ol d_cur r ent isresumed, its priority is set
back to itsoriginal value (NORM_PRI ORI TY).

This will work, as long as the Java runtime system will let lower-priority
threads run only when all higher-priority threads are blocked. However, you
cannot rely on this. Some Java runtime systems might let lower-priority
threads run, even when there are unblocked higher-priority threads, in order
to prevent starvation.

Moreover, the use of the Thr ead methods r esume and suspend is not
recommended. Their use may easily result in deadlocks. For this reason these
methods now have deprecated in Java.

Anyway, using thisversion of ent er the car wash simulation program pro-
duced the correct output on these three platforms. Macintosh, PC and Sun.
The CPU time was 85 seconds on the Macintosh, areduction in CPU time of
37% inrelation to version 1.

42

3.3.3 Version 3: Synchronization by wai t and i nt er r upt

Instead of using r esume and suspend we can use the methods wai t and
i nt errupt inasimilar manner. Thisisthe shown below.

private void enter() {
if (current == null) {
main = current = this;
start();
return;
}
Coroutine old _current = current;
current = this;
if (lisAlive())
start();
el se
interrupt();
if (old_current.term nated)
return;
synchroni zed(ol d_current) {
try {
old current.wait();
} catch(InterruptedException e) {}

}

Here, ol d_current suspendsitself by calling wai t . Since the call has
beenenclosedinat ry block that catchesan | nt er r upt edExcepti on,
ol d_current will leavethetry block and resume its execution if it isinter-
rupted.

At first sight, thisimplementation does not seem to work. There is an appar-
ent probleminthat ol d_cur r ent may beinterrupted before it has called
wai t . However, thisis not so. If this happens, the interrupt will be remem-
bered andwai t will not be executed.

Using this version of the ent er method the car wash simulation program
produced the correct output. The CPU time, however, was now 116 seconds
on the Macintosh, an increase in CPU time of 36% in relation to version 2
(the resume-suspend version), and only 12% faster than version 1 (the busy-
waiting version). The interrupt mechanism of Java seems to require a consid-
erable computationa overhead.

43

3.3.4 Version 4: Synchronization by wai t and noti f yAl |

A more efficient version may be obtained by using the wai t method in com-
bination withthenot i f yAl | method.

Thewai t method is used to let one thread wait until a condition occurs, and
the notification method not i f yAl | isused to tell all waiting threads that
something has occurred that might satisfy that condition.

Below is shown aversion of ent er that uses these two methods.

private void enter() {
if (current == null) {
current = main = this;
start();
return;
}
Coroutine old current = current;
synchr oni zed(Cor outi ne. cl ass) {
current = this;
if (lisAlive())
start();
el se
Coroutine.class. notifyAl();
if (old_current.termn nated)

return;
try {
while (old current != current)

Coroutine.class.wait();
} catch (InterruptedException e) {}

}

Each waiting thread waits to be selected asthe next cur r ent . The threads
are synchronized by means of the Cl ass object of Cor out i ne. In the code
above, athread will be waiting to enter the synchronized statement until the
lock on this object is released. This happens when athread calls wai t . In
thisway it is ensured that no thread is notified beforeit hascalled wai t . This
isimportant, since a notification is not remembered (in contrast to an inter-

rupt).

Using thisversion of ent er the car wash simulation program took 130 sec-
onds on the Macintosh. Thisis about the same CPU time as used by version
1 (the busy-waiting version). In fact, version 3 has some busy-waiting too.
Whennoti f yAl | iscalled, al waiting threads wake up temporarily and ex-
aminetheir condition (ol d_current !=current).

3.3.5 Version 5: Synchronization by wai t and noti fy

Toincrease efficiency wewill usenofi ty inplaceof noti f yAl | . Instead
of notifying all waiting threads, only the next cur r ent will be notified. This
requires synchronization on the individual Coroutine objects.

A version of ent er that uses this method is shown below.

private void enter() {

if (main == null) {
main = current = this;
start();
return;

}

Coroutine old current = current;
synchroni zed(ol d_current) {
current = this;
if (lisAlive())
start();
el se
synchroni zed(t hi s) {
notify();

if (old_current.termn nated)
return;
try {
old current.wait();
} catch(InterruptedException e) {}

}

It is easy to prove that this version works correctly. The outer synchroniza-
tion expression (ol d_cur r ent) ensures that no running thread can be noti-
fied before it has released the lock on itself, by calling wai t or by exiting.

Using thisversion of ent er the car wash simulation program took 82 sec-
onds on the Macintosh. Thisis about the same CPU time as used by version
2 (the resume-suspend version).

Thefollowing versions of ent er are all improvements on thisversion.

45

3.3.6 Version 6: Protecting the coroutines

Instead of extending class Thread a Coroutine may implement the
Runnabl e interface:

public abstract class Coroutine inplenents Runnabl e

A Cor out i ne may then be executed in its own thread by passing it to a
Thr ead constructor.

The following attribute is added to the Coroutine class:
private Thread nyThread;

and theent er method is redefined as follows:

private void enter() {
if (nyThread == null)
myThread = new Thread(this);
if (current == null) {
current = main = this;
myThread. start();
return;
}
Coroutine old current = current;
synchroni zed(ol d_current) {
current = this;
if (!myThread.isAlive())
myThread. start ();
el se
synchroni zed(this) {
notify();

if (old_current.termn nated)
return;

try {
old_current.wait();

} catch(InterruptedException e) {}

}

An advantage of this version is that the threads are protected from user ma-
nipul ation.

46

3.3.7 Version 7: Improving the efficiency

The efficiency of the previous versionsis rather low. Using any of these ver-
sions the car wash simulation program took more than 40 times longer to exe-
cute than a corresponding program that used an event-based package. Thisis
clearly unsatisfactory.

The threads of Java seem to require a considerable overhead. How much was
evaluated by running the small program shown below.

public class ThreadOverhead {
static public class DummyThread extends Thread {
public void run() {}

}
public static void main(String args[]) {
for (int i =1; i <= 90945; i++)
new DumyThread().start();
}

}

The program creates and starts 90945 threads, as many as the number of
processes created by the car wash simulation program (with one car washer
andsi mPer i od equal to 1000000). Each of the threads has actually nothing
to do and terminates immediately after being started.

The CPU time was 78 seconds. In comparison, it took 82 seconds to run the
car wash simulation program using the coroutine version of the previous sec-
tion. So thereisin fact a considerable overhead connected with the use of
threads. Can we reduce this overhead in any way?

One possibility would be to advise the user not to use too many threads (or
processes) in his program. For example, a car wash smulation program
might be written which uses only afew processes; namely, the car generator
and the car washers. Such aversion of the program is outlined below.

a7

public class CarWashSi nul ati on extends Process {
si mPeriod = 1000000;

public void actions() {
for (int i = 1; i <= noOf CarWashers; i++)
new CarWasher ().into(tearoom;
activate(new CarCenerator());
hol d(si nPeri od + 1000000);
report();
}

void report() { ... }

class Car extends Link {
double entryTine = tinme();
}

cl ass CarWasher extends Process {
public void actions() {
while (true) {

out ();

while (!waitingLine.empty()) {
Car served = (Car) waitingLine.first();
served. out ();
hol d(10);
noCf Cust omer s++;
throughTime += time() - served.entryTine;

wai t (tearoon ;

}

cl ass Car Generator extends Process {
public void actions() {
while (time() <= sinPeriod) {
new Car ().into(waitingLine);
int gLength = waitingLine. cardinal ();
i f (maxLength < glLength)
maxLengt h = qlLengt h;
if (!tearoomenpty())
activate((CarWasher) tearoomfirst());
hol d(random negexp(1/11.0));

}

public static void nmain(String args[]

) |
activat e(new CarWashSi nul ation(1));
}

48

The CPU time used for running this program was only 2 seconds.

However, it is not always that easy to economize on processes. What, for
example, should we do if alarge number of car washers were engaged? A
further reduction on the number of processes would probably make the pro-
gram difficult to read.

A better method for reducing thread overhead is to let the coroutine package
itself economize on the use of threads. When a coroutine has terminated, its
thread is not discarded but, if necessary, reused to run other coroutines. In
this way the number of generated threads is held to a minimum.

Unused threads are held in afree list. When a new coroutine starts, the first
thread on thelist is removed and used for coroutine execution.

