
1

DISCO -
a SIMULA-based

language for
continuous combined
and discrete simulation

SIMULATION SOFTWARE Edited by Tuncer I. Oren · University of Ottawa

by
Keld Helsgaun

Department of Computer Science
Roskilde University Center

4000 Roskilde, Denmark

KELD HELSGAUN received his MSc in computer science
and mathematics in 1973 from the University of
Copenhagen in Denmark. For the past five years he
has served as lecturer at Roskilde University Center
in Denmark. His research interests include simula-
tion languages, system theory, and artificial

intelligence.

SUMMARY

DISCO is a SIMULA-based language for the simulation
of systems which contain both continuous and discrete-
event processes. It is a true extension of SIMULA’s
concepts for discrete-event simulation and is capable
of representing and analyzing models including both
types of processes. With the addition of few new con-
cepts, a general yet simple simulation language has
been achieved.

This paper describes the basic concepts of DISCO and
demonstrates through examples the descriptive power
of the language. DISCO is described mainly from the
user’s point of view; its implementation is only
sketched.

INTRODUCTION

A central consideration in the development of a simu-
lation model is the representation of the system in
question.

Properties of the system (such as continuity, simul-

taneity, and interdependence) may make it difficult
to construct such a representation. Moreover, the

description tool, that is, the simulation language,
may prescribe a &dquo;world view&dquo; which makes the task

awkward, or even impossible, to accomplish.

Keywords : combined discrete and continuous simula-
tion, digital simulation (combined systems),
SIMULA, simulation languages

Two extreme views are found in the so-called discrete
and continuous simulation languages.

The discrete simulation languages (such as GPSS,
SII4SCRIPT and SIMULA) stress the viewpoint that state
variables interact discretely, that is, instantaneous-

ly and only at particular points in time (event
times) .

In contrast, the continuous simulation languages
(such as CSMP, DARE, and ACSL) stress the viewpoint
that state variables interact continuously - a view-
point that leads to models expressed by differential
equations.

Most current simulation languages belong to one of
the two types. However, there are systems containing
important interactions between discrete and contin-
uous subsystems so that neither type of language is
adequate by itself for simulation. Both types intro-
duce limitations to the formulation of a model,
limitations which may be so severe that certain

aspects of a system can not be described.

Some continuous simulation languages can accommodate
simple types of discontinuities, such as step func-
tions and hysteresis functions. However, use of
these features often causes serious numerical diffi-
culties. If a fixed-step-size integration algorithm
is used, the accuracy suffers; on the other hand, a

variable-step-size algorithm gives rise to ineffi-

2

ciency, since the step-size is reduced to very small
values in the neighbourhood of a discontinuity.

Systems requiring a combined continuous and discrete
description are typically systems in which discrete
actions are superimposed on continuous subsystems.
Many such systems are found in industry. For exam-

ple, consider a steel-making process. Steel ingots
with different arrival times are heated to a desired

temperature in a furnace. The heating of each ingot
is a continuous process, while arrival and departure
of the ingots are discrete events.

Simulation of industrial systems, however, is not the

only area in which a combined simulation approach may
be appropriate. In fact, there exists a diversity
of systems involving both continuous and discrete
phenomena.

To name a few, first consider treatment of diabetes.
The biochemical reactions are continuous processes.
Injections of insulin and ingestion of food may be
considered as discrete events. Another example is
automobile traffic. The vehicle dynamics constitute
the system’s continuous part, and the queueing and
driver decisions, the discrete part. Lastly, consid-
er the human brain. The biochemical reactions are
continuous processes, whereas the triggering of a
neural impulse is a discrete event.

To describe such mixed systems, it may be necessary
to use a language combining the two types of lan-
guage, a so-called combined-system simulation
language.