Threads are represented as objects of class Runner , a subclass and inner
classof classThr ead. An outline of this classis shown below.

cl ass Runner extends Thread {
Cor out i ne nyCorouti ne;
Runner next;

public void run() {
my Cor out i ne. body() ;

next = firstFree;
firstFree = this;

}
void go() { ... }

}

AslongasaRunner isactiveit executesthe body method of the coroutine
referenced by my Cor out i ne. Having finished thisjob, the Runner inserts
itsalf into the free list and waits.

Thenext referenceisalink tothenext Runner inthefreelist.

Thego method is used to start or resume the execution of aRunner .

The following two references are declared in class Cor out i ne:

private Runner nyRunner;
private static Runner firstFree;

Here myRunner referencesthe Runner for the Cor out i ne object, and
firstFree referencesthefirst Runner inthefreelist.

49

Below is given the complete code of the Runner class.

cl ass Runner extends Thread {
Cor out i ne myCorouti ne;
Runner next;

Runner (Coroutine c) {
myCor outi ne = c;
}

public void run() {
while (true) {
my Cor out i ne. body();
if (!'myCoroutine.term nated) {
nmyCoroutine.term nated = true;
det ach();

if (nyCoroutine == Coroutine. main) {
myCoroutine = null;
Coroutine.main = null;
Coroutine.current = null;
return;

}

myCor outine = null;

next = firstFree;

firstFree = this;

synchroni zed(this) {

try {
wai t () ;
} catch (InterruptedException e) {}
}
}
}
void go() {
if (lisAlive())
start();
el se
notify();
}

}

When a Runner has been used to execute the body of a coroutine, it waits
(by calling wai t) until it is woken up (by caling notify in the go
method).

50

Theent er method of class Cor out i ne now looks as follows;

private void enter() {
if (nyRunner == null) {

if (firstFree !'= null) {
myRunner = firstFree;
firstFree = firstFree. next;
myRunner . myCor outi ne = this;

} else
myRunner = new Runner (this);

if (main == null) {
main = current = this;
myRunner . go() ;
return;
}
Coroutine old current = current;
synchroni zed(ol d_current. myRunner) ({
current = this;
myRunner . go() ;
if (old_current.termn nated)
return;
try {
ol d_current. nyRunner. wait();
} catch(InterruptedException e) {}

}

When a Runner isneeded, it istaken from the free list, if possible. Other-
wise, anew oneis created.

When this version was used for the implementation of j avaSi nul at i on,
the execution of the car wash simulation program took only 6 seconds on the
Macintosh. Thus the recycling of threads has reduced the running time for
this example substantially.

In the remaining two sections of this chapter we will improve further on this
version.

51

3.3.8 Version 8: Mutual exclusion of main coroutines

In some applicationsit is convenient to have more than one coroutine system
in the same program. This s, for example, the case in the car wash simulation
problem where two simulations are to be performed.

public static void main(String args[]) {
activat e(new CarWashSi nul ation(1));
)

activat e(new CarWashSi nul ati on(2)

}

First, the smulation is to be performed with one car washer, and then, with
two car washers.

But since the mai n method runs in athread, in competition with the Runner
threads, the two simulations will be intermingled. We have to take special
care to prevent this situation from arising.

We will solve the problem by letting any thread that activates a main coroutine
wait until the main coroutine has finished. The main coroutine signals that it
has finished by setting the reference mai n tonul | .

First, we replace this code fragment of theent er method

if (main == null) {
main = this;
nyRunner . go();

return;
}
with
if (min == null) {
main = this;
myRunner . go() ;
synchroni zed(Runner. cl ass) {
try {
while (main !'= null)
Runner. cl ass. wait ();
} catch (InterruptedException e) {}
}
return;
}

52

Then we replace this code fragment of ther un method of classRunner

if (nmyCoroutine == Coroutine. main) {
myCoroutine = null;
Coroutine.current = null;
Coroutine.main = null;

}

with

if (nmyCoroutine == Coroutine.main) {
myCoroutine = null;
Coroutine.current = null;
synchr oni zed(Runner. cl ass) {
Coroutine.main = null;
Runner. cl ass. noti fy();

}

return;

53

3.3.9 Version 9: Ending the coroutines

One last problem remains. A Java program will keep running as long as there
are any user threadsrunning. Thiswill prevent any program that uses the
previous coroutine version from ever stopping. Either athread is being used
for the execution of the body of a coroutine, or it iswaiting in the free list for
being used again.

How can we solve this problem? Very ssmply, just by marking all threads as
daemon threads. Daemon threads are expendable and are stopped, when all
user threads of the program have finished.

The marking is made as follows in the constructor of classRunner :

Runner (Coroutine c) {
myCor outi ne = c;
set Daenon(true);

}

With this last improvement, the code of the coroutine package is complete.
The complete source code of the j avaCor out i ne packageisgivenin ap-
pendix O.

A small test program, adapted from [9], isgiven in Appendix P.

4. Implementation of j avaSi mul ati on

Equipped with the coroutine package described in the previous chapter, im-
plementation of the j avaSi nul ati on package is straightforward. The
SIMULA code given for class SIMULATION in reference [1] may be trans-
lated almost directly into Java.

However, during this trandation process some minor problems must be
solved. These problems and their solutions will be described briefly below.

(1) How should the dynamics of processes be represented?
Since a process behaves as a coroutine, an obvious idea is to let class

Pr ocess beasubclass of classCor out i ne. Below is an outline of how to
implement thisidea.

public abstract class Process extends Coroutine {
public abstract void actions();

protected final void body() {

actions();

}

Thelife cycle of aprocessis described in asubclass of Pr ocess by over-
riding the abstract method act i ons. The body method, inherited from class
Cor out i ne, takes care of its execution.

In this way, each process acquires the capabilities of a coroutine. Thus, the
resumption of acur r ent in the scheduling methods may be implemented as
follows:

resume(current ());
This solution, however, has two flaws.
Firstly, SIMULA prescribesthat Pr ocess must be asubclassof Li nk. But

since Java does not allow multiple inheritance, Pr ocess cannot be a sub-
classof bothLi nk and Cor out i ne.

55

Secondly, the coroutine capabilities of Pr ocess will not be protected from
the user. He may, for example, call the r esume method with a Pr ocess
object as parameter. The effect of thiswould be disastrous for the scheduling
mechanisms.

Letting Li nk be asubclass of Cor out i ne would eliminate the first of these
flaws, but not the second one.

A better solution is to let each Process object have at its disposal a
Cor out i ne object. TheCor out i ne object isresponsible for executing the
act i ons method. This solution is outlined below.

public abstract class Process extends Link {
public abstract void actions();

private Coroutine nmyCoroutine

= new Coroutine() {
protected final void body() {

actions();

}

The resumption of cur r ent in the scheduling methods is now implemented
asfollows:

Coroutine.resune(current (). nyCoroutine);

This solution eliminates both flaws. Class Pr ocess is now a subclass of
Li nk, and its coroutine capabilities can no longer be misused by the user.

(2) How should the event list be represented?

In the SIMULA code the event list (called the sequencing set, SQS) isrepre-
sented as an ordered list of event notices. Each event notice is an object con-
taining the event time and a reference to the process that has scheduled the
event. Every time a process schedules an event, a new event notice is created
and inserted into the event list. By using this implementation alot of event
notice objects are created during asimulation.

We will avoid this overhead by providing each process with the capability of
being able to act as an event notice. When a process schedules an event, it
does not create any event notice. It merely insertsitself in the event list. For
this purpose, each Pr ocess hasthe following (private) attributes:

doubl e EVTI ME
Process PRED, SUC;

56

EVTI ME isthe event time. PRED and SUC are the predecessor and successor
of the process in the event list. If the process has no scheduled event, both
PRED and SUC will be nul | . An auxiliary process, SQS, isused as a list
head for the circular list of scheduled processes. SQS. SUC aways references
the currently active process, cur r ent .

(3) How should the main process be represented?

In SIMULATION the main process, i.e., the process corresponding to the
main program, is represented by an anonymous Pr ocess object with the
following body (expressed in Java):

while (true)
det ach();

Each time this processis current, it calls det ach, thereby resuming the exe-
cution of the main program.

Inj avaSi nul at i on we will define the main process as the first process
activated in asimulation and obtain the desired functionality by implementing
thebody method of classPr ocess asfollows:

final public void body() {
if (MAIN == null)
MAIN = this;
actions();
TERM NATED = term nated = true;
if (this == MAIN) {
while (SQS. SUC | = SQS)
SQS. UNSCHEDULE(S@S. SUC) ;
MAIN = nul | ;
return;

passi vate();

}

When the first processin asimulation is activated, MAI N is set to reference
this process. When the main process terminates, the simulation ends and the
event list isemptied (to prepare for a possible subsequent simulation).

(4) How can we make processes terminate properly?

As seen in the code above, every terminated process calls passi vat e asits
last action. However, if passi vat e merely resumesthenext curr ent , its
body method never ends. Thisis unfortunate, since this would prevent the
thread associated with aterminated process from being reused.

57

We can handle this stuation by setting the protected boolean variable
t er mi nat ed (inherited from class Cor out i ne) to t r ue when a process
terminates. By thismeansthe ent er method istold that the associated thread
IS no longer needed.

(5) How do we best imitate the syntax of SMULA'’ s activation statements?

SIMULA introduces the following special keywords to be used for activation
Statements:

activate
reactivate
at

del ay
before
after

prior

For example, the programmer can write
activate p at 35 prior;
in order to schedule an event for the process p to occur at system time 35.

The keyword pri or signifiesthat the event be scheduled in front of any
events with the same system time.

If possible, we should enable the user of j avaSi mul at i on to useasimilar
syntax.

If we provide the constants at , del ay, before, after and pri or, itis
possible to get very close to the SIMULA syntax. For example, the user may
express the activation statement above in Java by writing

activate(p, at, 35, prior);

We let each of these constants be a reference to an object of its own class:

public static final At at;

public static final Delay delay;
public static final Before before;
public static final After after;
public static final Prior prior;

58

Next, we overload theact i vat e andr eact i vat e methods as follows:

public static final void activate(Process p);
public static final void activate(Process p

At at, double t);
public static final void activate(Process p

Del ay del ay, double t);
public static final void activate(Process p

At at, double t, Prior prior);
public static final void activate(Process p

Del ay d, double t, Prior prior);
public static final void activate(Process pl

Bef ore before, Process p2);
public static final void activate(Process pl

After after, Process p2);

(¢]

public static final void reactivate(Process p);
public static final void reactivate(Process p

At at, double t);
public static final void reactivate(Process p

Del ay del ay, double t);
public static final void reactivate(Process p

At at, double t, Prior prior);
public static final void reactivate(Process p

Del ay d, double t, Prior prior);
public static final void reactivate(Process pl

Bef ore before, Process p2);
public static final void reactivate(Process pl

After after, Process p2);

In thisway, we have found a satisfactory solution to the syntax problem.

Note that a possibleillegal use of the “keywords” will be detected during the
program compilation.

59

5. Evaluation of j avaSi nmul ati on

Thej avaSi mul at i on package has been tested on the following platforms:
MAC: Power Macintosh G4 (400 MHz), Javal.1.8
PC: Dell PowerEdge 1300 (400 MHz), Javal.2.2
SUN: Sun Enterprise 250 (300 MHz), Javal.2.2
Performance was measured by running the car wash simulation.

When running a simulation with one car washer and si mPeri od set to
1000000, the following CPU times (in seconds) were measured:

MAC PC | SUN
6 13 10

When running the program with aversion of the package that did not reuse
threads, the following CPU times were measured:

MAC [PC | SUN
80 80 42

As can be seen, the technique of reusing threads has great significance for
performance.

The Java runtime system uses the underlying operating system for thread
support, or its own software emulation if the operating system does not sup-
port threads. Apparently, the underlying threading system of Javaon Sunis
the best.

The computational overhead of threads may also be assessed by comparing
the runtimes above with the following runtimes, measured when the event-
and activity-based simulation packages of this report were used:

MAC | PC SUN
event 2 1 3
activity 2 1 4
events 2 2 6

60

It iswell known that Java programs run slower than equivalent programs
written in other programming languages. In order to examine to what extent
this applies in the present case the process-based car wash simulation was
executed on the Sun by use of the following software:

SIMULA: The Lund Simula Compiler (trandates into machine code)
cim: A SIMULA compiler that produces C code
COROUTINE: A C++ library for coroutine sequencing [10].

The C++ library existsin two versions: copy-stack and share-stack. Along
with the library comes asimulation library similar to the j avaSi mul at i on
package.

The following runtimes were measured:

SUN
JavaSi mul at1 on 10
SIMULA 2
cim 6
COROUTINE (copy-stack) 5
COROUTINE (share-stack) 3

As can be seen, the program based on j avaSi mul ati on ran 5 times
slower than an equivalent SIMULA program compiled by the Lund Simula
compiler. Thisis not a big factor, considering that the SIMULA program was
compiled into highly optimized machine code.

JavaSim [11] is a Java package similar to j avaSi nul at i on. Both pack-
ages provide smulation facilities corresponding to those provided by
SIMULA. When running the car wash simulation using JavaSim the follow-
Ing runtimes were measured:

MAC | PC | SUN
120 89 66

As can be seen, the efficiency of JavaSim is comparatively low.

The computational overhead of thread usage is not only of a computational
nature. Threads may also alocate a substantial amount of memory. Each
thread must allocate enough memory to hold its stack; actually two stacks. one
for Java code and one for C code. As the default size of each of these stacks
may be hundreds of kilobytes, memory consumption will be excessive for
applications with many live threads.

61

The user must be aware of thisfact and, if possible, reduce the default stack
size for the threads. On many platforms this can be achieved by using the
- oss and-ss options of thej ava interpreter.

We may conclude that the performance of j avaSi mul at i on isquite satis-
factory, although not impressive. The implementation of the underlying
threading system of Java plays an important role in this connection. Currently
the overhead induced by using threads is considerable. However, Javais a
very young language, and faster implementations are likely in the future.

62

6. Conclusions

Thisreport describesj avaSi mul at i on, a Java package for process-based
discrete event simulation. The package is based on a Javalibrary for coroutine
sequencing and contains al the simulation facilities of SIMULA.

A central implementation problem, how to make threads representing proc-
esses behave as coroutines, has been solved successfully in the present im-
plementation.

The performance of the package is reasonably good. By recycling the threads

of terminated coroutines, much of the overhead originating from the use of
Java s threads has been eliminated.

63

Refer ences

1. 0O.-J. Dahl, B. Myhrhaug & K. Nygaard,
COMMON BASE LANGUAGE,
NNC Publication S-22 (1970).

2. G. M. Birtwistle, O.-J. Dahl, B. Myhrhaug & K. Nygaard,
SIMULA BEGIN,
Studentlitteratur (1974).

3. Programspréak —SMULA, SIS,
Svensk Standard SS 63 61 14 (1987).

4. K. Helsgaun,
DISCO - a SIMULA-based language for combined continuous
and discrete simulation,
SIMULATION, Vol. 34, no. 7, pp. 1-12 (1980).

5. W. Kreutzer,
System simulation: programming styles and languages,
Addison Wesley (1986).

6. P.R.Hills,
An Introduction to Smulation,
NEC Publication S. 55, Oslo (1973).

7. W.R. Franta,
The Process View of Smulation,
North Holland (1977).

8. C.D. Marlin, Coroutines,
Lecture Notes in Computer Science (1980).

9. H. B. Hansen,
SMULA - et objektorienteret programmeringssprog,
Kompendium, Roskilde Universitetscenter (1990).

10. K. Helsgaun,
A Portable C++ Library for Coroutine Sequencing,
Datalogiske skrifter, No. 87, Roskilde University (1999).

11. R. McNab,
SmJava: a discrete event smulation library for Java,
University of Newcastle upon Tyne (1996).
Availablefromht t p: / / www. j avaSi m ncl . ac. uk

64

I S

T oz Z

I o mMmmooO ® >

Appendices

Thesi nset package

Source code of thesi nset package

Ther andompackage

Source code of ther andompackage

Source code of thesi mul ati on. event package

Car wash smulation with si nul ati on. event

. Source code of thesi mul ati on. acti vi ty package

. Car wash smulationwithsi mul ati on. activity

Source code of thesi mul ati on. event s package

Car wash simulation with si nul ati on. event s

. Source code of j avaSi nul ati on

Process-based car wash simulation withj avaSi nul ati on

. Event-based car wash ssimulation withj avaSi nul at i on

Activity-based car wash smulation withj avaSi mul ati on
Source code of thej avaCor out i ne package

Test program for j avaCor out i ne

A. Thesi mset package

This package contains facilities for the manipulation of two-way linked lists. Its func-
tionality corresponds closely to SIMULA's built-in class SIMSET.

List members are objects of subclasses of the classLi nk.

An object of the classHead isused to represent alist.