One of the first advocates of combined-system simula-
tion languages was Fahrland7 in 1970. As late as
1969 most simulation specialists did not see any
need for combined languages. Today this situation
has changed. More complex systems are simulated, and
the value of combined languages is commonly recog-
nized. The number of software packages developed for
combined-system simulation is rather impressive.16

FORTRAN is the language which is used in most of the
implementations. GASP IV,l8 probably the most used
package for combined simulation, is a collection of
FORTRAN subroutines. In some packages the host lan-

guage is PL/I, for example, PROSIM19 and GASP-PL/I.17
In general these packages are more powerful than
packages based on FORTRAN because of the inherent
properties of PL/I. However, neither FORTRAN nor
PL/I is well suited for system description in that
these languages lead to an inconvenient notation and
often to a lack of generality in the formulation of
the model.

Some few combined-system simulation languages have
their own translator, for example GSL9 and COSY‘‘;
but, for the most part, the target language is
FORTRAN. The COSY translator generates GASP IV pro-
grams, an approach which has the drawback that
GASP IV restrictions are passed on to COSY (for exam-
ple, the data structuring capabilities of COSY which
are as limited as those offered by FORTRAN).

The objective of this paper is to present DISCO, a

SIIIULA-based language for DIScrete and COntinuous
system simulation. This language is an elaboration
of an earlier-described SIMULA class called
COI4BINEDSI?IULATION.~° DISCO is also provided in the
form of a so-called SIMULA class and as such it needs
no special translator or preprocessor.

SIMULA is a general-purpose programming language. 1,5
In addition to the facilities of ALGOL 60, it offers
the class and coroutine concepts, reference varia-
bles, list-handling facilities, discrete-event simu-
lation facilities, and extensive text and input/
output capabilities.

Using SIMULA as host language for a combined-system
simulation language offers several advantages.
First, SIMULA is very well suited for system
description. Its class concept is a powerful tool
for modelling. Class concatenation opens the pros-
pect of representing extremely complex systems by
organizing the model into a hierarchy of submodels.
Second, extra features can be added to SIMULA so

neatly that they appear to be extensions to the
language. Third, SIMULA has excellent facilities
for discrete simulation. Its discrete-process con-
cept is rather strong, making possible process-
oriented as well as activity- and event-oriented
approaches to simulation.ll SIMULA encompasses both
GPSS and SIMSCRIPT, offering the user expressive and
general means for decomposing and describing
systems.l2

DISCO generalizes the process concept of SIMULA to
include continuous processes and interaction between
continuous and discrete processes. A SIMULA user

will find DISCO relatively easy to learn and use.

The following sections introduce DISCO and give
examples of its use. Some knowledge of SIMULA is an
advantage but not a necessity. The basic ideas of

DISCO are accessible without such knowledge.

MODELLING PHILOSOPHY

DISCO builds on SIP.4ULA’s process view of
simulation.258

A system is conceived of as a collection of processes
which undergo active and inactive phases and whose
actions and interactions comprise the behaviour of
the system.

In DISCO a distinction is made between two types of

processes, continuous processes and discrete

processes. Continuous processes undergo active
phases during time intervals and cause continuous
changes of state. In contrast, discrete processes
have instantaneous active phases, called events, and

cause discrete changes in the state of the system.
The events of a discrete process are separated by
periods of inactivity, during which continuous
processes may be active.

Any process may be created, activated, deactivated,
or removed from the system at any time. However,
DISCO permits more than coexistence of separate
processes. It allows processes to communicate with
one another and to influence each other in a com-

pletely general way. Any process may reference and
modify any variable in any other process and may
affect delimiting and sequencing of active phases.

BASIC CONCEPTS

DISCO is a true extension of SIMULA’s system-defined
class for discrete-event simulation, class SIMULA-
TION, so that all the latter’s concepts are avail-
able to the user. Thus, class PROCESS and the event

scheduling constructs (HOLD, activate, etc.) can

readily be used in describing the discrete processes
of a system.

3

In order to make possible description of systems in-

volving continuous processes as well, DISCO provides
the following additional concepts:

class VARIABLE

class CONTINUOUS

procedure WAITUNTIL

The most essential attributes of DISCO are shown in

the class outline below.