TheclassLi nkage isacommon superclassfor classLi nk and classHead.
The three classes are described below by means of the following variables:

Head hd;
Li nk | k;
Li nkage | g;

Class Li nkage

public class Linkage {
public final Link pred();
public final Link suc();
public final Linkage prev();

}

| k. suc() returns areference to the list member that is the successor
of I k if | k isalist member and is not the last member of
thelist; otherwisenul | .

hd. suc() returns areference to the fist member of thelist hd, if the
list is not empty; otherwisenul | .

| k. pred() returns areference to the list element that is the predeces-
sor of | k if I k isalist member and is not the first mem-
ber of the list; otherwisenul | .

hd. pred() returns areference to the last member of thelist hd if the
list is not empty; otherwisenul | .

l k. prev() returnsnul | if | k isnot alist member, areference to the
list head if | k isthe first member of alist; otherwise aref-
erencetol k's predecessor in thelist.

hd. prev() returns areferenceto hd if hd is empty; otherwise aref-

erenceto the last member of thelist.

Class Head

hd.

hd.

hd.

hd.

hd.

public class Head extends Linkage {

public
public
public
public
public
}
first()
last ()

cardi nal ()

enpty()

clear()

final Link first();
final Link last();
final bool ean enpty();
final int cardinal();
final void clear();

returns a reference to the first member of thelist (nul |,
if thelist is empty).

returns areference to the last member of thelist (nul | , if
thelist is empty).

returns the number of membersinthelist (nul |, if the
list is empty).

returnst r ue if thelist hd has no members; otherwise
nul | .

removes all members from thelist.

Class Li nk

public class Link extends Linkage {
public final void out();
public final void foll owLinkage ptr);
public final void precede(Li nkage ptr);
public final void into(Head s);

.out ()

_into(hd)

. precede(l g)

_follow(lg)

removes| k from thelist (if any) of which it isamem-
ber. The call has no effect if | k has no membership.

removes| k fromthelist (if any) of which it isamem-
ber and insertsl k asthe last member of thelist hd.

removes| k fromthelist (if any) of which it isamem-
ber and inserts| k beforel g. The effect isthe same as
| k. out () if I gis null, orithasnomembership
and isnot alist head.

removes| k fromthelist (if any) of which it isamem-
ber and inserts | k after | g. The effect isthe same as
| k. out () if I'gis null, orithasnomembership
and isnot alist head.

B. Source code of thesi mset package

public class Linkage {
public final Link pred() {
return PRED i nstanceof Link ? (Link) PRED : null;
}

public final Link suc() {
return SUC i nstanceof Link ? (Link) SUC : null
}

public final Linkage prev() { return PRED; }

Li nkage PRED, SUC
}

public class Link extends Linkage {
public final void out() {
if (SUC!= null) {
SUC. PRED = PRED
PRED. SUC = SUC
SUC = PRED = nul | ;

}
}
public final void foll owLinkage ptr) {
out ();
if (ptr !'=null & ptr.SUC !'= null) {
PRED = ptr;
SUC = ptr. SUG,
SUC. PRED = ptr.SUC = this;
}
}
public final void precede(Linkage ptr) {
out ();
if (ptr !'=null &% ptr.SUC !'= null) {
SUC = ptr;

PRED = ptr. PRED;
PRED. SUC = ptr.PRED = this;

}

public final void into(Head s) {
precede(s);

B-1

public class Head extends Linkage {
public Head() { PRED = SUC = this; }

public final Link first() { return suc(); }
public final Link last() { return pred(); }
public final boolean enpty() { return SUC == this; }
public final int cardinal () {
int i =0;
for (Link ptr = first(); ptr != null; ptr = ptr.suc())
| ++;
return i;

}

public final void clear() {
while (first() !'= null)
first().out();

B-2

C. Therandompackage

This package provides the same methods for random drawing as can be found
in SIMULA.. All methods are availablein aclasscaled Random A summary
of thisclass is shown below.

public class Random extends java.util.Random {
public Random() { super(); }
public Random(l ong seed) { super(seed); }

public final bool ean draw double a);

public final int randint(int a, int b);

public final double uniforn(double a, double b);
public final double nornal (double a, double b);
public final double negexp(double a);

public final int poisson(double a);

public final double erlang(double a, double b);
public final int discrete(double[] a);

public final double linear(double[] a, double[] b);
public final int histd(double[] a);

The class is an extension of Java's standard class j ava. uti | . Random
Thus, al of the facilities of the latter classis aso available to the user.

publ i c Random();

This constructor creates a Randomobject with the current time asits
seed value.

publ i ¢ Randon{| ong seed);
This constructor creates aRandomabject with the given seed value.

Each of the instance methods performs a random drawing of some kind.
Their semanticsareasin SSIMULA.

bool ean draw double a);
The value istrue with the probability a, f al se with probability 1- a.
Itisalwaystrueifa3 1,and awaysf al seifa £0.

int randint(int a, int b);

Thevaueisoneof theintegersa, a+1, ..., b- 1, b with equal prob-
ability. If b < a, the call constitutes an error.

C-1

doubl e uni form doubl e a, double b);

Thevaueisuniformly distributed intheintervala £ x < b. If b £ a,
the call constitutes an error.

doubl e normal (doubl e a, double b);

The value is normally distributed with mean a and standard deviation
b.

doubl e negexp(doubl e a);
The valueis adrawing from the negative exponential distribution with
mean 1/A. If a isnon-positive, aruntime error occurs.

i nt poi sson(double a);
The value is a drawing from the Poisson distribution with parameter
a.

doubl e erl ang(doubl e a, double b);

The value is a drawing from the Erlang distribution with mean 1/a
and standard deviation 1/(a* (b) . Both a and b must be positive.

int discrete(double[] a);
The one-dimensional array a of n elements of type doubl e, aug-
mented by the element 1 to theright, isinterpreted as a step function
of the subscript, defining a discrete (cumulative) distribution function.
The function value satisfies
0 £discrete(a) £n

It isdefined asthesmallesti suchthatali] >r, wherer isarandom
number intheinterva [0;1] anda[n] = 1.

C-2

doubl e |i near (doubl e[] a, double[] b);

The value is adrawing from a (cumulative) distribution function f,
which is obtained by linear interpolation in a non-equidistant table de-
fined by a and b, such that a[i] = f(b[i]).

It isassumed that a and b are one-dimensional arrays of the same
length, that the first and last elements of a areequal to 0 and 1, re-
spectively, andthat afi] ® a[j Jandb[i] >b[j] fori >j.

public int histd(double[] a);

The value is an integer in therange [0;n-1] where n is the number of
elementsin the one-dimensional array a. The latter isinterpreted as a
histogram defining the relative frequencies of the values.

C-3

D. Source code of ther andompackage

public class Random extends java.util.Random {
public Random() { super(); }

publ i c Random(l ong seed) { super(seed); }

public bool ean draw(double a) {
return a < nextDoubl e();

}
public int randint(int a, int b) {
if (b < a)
error("randlnt: Second paraneter is" +
| ower than first paraneter");
return (int) (a + nextDouble()*(b - a + 1));
}
publ i c doubl e uniforn(double a, double b) {
if (b <= a)
error("uniform Second paraneter is not" +
" greater than first paraneter");
return a + nextDouble()*(b - a);
}

public doubl e normal (doubl e a, double b) {
return a + b*next Gaussi an();
}

publ i c doubl e negexp(double a) {
if (a <=0)
error ("negexp: First paraneter is |lower" +
" than zero");
return - Math. Il og(nextDouble())/a;

}

public int poisson(double a) {
double Iimt = Math.exp(-a), prod = nextDoubl e();

int n;

for (n =0; prod >=limt; n++)
prod *= next Doubl e();

return n;

D-1

public doubl e erlang(double a, double b) {
if (a <=0)
error("erlang: First paraneter is not greater" +
' than zero");
if (b <=0)
error("erlang: Second paranmeter is not greater" +
' than zero");
long bi = (long) b, ci

if (bi == b)
bi --;
doubl e sum = 0;
for (ci =1; ci <= bi; ci++)

sum += Mat h. | og(next Doubl e());
return -(sum+ (b - (ci-1))*Math.| og(nextDouble()))/
(a*b);

public int discrete(double[] a) {
doubl e basi ¢ = next Doubl e();

int i;
for (i =0; i < a.length; i++)
if (a[i] > basic)
br eak;
return i;

public doubl e linear(double[] a, double[] b) {

if (a.length !'= b.length)

error("linear: arrays have different |length");
if (a[0] '=0.0]| a[a.length-1] = 1.0)

error("linear: Illegal value in first array");
doubl e basi c = next Doubl e();
int i;
for (i =1; i < a.length; i++)

if (a[i] >= basic)
br eak;

double d = a[i] - a[i-1];
if (d ==0.0)

return b[i-1];
return b[i-1] + (b[i]-b[i-1])*(basic-a[i-1])/d

D-2

public int histd(double[] a) {

doubl e sum = 0. 0;

int i;

for (i =0; i < a.length; i++)
sum += ali];

doubl e wei ght = nextDoubl e() * sum

sum = 0. 0;

for (i =0; i <a.length - 1; i++) {
sum += ali];
if (sum >= weight)

br eak;