SIMULATION class DISCO;
begin

class VARIABLE(STATE); real STATE;
begin

real RATE;
procedure START; ... ;

procedure STOP; ... ;

end;

class CONTINUOUS;
begin

procedure START; ... ;

procedure STOP; ... ;

end;

procedure WAITUNTIL(B) ; name B; Boolean B; ... ;

real DTMIN, DTMAX, MAXABSERROR, MAXRELERROR;

end;

Class VARIABLE

Objects of class VARIABLE can be used to represent
state variables that vary according to ordinary
first-order differential equations.

The value of such a variable is denoted by STATE,
while RATE denotes its derivative with respect to
time. The initial value of STATE is passed as a
parameter on object generation.

After its START-procedure is called, a VARIABLE-

object becomes active, that is to say, its STATE

undergoes &dquo;continuous&dquo; change between discrete events.
The value of STATE is changed according to the value
of RATE, as computed by the active continuous
processes. The active phase will cease when the
object’s STOP-procedure is called.

Example:
An object of class VARIABLE, say X, may be generated
with an initial STATE-value of 3.14 by the statement

X’s attributes STATE and RATE are designated X.STATE
and X.RATE. The object is started and stopped by
calling X.START and X.STOP.

CZass CONTINUOUS

Class CONTINUOUS can be used to describe continuous

processes defined by ordinary differential equations.
The description is given in one or more subclasses
which compute derivatives of state variables.

After its START-procedure is called, a CONTINUOUS-

object becomes active, that is to say, its user-

defined actions are executed &dquo;continuously.&dquo; This
z

active phase will cease when the object’s STOP-
procedure is called.

Example:
A continuous process defined by the two first-order
differential equations (Lotka-Volterra equations)

can be described by the following declaration

CONTINUOUS class DYNAMICS;
begin

X.RATE:=IA+B*Y.STATE)*X.STATE;
Y. RATE:=(C + D *X. STATE) *Y. STATE;

end;

where X and Y are VARIABLE-objects.

An object of this class, say EVOLUTION, is generated
by the statement

EVOLUTION:-new DYNAMICS

and is started and stopped by calling EVOLUTION.START
and EVOLUTION.STOP.

Moreover, by exploiting SIMULA’ class concept it is
possible to define macros with general dummy vari-
ables, as, for example,

CONTINUOUS class FILTER(P,Q,QDOT,R,G);
ref(VARIABLE) P,Q,QDOT; real R,G;
begin

’

Q. RATE:=Q DOT. STATE;
QDOT.RATE:=P.STATE-R*QDOT.STATE-G*Q.STATE;

end;

which defines a filter with input P, output Q, and

parameters Rand G such that

Procedure WAITUNTIL

Procedure WAITUNTIL can be used to schedule a dis-
crete event to occur as soon as a prescribed system
state is reached. Such an event is called a state-

event, in contrast to a time-event which is an event
scheduled to occur at a specified projected point in
time.

WAITUNTIL(B) causes the active discrete process
CURRENT to become passive until the Boolean expres-
sion B evaluates as true. However, this phase of
inactivity may be ended sooner by an explicit .

activation of the waiting process.

The procedure is a generalization of the WAITUNTIL-
construct of the discrete simulation language SOL.14

4

Example:

Typically procedure WAITUNTIL is used to schedule an
. event to occur when a state variable crosses a

prescribed threshold.

By calling

WAITU NTI L(X.STATE> 100)

the active discrete process postpones its actions
until X’s STATE becomes greater than 100.

The state-condition could have been more complex, as

for example in the call

WAITU NTI L(X.STATE> 100 and Y. RATE<0)

In fact, a state-condition may be of arbitrary
complexity.

DTMIN, DTMAX, i’IMXABSERROR_, PIL4XRELERROR

Between the event times the state of the model is

automatically updated in steps of varying size.
DTMIN and DTP~IAX are used to specify the minimum and
the maximum allowable step-sizes. MAXABSERROR and
MAXRELERROR can be used to specify the maximum abso-
lute and maximum relative error allowed in updating
the STATE-values of the active VARIABLE-objects.

Example:

Below is given a complete DISCO program which simu-
lates a predator-prey system. The use of class DISCO
is indicated by prefixing the program with the name
DISCO (line 1). The simulation period is 100 time
units (line 16). Note that the main program
(lines 11-16) is a discrete process (in this example,
the only one) .

1. DISCO
2. begin

3. CONTINUOUS class DYNAMICS;
4. begin
5. X.RATE:=(A+B*Y.STATE)*X.STATE;
6. Y.RATE:=(C+D*X.STATE)*Y.STATE;
7. end;

8. ref(DYNAMICS) EVOLUTION;
9. ref(VARIABLE) X, Y;

10. real A, B, C, D;

11. DTMIN :=0.0001 ; DTMAX:=1; MAXRELERROR:=0.00001;
12. A:= -0.3; B:=0.00002; C:=0.4; D:= -0.0001;
13. X:-new VARIABLE(10001; X.START;
14. Y:-new VARIABLE(100000) ; Y.START;
15. EVOLUTION:-new DYNAMICS; EVOLUTION.START;
16. HOLD(100);

17. end;

The system is known to be cyclic. The period can be
determined through procedure WAITUNTIL by computing
the time interval between two consecutive maximum

points of a state variable, say X. In order to

achieve this the HOLD-statement of line 16 may be

replaced by the following:

begin
real CYCLESTARTTIME;

WAITU NTI L(X. RATE>01;
WAITU NTI L(X. RATE<=01;
comment *** first maximum found ***;

CYCLESTARTTI M E:=TI M E;
WAITUNTIL(X.RATE>O1;
WAITU NTI L(X. RATE<=01;
comment *** second maximum found ***;

OUTTEXT(&dquo;Period =&dquo;);
OUTR EAL(TI M E-CYCLESTARTTI M E,S,12);

end;

A SIMPLE EXAMPLE

The following example shows the use of class
VARIABLE and class CONTINUOUS.

The example has been taken from Reference 21 and has

to do with the launch of a three-stage rocket from
the earth’s surface.

The model has both continuous and discrete elements.

During the rocket’s flight its motion is governed by
well-known physical laws, and its mass decreases con-

tinuously as a result of the expulsion of burnt fuel.
However, when a stage separates from the rest of the
rocket, an instantaneous change of the rocket’s mass
and acceleration takes place.

A complete simulation program is shown in Figure 1.

The continuous motion of the rocket is described in
the class ROCKETMOTION (lines 3-11). The change in
mass takes place at a constant rate, MASS FLOW

(line 5). There are three forces acting upon the
rocket: THRUST, DRAG, and GRAVITY. THRUST is the
force generated by the expulsion of burnt fuel

(line 6), DRAG is the air resistance (line 7), and
GRAVITY is the earth’s gravitational attraction on
the rocket (line 8) .

From Newton’s second law of motion the rocket’s
acceleration can be determined by summing these
three forces and dividing by the rocket’s mass
(line 9). The change of rate of altitude is equal
to the rocket’s velocity (line 10).

The discrete changes (that is, the separation of
stages) are described in the main program
(lines 14-27) .

The rocket’s launch begins when the three VARIABLE-
objects MASS, VELOCITY, and ALTITUDE are generated
and STARTed together with an object of class
ROCKETMOTION (lines 17-20). Each time a stage
separates, discrete changes in MASS, MASSFLOW, FLOW-

VELOCITY, and AREA take place (lines 23 and 26).
These events are scheduled by the procedure HOLD
(lines 21, 24, and 27).

This example illustrates one type of continuous-
discrete interaction, namely, discrete changes of
&dquo;continuous&dquo; variables.

Two other types may also be modelled with DISCO.