}

return i;

}

private static void error(String msg) {
t hr ow new Runti meExcepti on(nsg);
}

D-3

E. Source code of thesi mul ati on.event package

public abstract class Event {
protected abstract void actions();

public final void schedul e(double evTinme) {
if (evTine < tine)
t hrow new Runti meExcepti on
("attenmpt to schedule event in the past");
cancel ();
event Tine = evTi ne;
Event ev = SQS. pred;
while (ev.eventTine > event Ti ne)
ev = ev.pred,
pred = ev;
sSuc = ev. suc;
ev.suc = suc.pred = this;

}
public final void cancel () {
if (suc '=null) {
suc. pred = pred,;
pred. suc = suc;
suc = pred = null
}
}

public final static double time() { return time; }

public final static void runSimulation(double period) {
while (SQ@S.suc = SQ@) {
Event ev = SQ@S. suc;
time = ev.eventTine;
if (time > period)
br eak;
ev. cancel ();
ev.actions();

st opSi nul ation();

}

public final static void stopSinulation() {
while (SQ@S.suc != SQS)
S@S. suc. cancel ();
time = 0;

}

private final static Event SQS5 = new Event() {
{ pred = suc =this; }
protected void actions() {}

E-1

private static double tinme = O;
private doubl e eventTi e;
private Event pred, suc;

public class Sinulation extends Event {
protected final void actions() {}
}

F. Car wash simulation with si mul ati on. event

i mport simulation.event.*;
i mport sinset.*;
i mport random *;

public class CarWashSi nul ati on extends Sinmulation {
i nt noOf Car Washer s;
doubl e sinPeri od = 1000000;
Head tearoom = new Head();
Head wai tingLi ne = new Head();
Random random = new Random(5);
i nt noOf Custoners, maxLengt h;
doubl e t hroughTi rne;
long startTime = SystemcurrentTimeMI1is();

CarWashSi mul ation(int n) {
noCf Car Washers = n;
for (int i =1; i <= noOf CarWashers; i ++)
new CarWasher ().into(tearoom;
new Car Arrival ().schedul e(0);
runSi nul ati on(si mPeri od + 1000000);
report();
}

void report() {
System out . printl n(noOXf Car Washers +
" car washer sinulation");
Systemout. println("No.of cars through the system=" +
noCF Cust oner s) ;
java.text. Nunber Format fnmt =
j ava. t ext . Number For mat . get Nunber | nst ance() ;
fmt . set Maxi munfracti onDi gits(2);
Systemout.println("Av.elapsed tine =" +
frt.format (throughTi me/ noxf Cust oners));
System out. printl n("Maxi mum queue length =" +
maxLengt h) ;
Systemout. println("\nExecution time: " +
frm.format ((SystemcurrentTimeMI1is()
- startTine)/1000.0) + " secs.\n");

}

cl ass CarWasher extends Link {}

cl ass Car extends Link {
double entryTime = time();
}

class CarArrival extends Event ({
public void actions() {
if (time() <= sinPeriod) {
Car theCar = new Car();
theCar.into(waitingLine);
int gLength = waitingLine.cardinal();
i f (maxLength < glLengt h)
maxLengt h = qglLengt h;
if (!'tearoomenpty())
new St art Car Washi ng().schedul e(tine());
new Car Arrival ().schedul e
(tinme() + random negexp(1/11.0));

}

cl ass StartCarWashi ng extends Event ({

public void actions() {

Car Washer theCarWasher =
(CarWasher) tearoomfirst();
t heCar Washer . out () ;
Car theCar = (Car) waitingLine.first();
t heCar. out () ;
new St opCar Washi ng(t heCar Washer,
t heCar).schedul e(tine() + 10);

}

cl ass StopCarWashi ng extends Event {
Car Washer theCarWasher;
Car theCar;

St opCar Washi ng(Car Washer cw, Car c) {
t heCar Washer = cw; theCar = c;
}

public void actions() {
t heCar Washer . i nt o(t ear oom ;
if (!waitingLine.enpty())
new St art CarWashi ng().schedul e(tine());
noCf Cust omer s++;
t hroughTine += tine() - theCar.entryTine;

public static void main(String args[]) {
new Car WAshSi nul ation(1);
new Car WAshSi mul ati on(2);

G. Source code of thesi mul ati on. aci vi ty package

public abstract class Activity {
protected abstract bool ean condition();
protected abstract void startActions();
protected abstract double duration();
protected abstract void finishActions();

public Activity() { schedule(); }
Activity(bool ean dumry) {}
public final static double time() { return time; }

public final void schedul e() {
cancel ();
suc = wai tList.suc;
suc.pred = waitList.suc = this;
pred = waitList;

public final void schedul e(double evTinme) ({
if (evlime < tine)
t hrow new Runti meExcepti on
("attenpt to schedule event in the past");
cancel ();
event Tine = evTi ne;
Activity a = SQS. pred;
while (a.eventTine > eventTi ne)
a = a.pred;
pred = ga;
suc = a.suc;
a.suc = suc.pred = this;

}
public final void cancel () {
if (suc !'= null) {
suc. pred = pred;
pred. suc = suc;
pred = suc = null
}
}
public final static void stopSinulation() {
while (waitList.suc !'= waitList)
wai t Li st. suc. cancel ();
while (SQ@S. suc = SQS)
S@S. suc. cancel () ;
time = 0;
}

G-1

public final static void runSimulation(double period) {
while (true) {
for (Activity a = waitList.suc;

a!= waitlList;

a = a.suc) {

if (a.condition()) {
a. cancel ();
a.schedul e(time + a.duration());
a.startActions();
a

= wai t Li st;
} }
if (SQ@S.suc == SQS)
br eak;

Activity a = SQ@S. suc;
tinme = a.eventTine;
a. cancel ();
if (time > period)

br eak;
a.finishActions();

st opSi mul ation();

}

private final static Activity waitList =newActivity(true) {
{ pred = suc =this; }
public bool ean condition() { return false; }
public void startActions() {}
public double duration() { return O; }
public void finishActions() {}

b

private final static Activity SQ@ = new Activity(true) {
{ pred = suc =this; }
public bool ean condition() { return false; }
public void startActions() {}
public double duration() { return O; }
public void finishActions() {}

}s

private static double tine = 0;
private double eventTi ne;
private Activity pred, suc;

}

public class Sinulation extends Activity {
protected final boolean condition() { return true; }
protected final void startActions() {}
protected final double duration() { return O; }
protected final void finishActions() {}

G-2

H. Car wash simulation with si mul ati on. activity

i mport simulation.activity.*;
i mport sinset.*;
i mport random *;

public class CarWashSi mul ati on extends Simulation {
int noOf Car Washer s;
doubl e sinPeriod = 1000000;
Head t ear oom = new Head();
Head wai tingLi ne = new Head();
Random random = new Random(5);
i nt noOf Custoners, maxLengt h;
doubl e t hroughTi ne;
long startTime = SystemcurrentTimreM I 1is();

Car WashSi nul ation(int n) {
noCOf Car Washers = n;
for (int i =1; i <= noO CarWashers; i ++)
new CarWasher ().into(tearoom;
new CarArrival ();
runSi nul ati on(si nPeri od + 1000000);
report();
}

void report() {
System out . pri ntl n(noOf Car Washers +
" car washer sinulation");
Systemout. println("No.of cars through the system=" +
noCf Cust omer s) ;
java.text. Nunmber Format fmt =
j ava. t ext . Nurmber For mat . get Nunber | nst ance() ;
fmt . set Maxi nunfracti onDi gits(2);
Systemout.println("Av.elapsed tine =" +
ft.format (throughTi me/ noOf Cust oners));
System out. printl n("Maxi mum queue length =" +
maxLengt h) ;
Systemout. println("\nExecution tinme: " +
frm.format ((SystemcurrentTimeM I 1is()
- startTine)/1000.0) + " secs.\n");

cl ass CarWasher extends Link {}

class Car extends Link {
doubl e entryTime = tinme();
}

H-1

cl ass CarWashi ng extends Activity {
Car theCar; CarWasher theCarWasher

CarWashing(Car c) { theCar = c; }

public bool ean condition() {
return theCar == (Car) waitingLine.first() &&
I'tearoom enpty();
}

public void startActions() {
t heCar. out () ;
t heCar Washer = (CarWasher) tearoomfirst();
t heCar Washer . out () ;

}
public double duration() { return 10; }

public void finishActions() {
t heCar Washer . i nt o(t ear oom ;
noCf Cust onmer s++;
t hroughTine += tine() - theCar.entryTine;

}

class CarArrival extends Activity {
public bool ean condition() { return true; }

public void startActions() {

Car theCar = new Car();

t heCar. i nt o(waitingLine);

new CarWashi ng(theCar);

int gLength = waitingLine.cardinal();

i f (maxLength < gLength) maxLength = glLength;
}

public double duration() {
return random negexp(1/11.0);
}

public void finishActions() {
if (time() <= sinPeriod)
new CarArrival ();

}

public static void main(String args[]) {
new Car WAshSi nul ation(1);
new Car WAshSi mul ati on(2);

H-2

|. Source code of thesi mul ati on. event s package

public abstract class Event {
protected abstract void actions();

public final static double time() { return tinme; }

public final static void runSimulation(double period) {
while (true) {
for (StateEvent a = (StateEvent) waitlList.suc;

a!= waitlList;

a = (StateEvent) a.suc) {

if (a.condition()) {
a. cancel ();
a.actions();
a = waitlList;

}
}
if (SQ@S.suc == SQS)

br eak;
Ti meEvent ev = (Ti meEvent) SCS. suc;
time = ev.eventTine;
ev. cancel ();
if (time > period)
br eak;
ev.actions();

st opSi mul ation();

}

public final static void stopSinulation() {
while (SQ@S.suc = SQS)
S@S. suc. cancel ();

while (waitList.suc != waitList)
wai t Li st. suc. cancel ();
tinme = 0;
}
public final void cancel () {
if (suc '=null) {
suc. pred = pred;
pred. suc = suc;
suc = pred = null
}
}

static final TimeEvent SQS = new Ti neEvent () {
{ pred = suc =this; }
protected void actions() {}

s

static final StateEvent waitList = new StateEvent() {
{ pred = suc =this; }
prot ected bool ean condition() { return false; }
protected void actions() {}

s

static double tinme = O;
Event pred, suc;

public class Sinmulation extends Event {
protected final void actions() {}
}

J. Car wash simulation with si mul ati on. events

i mport simulation.events.*;
i mport sinset.*;
i mport random *;

public class CarWashSi mul ati on extends Simulation {
int noOf Car Washer s;
doubl e sinPeriod = 1000000;
Head t ear oom = new Head();
Head wai tingLi ne = new Head();
i nt noOf Custoners, maxLengt h;
doubl e t hroughTi ne;
Random r andom = new Random(5);
long startTime = SystemcurrentTimreM I 1is();

Car WashSi nul ation(int n) {
noCOf Car Washers = n;
for (int i =1; i <= noO CarWashers; i ++)
new CarWasher ().into(tearoom;
new Car Arrival ().schedul e(0);
runSi nul ati on(si nPeri od + 1000000);
report();
}

void report() {
System out . pri ntl n(noOf Car Washers +
" car washer sinulation");
Systemout. println("No.of cars through the system=" +
noCf Cust omer s) ;
java.text. Nunmber Format fmt =
j ava. t ext . Nurmber For mat . get Nunber | nst ance() ;
fmt . set Maxi nunfracti onDi gits(2);
Systemout.println("Av.elapsed tine =" +
ft.format (throughTi me/ noOf Cust oners));
System out. printl n("Maxi mum queue length =" +
maxLengt h) ;
Systemout. println("\nExecution tinme: " +
frm.format ((SystemcurrentTimeM I 1is()
- startTine)/1000.0) + " secs.\n");

cl ass CarWasher extends Link {}

class Car extends Link {
doubl e entryTime = tinme();
}

J1

class CarArrival extends TineEvent {
public void actions() {
if (time() <= sinPeriod) {

Car theCar = new Car();
theCar.into(waitingLine);
int gLength = waitingLine.cardinal();
i f (maxLength < glLength) maxLength = glLengt h;
new St art Car Washi ng(t heCar). schedul e();
schedul e(tinme() + random negexp(1l/11.0));

}

cl ass StopCarWashi ng extends Ti neEvent {
Car Washer theCarWasher; Car theCar

St opCar Washi ng(Car Washer cw, Car c)
{ theCarWasher = cw;, theCar = c; }

public void actions() {
noCf Cust onmer s++;
t hroughTine += tine() - theCar.entryTine;
t heCar Washer . i nt o(tearoom;

}

class Start CarWashi ng extends StateEvent {
Car theCar;

Start CarWashing(Car c) { theCar = c; }

public bool ean condition() {
return theCar == (Car) waitingLine.first() &&
I'tearoom enpty();
}

public void actions() {
t heCar. out () ;
Car Washer theCarWasher =
(CarWasher) tearoomfirst();
t heCar Washer . out () ;
new St opCar Washi ng(t heCar Washer,
t heCar) . schedul e(tine() + 10);

}

public static void main(String args[]) {
new Car WAshSi nul ation(1);
new Car WAshSi mul ati on(2);

J2

K. Source code of j avaSi mul ati on

package javaSi nul ati on;

public abstract class Process extends Link {
protected abstract void actions();

private final Coroutine myCoroutine = new Coroutine() {
protected void body() {
if (MAIN == null)
MAI N = Process.this;
actions();
TERM NATED = term nated = true;
if (Process.this == MAIN) {
while (SQS. SUC ! = SQS)
SQS. SUC. cancel ();
MAIN = nul | ;
return;

passi vate();
b

private Process PRED, SUC;
private doubl e EVTI Mg
privat e bool ean TERM NATED,;

private final static Process SQS = new Process() {
{ EVIIME = -1; PRED = SUC = this; }
protected void actions() {}

1

private static Process MAIN,

public final boolean idle() {

return SUC == nul | ;
}

public final bool ean term nated() {
return TERM NATED,;

}
public final double evTime() {
if (idle())
error("No evTine for idle process");
return EVTI MVE;
}
public final Process nextEv() {
return SUC == SQ@S ? null : SUC
}

K-1

public static final Process current() {
return SQS.SUC !'= S@ ? SQ@.SUC : nul |
}

public static final double time() {
return SQ@S. SUC = SQS ? S@S. SUC. EVTIME : 0;
}

public static final Process main() { return MAIN;, }

private static void error(String msg) {
t hr ow new Runti meExcepti on(nsg);
}

public static final void hold(double t) {
if (SQ@S. SUC == SQB)
error("Hold: SQS is enpty");
Process Q = SQS. SUC;
if (t >0)
Q EVTIME +=t;
t = Q EVTI Mg
if (QSUC!= SQS & Q SUC. EVTIME <=1) {
Q cancel ();
Process P = SQS. PRED,
while (P.EVTIME > t)
P = P. PRED;
Q schedul eAfter(P);
resume(S@S. SUC) ;

public static final void passivate() {
if (SQS. SUC == SQS)
error("Passivate: SQSis enmpty");
Process CURRENT = SQS. SUC;
CURRENT. cancel ();
if (SQS. SUC == SQ)
error("passivate causes SQS to becorme enpty”);
resume(S@S. SUC) ;

public static final void wait(Head q) {
if (SQ@S. SUC == SQB)
error("Wait: SQS is enpty");

current().into(q);

Process CURRENT = SQS. SUC;

CURRENT. cancel () ;

if (SQ@S. SUC == SQB)

error("wait causes SQS to becone enpty");

resume(SQ@S. SUC) ;

K-2

public static final void cancel (Process p) {

if (p=null || p.SUC == null)
return;

Process CURRENT = SQS. SUC

p. cancel ();

if (S@S. SUC ! = CURRENT)
return;

if (SQS. SUC == SQ9)
error("cancel causes SQS to beconme enpty");
resume(S@S. SUC) ;

}

private static final class At {1}

private static final class Delay ({}

private static final class Before {}

private static final class After {}

private static final class Prior {}

public static final At at new At ();
public static final Delay delay new Del ay();

public static final Before before
public static final After after
public static final Prior prior

new Before();
new After();
new Prior();

private static final int direct_code
private static final int at_code
private static final int delay_code
private static final int before_code
private static final int after_code

T TR
PoONREO

K-3

private static final void activat(bool ean reac, Process x,
int code, double t,
Process y, boolean prio) {

if (x == null || x. TERM NATED |
('reac && x.SUC !'= null))
return;