The triggering of a discrete event as a consequence
of the fulfilment of a state-condition is one type.
This type can be expressed using the procedure
WAITUNTIL. In the example it is known at which

5

Figure 1 - DISCO program for the rocket example

times stage separation occurs, so the imperative
scheduling procedure HOLD is used to schedule these
events. If this were not the case, for example if
stage separation were dependent on altitude, then

the interrogative scheduling procedure WAITUNTIL
could be used instead, e.g., WAITUNTIL(ALTITUDE.
STATE>25000).

The other type of continuous-discrete interaction
allows for dynamic starting and stopping of contin-
uous processes. This capability makes possible simu-
lation of systems in which the differential equations
themselves vary with time. In the example we could
have represented the rocket’s motion by three con-
tinuous processes, one for each phase of motion. A

stage separation would then cause the current active
continuous process to be stopped and replaced by the
continuous process that corresponds to the next
phase.

THREE EXAMPLES

The descriptive power of DISCO is best appreciated
through examples. This section presents three exam-

ples illustrating DISCO’s capability for modelling
combined problems.

Example 1: Fire-fighting
The first example is a simulation of a fire station.
The model is formulated by R. W. Sierenberg, Delft
University, the Netherlands.

A small city owns one fire station with three fire
engines. Fire alarms are given randomly at exponen-
tially distributed intervals with a mean of six hours.

Each house on fire contains a certain amount of
flammable material. When a fire is discovered, it

already has a certain size. The fire increases with
a rate which is proportional to its size as long as
no extinguishing activity takes place.

At the moment an alarm is given, one fire engine, if
it is available, will be sent to the fire. When a
fire engine reaches the fire and finds out that its
capacity is smaller than the rate with which the fire
increases, it will request assistance by sending a
second alarm for the same fire. The fire engine
returns to the fire station after the fire is put out
or when all inflammable material is consumed.

A program for simulating the fire station is shown in
Figure 2. The program should be fairly self-
explanatory.

Class HOUSEONFIRE (lines 3-18) describes the discrete
events associated with a house on fire: alarm call

(line 14) and fire termination (line 17).

Class BURNING (lines 19-24) describes, through differ-
ential equations, the continuous process associated
with a house on fire.

Class FIREENGINE (lines 25-45) defines the fire
engines.

An INCENDIARY-object (lines 46-48) sets houses on
fire.

The simulation period is one month (line 56).

6

Figure 2 - DISCO program for the fire-fighting example

7

Example 2: Chemical reactor system
The simulation of a chemical reaction process is an

example used by Hurst and Pritskerl3 to illustrate
GASP IV’s capability for combined simulation. To

facilitate a comparison between DISCO and GASP, the

system description given by Hurst and Pritsker is
closely followed.

A chemical reactor system consists of a compressor,
a surge tank, and four reactors (see Figure 3).

The reactors are charged with reactants which are
supplied with hydrogen from the compressor through
the surge tank. The reactants react under pressure
with the hydrogen which causes the concentration of
the reactants to decrease. The effective pressure in
each reactor is automatically adjusted to the minimum
of the surge tank pressure and critical pressure
(100 psia).

Figure 3 - Schematic diagram of the reactor system

When the concentration of a reactant decreases to
10% of its initial value, the reaction is considered

complete and the reactor is turned off and made ready
for a fresh batch of reactant.

Initially the surge tank pressure is 500 psia. If
the pressure falls below the critical value of 100

psia, the last reactor started will be turned off

immediately. The other reactors will continue, but
no reactor will be started as long as surge tank
pressure is below a nominal pressure of 150 psia.

If two or more reactors can start at the same time,
the reactor with the highest value of accumulated
batch processing time will be started first.

The reactor system involves both discrete events and
continuous state variables. The starting and stop-
ping of reactors are discrete events. Between these
events concentration and pressure vary continuously.

The program in Figure 4 gives a precise description
of the system.

The discrete processes of the system are described
in the classes REACTOR and INTERRUPTER.

Class REACTOR (lines 3-22) describes the reactors
and associated events. Starting a reactor is allowed
only if the surge-tank pressure is above the nominal
pressure (line 13). When the reaction process is

completed, the reactor is stopped (line 16), cleaned,
and recharged for a fresh batch (line 20).

Class INTERRUPTER (lines 23-30) describes the dis-
crete events occuring whenever surge-tank pressure

drops to the critical pressure. An INTERRUPTER-

object sees that the last reactor started is turned
off when the pressure falls below the critical pres-
sure. Further, the object ensures that the effective
pressure in the reactors is the minimum of surge
tank pressure and the critical pressure.

The continuous processes of the system are described
in the class REACTIONS (lines 31-43). The class is
used to define a single continuous process having a
variable number of differential equations. The

process computes the active reactors’ rate of change
in concentration (lines 37-38) and the rate of

change in surge-tank pressure (line 42).

The main program (lines 47-57) specifies the initial
conditions, the step-size and accuracy requirements,
and the length of the simulation period. Initially
the four reactors are scheduled to be turned on at .

intervals of half an hour (lines 51-54). The simu-
lation period is 150 hours (line 57).

The whole program takes only 58 program lines. In

comparison, the corresponding GASP IV programl3,
without reporting and without comments, takes about
220 lines. Note that the DISCO program has no com-

ments ; the high degree of structure makes the
program on the whole self-explanatory.

Example 3: DOMINO game

This example was suggested by F. E. Cellier3 as a
benchmark problem that can be used to test the
capability of a variable-structure simulation, that
is, a simulation in which the number of differential

equations varies with time.

Fifty-five identical stones of the DOMINO game are
placed vertically upright in a sequence with a dis-
tance of D space units between any two stones. If
the first stone is pushed, a chain reaction is
started and all stones fall flat.

The aim of the simulation is to determine the dis-
tance (D) between successive stones which maximizes
the velocity (V) of the chain.

A precise description of the model and the experiment
is given in the program in Figure 5. The program
illustrates how the specification of the model (class
DOMINOGM1E, lines 2-38) can be separated from the
description of the experiment.

A STONE-object (lines 5-21) represents a falling stone
and the associated discrete events: the pushing of
the next stone (line 16) and the termination of the
fall (line 20).

The fall is governed by Newton’s law. For each stone
we have the equation

where 0 is the moment of inertia the inclination,
m the mass, R half the side diagonal, and g the
acceleration of gravity (see Figure 6).

In class STONEFALL (lines 22-27) this second-order
differential equation is formulated by means of two
first-order differential equations.

Each falling stone is associated with one STONEFALL-
object (line 12). A stone which is not moving, either

8

Figure 4 - DISCO program for the reactor example

9

Figure 5 - DISCO program for the DOMINO example

10

Figure 6 - Graphical description of a falling
domino stone

because it has not yet been pushed, or because it has

already fallen and lies still, is not associated with
such an object. Thus, the number of differential

equations will vary with time.

The procedure MAXIMUM (lines 42-54) determines a

maximum of the function Y=F(X) on the interval [A,B].
The maximum point is found within the specified
tolerance TOL by using the golden section search
method.

For the given parameters the program produces the
following output:

The maximum chain velocity 0.628m/s
is reached with a distance of 0.0204m between stones.

This example illustrates DISCO’s capability for
variable structure simulation. A feature of DISCO
which is not demonstrated in the example is its

capacity for direct communication between continuous
processes. In the model it is assumed that a falling
stone does not interact with any other stone, except
at the very moment of impact. Thus, friction between
stones is not part of the model. If friction were

included, the falling stones would interact
&dquo;continuously&dquo; exchanging information about their
state variables. Since DISCO permits general commu-
nication between processes, including friction would
be no problem.

ADDITIONAL FACILITIES

The examples in the preceding section illustrate the
application of the essential facilities of DISCO.
In this section some additional facilities are

briefly mentioned.

Reporting
A class called REPORTER is provided for gathering in-
formation about model behaviour. Each REPORTER-

object may have its user-defined actions executed
with a specified frequency, namely, at uniformly
spaced intervals, at the end of each time step, or

only at event times. Facilities for producing line-
printer plots and histogram are available for display-
ing information gathered during a simulation.