Process CURRENT = SQ@S. SUC, P = null
double NOW = time();
swi tch(code) {
case direct_code:
i f (x == CURRENT)
return;
t = NOW P = SG5;
br eak;
case del ay_code:
t += NOW
case at_code:
if (t <= NOW {
if (prio &% x == CURRENT)
return;
t = NOW
}
br eak;
case before_code:
case after_code:
if (y =null || y.SUC == null) {
x. cancel ();
if (S@S. SUC == SQS)
error("reactivate causes S@ " +
"to become enpty");
return;

}

if (x ==vy)

return;

y. EVTI ME;

code == before_code ? y.PRED : vy;

t
P

}
if (x.SUC != null)
x. cancel ();
if (P==null) {
for (P = SQS. PRED, P.EVTIME > t; P = P.PRED

if (prio)

while (P.EVTIME == t)
P = P. PRED,
}
X.EVTIME = t;

X. schedul eAfter (P);
i f (SQS.SUC ! = CURRENT)
resume(current());

K-4

public static final void activate(Process p) {
activat(false, p, direct _code, 0, null, false);
}

public static final void activate(Process p,
At at, double t) {
activat(false, p, at_code, t, null, false);

}

public static final void activate(Process p,
At at, double t, Prior prior) {
activat(false, p, at_code, t, null, true);

}

public static final void activate(Process p,
Del ay del ay, double t) {
activat(false, p, delay_code, t, null, false);

}

public static final void activate(Process p,
Delay d, double t, Prior prior) {
activat(false, p, delay_code, t, null, true);

}

public static final void activate(Process pl,
Bef ore before, Process p2) {
activat(fal se, pl, before_code, 0, p2, false);

}

public static final void activate(Process pl,
After after, Process p2) {
activat(false, pl, after _code, 0, p2, false);

K-5

public static final void reactivate(Process p) {
activat(true, p, direct_code, 0, null, false);
}

public static final void reactivate(Process p
At at, double t) {
activat(true, p, at_code, t, null, false);

}

public static final void reactivate(Process p
At at, double t, Prior prior) {
activat(true, p, at_code, t, null, true);

}

public static final void reactivate(Process p
Del ay del ay, double t) {
activat(true, p, delay code, t, null, false);

}

public static final void reactivate(Process p
Delay d, double t, Prior prior) {
activat(true, p, delay code, t, null, true);

}

public static final void reactivate(Process pl
Bef ore before, Process p2) {
activat(true, pl, before code, 0, p2, false);

}

public static final void reactivate(Process pl
After after, Process p2) {
activat(true, pl, after_code, 0, p2, false);

}

private final void schedul eAfter(Process p) {
PRED = p;
SUC = p. SUC
p. SUC = SUC. PRED = this;

}

private final void cancel () {
PRED. SUC = SUC
SUC. PRED = PRED
PRED = SUC = nul | ;

K-6

L . Process-based car wash simulation with j avaSi mul ati on

i mport javaSi nul ation.*;
i mport javaSi mul ati on. Process;

public class CarWashSi mul ati on extends Process {
i nt noOf Car Washers;
doubl e sinmPeriod = 1000000;
Head t earoom = new Head();
Head wai tingLi ne = new Head();
Random random = new Random(5);
doubl e t hroughTi ne;
i nt noOf Custoners, maxLengt h;
long startTime = SystemcurrentTimeM I 1is();

Car WashSi mul ation(int n) { noOf CarWashers = n; }

public void actions() {
for (int i =1; i <= noO CarWashers; i ++)
new CarWasher ().into(tearoom;
activate(new CarCGenerator());
hol d(si nPeri od + 1000000) ;
report();
}

void report() {
System out . pri ntl n(noOf Car Washers +
" car washer sinulation");
System out. println("No.of cars through the system=" +
noCf Cust omer s) ;
java.text. Nunmber Format fmt =
j ava. t ext . Nurmber For mat . get Nunber | nst ance() ;
fmt . set Maxi nunfracti onDi gits(2);
Systemout.println("Av.elapsed tine =" +
fmt.format (throughTi me/ noOf Cust oners));
System out. printl n("Maxi mum queue length =" +
maxLengt h) ;
Systemout. println("\nExecution tinme: " +
frm.format ((SystemcurrentTimeM I 1is()
- startTine)/1000.0) + " secs.\n");

L-1

cl ass Car extends Process {
public void actions() {
double entryTime = tinme();
i nto(waitingLine);
int gLength = waitingLine.cardinal();
i f (maxLength < glLength)
maxLengt h = qlLengt h;
if ('tearoomenpty())
activate((CarWasher) tearoomfirst());
passi vate();
noCf Cust omer s++;
throughTine += tinme() - entryTine;

}

cl ass CarWasher extends Process {
public void actions() {
while (true) {

out ();

while (!waitingLine.enpty()) {
Car served = (Car) waitingLine.first();
served. out ();
hol d(10);
activate(served);

wai t (tearoon;

}

cl ass Car CGenerator extends Process {
public void actions() {
while (time() <= sinPeriod) {
activate(new Car());
hol d(random negexp(1/11.0));

}

public static void main(String args[])
activate(new CarWashSi nul ation(1));
activate(new Car WAshSi nul ation(2));

{

L-2

M. Event-based car wash simulation with j avaSi nul ati on

i mport javaSi nul ation.*;
i mport javaSi mul ati on. Process;

public class CarWashSi mul ati on extends Process {
i nt noOf Car Washers;
doubl e sinmPeriod = 1000000;
Head t earoom = new Head();
Head wai tingLi ne = new Head();
Random random = new Random(5);
doubl e t hroughTi ne;
i nt noOf Custoners, maxLengt h;
long startTime = SystemcurrentTimeM I 1is();

Car WashSi mul ation(int n) { noOf CarWashers = n; }

public void actions() {
for (int i =1; i <= noO CarWashers; i ++)
new CarWasher ().into(tearoom;
activate(new CarArrival ());
hol d(si mPeri 0od+1000000) ;
report();
}

void report() {
System out . pri ntl n(noOf Car Washers +
car washer simulation");
Systemout. println("No.of cars through the system=" +
noCf Cust omer s) ;
java.text. Nunmber Format fmt =
j ava. t ext . Nurmber For mat . get Nunber | nst ance() ;
fmt . set Maxi nunfracti onDi gits(2);
Systemout.println("Av.elapsed tine =" +
ft.format (throughTi me/ noOf Cust oners));
System out. printl n("Maxi mum queue length =" +
maxLengt h) ;
Systemout. println("\nExecution tinme: " +
frm.format ((SystemcurrentTimeM I 1is()
- startTine)/1000.0) + " secs.\n");

cl ass CarWasher extends Link {}

class Car extends Link {
doubl e entryTime = tinme();
}

class CarArrival extends Process {
public void actions() {
if (time() > sinPeriod)
return;

Car theCar = new Car();
t heCar.into(waitingLine);
int gLength = waitingLine.cardinal();
i f (maxLength < glLengt h)

maxLengt h = qlLengt h;
if (!'tearoomenpty())

activate(new Start CarWashi ng(

(CarWasher) tearoomfirst()));
activate(new CarArrival (),
del ay, random negexp(1/11.0));

}

cl ass Start CarWashi ng extends Process {
Car Washer t heCarWasher;

St art Car Washi ng(Car Washer cw) { theCarWasher = cw; }

public void actions() {
t heCar Washer . out () ;
Car theCar = (Car) waitingLine.first();
t heCar. out () ;
activate(new St opCarWashi ng(t heCar Washer, theCar),
del ay, 10);

}

cl ass St opCarWashi ng ext ends Process {
Car Washer theCarWasher; Car theCar;

St opCar Washi ng(Car Washer cw, Car c)
{ theCarWasher = cw;, theCar = c; }

public void actions() {
t heCar Washer . i nt o(t earoom ;
noCf Cust omer s++;
t hroughTine += tine() - theCar.entryTine;
if (!waitingLine.enpty())
activate(new Start CarWashi ng(t heCarWasher));

}

public static void main(String args[])
activate(new Car WAshSi nul ation(1));
activate(new CarWashSi nul ati on(2))

{

M-2

N. Activity-based car wash simulation with j avaSi mul ati on

i mport javaSi nul ation.*;
i mport javaSi mul ati on. Process;

public class CarWashSi mul ati on extends Process {
int noOf Car Washer s;
doubl e sinPeriod = 1000000;
Head t ear oom = new Head();
Head wai tingLi ne = new Head();
Random random = new Random(5);
doubl e t hroughTi ne;
i nt noCf Custoners, nmaxLengt h;
long startTime = SystemcurrentTimreM I 1is();

Car WashSi nul ation(int n) {
noXf Car Washers = n;
}

public void actions() {
for (int i =1; i <= noOf CarWashers; i ++)
new CarWasher ().into(tearoom;
activate(new CarArrival ());
hol d(si nPeri od + 1000000) ;
report();

void report() {
System out . printl n(noOf Car Washers +
" car washer sinulation");
Systemout. println("No.of cars through the system=" +
noCF Cust oner s) ;
java.text. Nunber Format fnmt =
j ava. t ext . Number For mat . get Nunber | nst ance() ;
fm . set Maxi munfracti onDi gits(2);
Systemout.println("Av.elapsed tine =" +
fmt.format (throughTi me/ noxf Cust oners));
System out. printl n("Maxi mum queue length =" +
maxLengt h) ;
Systemout. println("\nExecution time: " +
frm.format ((SystemcurrentTimeMI1is()
- startTine)/1000.0) + " secs.\n");

}

cl ass CarWasher extends Link {}

cl ass Car extends Link {
double entryTime = time();
}

N-1

class CarArrival extends Process {
public void actions() {
if (time() <= sinPeriod) {
Car theCar = new Car();
t heCar.into(waitingLine);
activate(new Car\Washi ng(theCar));
int gLength = waitingLine.cardinal();
i f (maxLength < glLengt h)
maxLengt h = qlLengt h;
hol d(random negexp(1/11.0));
activate(new CarArrival ());

}

cl ass CarWashi ng extends Process {
Car theCar;
Car Washer theCarWasher;

CarWashing(Car c) { theCar = c; }

public void actions() {
if (theCar == (Car) waitingLine.first() &&
I'tearoomenpty()) {
t heCar. out () ;
t heCar Washer = (CarWasher) tearoomfirst();
t heCar Washer . out () ;
if (!waitingLine.enpty())
acti vat e(new Car Washi ng(
(Car) waitingLine.first()));
hol d(10) ;
t heCar Washer . i nt o(t ear oom ;
noCf Cust oner s++;
t hroughTine += tine() - theCar.entryTine;
if (!waitingLine.enpty())
acti vat e(new Car Washi ng(
(Car) waitingLine.first()));

}

public static void main(String args[])
activate(new CarWashSi nul ation(1));
activate(new CarWashSi nul ation(2));

{

N-2

O. Sour ce code of thej avaCor out i ne package

package javaCorouti ne;

public abstract class Coroutine {
protected abstract void body();

public static final void resume(Coroutine next) {

if (next == null)

error("resume non-existing coroutine");
if (next.term nated)

error("resume term nated coroutine");
if (next.caller !'= null)

error("resunme attached coroutine");
if (next == current)

return;
while (next.callee != null)

next = next.call ee;

next.enter();

}
public static final void call (Coroutine next) {
if (next == null)
error("call non-existing coroutine");
i f (next.term nated)
error("call term nated coroutine");
if (next.caller !'= null)
error("call attached coroutine");
if (current '= null)
current.cal |l ee = next;
next.caller = current;
while (next.callee !'= null)
next = next.call ee;
if (next == current)
error("call operating coroutine");
next.enter();
}

public static final void detach() {
Coroutine next = current.caller
if (next '= null) {
current.caller = next.callee = null
next.enter();

else if (main !'= null && current != main)
mai n. enter();

public static final Coroutine currentCoroutine() {
return current;

public static final Coroutine mainCoroutine() {
return main;
}

private final class Runner extends Thread {
Cor outi ne myCorouti ne;
Runner next Free;

Runner (Coroutine c) {
nmyCor outi ne = c;
set Daenon(true);

}

public void run() {
while (true) {
nmyCor out i ne. body() ;
if (!'nyCoroutine.term nated) ({
nyCoroutine.term nated = true;
det ach();

if (nyCoroutine == Coroutine. min) {
Coroutine.current = null
synchroni zed(Runner. cl ass) {
Coroutine.main = null
Runner. cl ass. notify();

}

return;

next Free = firstFree;
firstFree = this;
try {
synchroni zed(t his) {
wai t();

} catch (InterruptedException e) {}

}
void go() {
if ('isAlive())
start();
el se
synchroni zed(this) {
notify();
}

private static void error(String msg) {
t hr ow new Runti meExcepti on(nsg);
}

private static Coroutine current, main
private Coroutine caller, callee;

prot ected bool ean tern nated;

private Runner nyRunner;

private static Runner firstFree;

private void enter() {
if (myRunner == null) {

if (firstFree == null)
nyRunner = new Runner (this);

el se {
nyRunner = firstFree;
firstFree = firstFree. nextFree;
nmyRunner. myCoroutine = this;

}

if (min == null) {

main = current = this;
nmyRunner . go() ;
synchroni zed(Runner. cl ass) {

try {

while (main !'= null)
Runner.class.wait();

} catch (InterruptedException e) {}

}

return;
}
Coroutine old current = current;
synchroni zed(ol d_current. myRunner) {
current = this;
nmyRunner . go() ;
if (old_current.term nated)
return;
try {
ol d_current. myRunner.wait();
} catch(InterruptedException e) {}

P. Test program for j avaCor outi ne

i mport javaCoroutine.*;

public class CoroutineTest extends Coroutine {
CoroutineTest(char cnd) { conmand = cnd; }

Coroutine a, b, c;
char command;

cl ass A extends Coroutine {
public void body() {
Systemout. print("al"); detach();
Systemout.print("a2"); call(c = new C());
Systemout.print("a3"); call(b);
Systemout.print("a4"); detach();

}

class B extends Coroutine {
public void body() {
Systemout.print("b1"); detach();
Systemout. print("b2"); resume(c);
Systemout.print("b3"); detach();

cl ass C extends Coroutine {
public void body() {

Systemout.print("cl"); detach();
Systemout.print("c2\n");
Systemout.println("==>" + conmand);
if (command == 'r")

resune(a);
else if (command == 'c¢')

call (a);
el se

detach();
Systemout.print("c3"); detach();
Systemout.print("c4");

}
public void body() {

Systemout.print("nl"); call(a = new A());
Systemout.print("m"); call(b = new B())
Systemout.print("n8"); resunme(a);
Systemout.print("m"); resune(c);
Systemout. print("nb\n");

public static void main(String args[]) {
resune(new CoroutineTest('r'));
resune(new CoroutineTest('c'));
resune(new CoroutineTest('x"));
}
}
/*

Expected out put:

mlaln?blnBa2cla3b2c2
==> r

b3a4mic3nb
nmlalnblnBa2cla3b2c2
==> C

b3a4c3mic4nbd
mlalnblnBa2cla3b2c2
==> X

mic3nb

*/

P-2

	1. Introduction
	2. Discrete event simulation in Java
	2.1 The car wash problem
	2.2 Three approaches for discrete event simulation
	2.3 Solving the car wash problem by event-based simulation
	2.4 Solving the car wash problem by activity-based simulation
	2.5 Solving the car wash problem by mixed event-activity-based simulation
	2.6 Solving the car wash problem by process-based simulation

	3. A package for coroutine sequencing in Java
	3.1 The coroutine concept
	3.2 The user facilities of the javaCoroutine package
	3.3 Implementation of the javaCoroutine pacakge
	3.3.1 Version 1: Synchronization by busy waiting
	3.3.2 Version 2: Synchronization by resume and suspend
	3.3.3 Version 3: Synchonization by wait and interrupt
	3.3.4 Version 4: Synchronization by wait and notifyAll
	3.3.5 Version 5: Synchronization by wait and notify
	3.3.6 Version 6: Protecting the coroutines
	3.3.7 Version 7: Improving the efficiency
	3.3.8 Version 8: Mutual exclusion of main coroutines
	3.3.9 Version 9: Ending the coroutines

	4. Implementation of javaSimulation
	5. Evaluation of javaSimulation
	6. Conclusions
	References
	Appendices
	A. The simset package
	B. Source code of the simset package
	C. The random package
	D. Source code of the random package
	E. Source code of the simulation.event package
	F. Car wash simulation with simulation.event
	G. Source code of the simulation.activity package
	H. Car wash simulation with simulation.activity
	I. Source code of the simulation.events package
	J. Car wash simulation with simulation.events
	K. Source code of javaSimulation
	L. Process-based car wash simulation with javaSimulation
	M. Event-based car wash simulation with javaSimulation
	N. Activity-based car wash simulation with javaSimulation
	O. Source code of the javaCoroutine package
	P. Test program for javaCoroutine