Integration
The user is offered the choice of six preprogrammed
integration methods: Runge-Kutta-England, Euler,
Trapez, Adams, Simpson, and Improved Heun. Any of
these methods may be chosen at any time during a
simulation. If the user does not specify an inte-
gration method, the program uses the fourth-order

Runge-Kutta-England method.6 The integration step-
size is variable and is automatically adjusted to
meet specified accuracy requirements. The user may

specify error bounds individually for each VARIABLE-
object and may determine the course of action when
accuracy requirements can not be met.

In a continuous process the order in which the equa-
tions are written is left to the user. Because

DISCO does not change the execution sequence of the
equations, a correct sequencing is the responsibility
of the user. To prevent unintentional delays from

being introduced into the model dynamics, the user
must make sure that the variables occurring on the
right-hand side of an equation have values which
reflect the current state of the system. The user
can determine the order of evaluation within each

continuous process, and the continuous processes
themselves may be ranked by giving each a priority.
Usually a correct evaluation order can be achieved
by these means. An implicit function facility can
be used to circumvent algebraic loops in the system
of equations.

Additionally, it is possible to describe systems
using difference equations. This capability may,
for example, be used to specify models of the
systems dynamics type.

Event sequencing
Discrete processes operate in quas2-paraZZeZ which
means that concurrent events are executed in a cer-
tain order. Since the ordering may be important,
the user must be able to determine their sequence of

execution. SIMULA users are well acquainted with
the language’s facilities for sequencing time-events
(before, after, prior, etc.). State-events, that is,
events projected by procedure WAITUNTIL, can be or-
dered by giving each a priority, WAITPRIORITY (an
example of this feature is illustrated in Figure 4,
lines 12-13).

UtiZity software
The utility software includes among other things
facilities for handling higher-order differential
equations, ideal and exponential delays, and
tabulated functions.

IMPLEMENTATION

A simulation is controlled behind the scenes, so to

speak, by an object called the monitor.

It is the monitor’s responsibility to see that

(1) The model state varies &dquo;continuously&dquo; between
events

(2) Discrete events take place at the right time

(3) Information about the model’s behaviour is

gathered.

The monitor ensures that all continuous parts of the
model operate in true parallel and are fully syn-
chronized with the quasi-parallel discrete processes.

11

TIME in the model is advanced by steps of varying
size. The monitor adjusts step-size so that no
events occur within a step and so that desired
accuracy in updating state variables is maintained.
Roundoff errors are reduced by quasi-double-
precision summation.15

The monitor causes the events to take place at the
right time. The event times of state-events are
determined with an accuracy of DTMIN using bisection
and fifth-order Hermite interpolation.

The monitor controls objects of class REPORTER. Each

REPORTER-object has its user-defined actions executed
with a specified frequency. Hermite interpolation is
also used here to provide an efficient and accurate
determination of the model’s state at the reporting
times.

The working cycle of the monitor is outlined below.

while more projected events do
begin

execute all active CONTINUOUS-objects;
execute all active REPORTER-objects;

while no event now do

begin
take an integration step fulfilling accuracy requirements;

if a state-event was passed then
determine the event time and reduce step accordingly;

execute active REPORTER-objects when requested;
’

end;

let an event take place now;
end;

DESIGN OBJECTIVES

In the construction of DISCO the following design
objectives have been emphasized.

Convenience

Most importantly, class DISCO is a convenient tool

both for describing and simulating systems.

The class is a logical extension of class SIMULATION,
SI~lliLA’s conceptual framework for discrete-event
simulation. As such all of class SIP9ULATION’s
facilities are available. Few new concepts together
with a convenient notation make DISCO easy to learn
and use. At Roskilde University Center we have used
it successfully in our undergraduate courses having
to do with modelling and simulation. The sharp dis-
tinction between discrete and continuous processes
has aided in the conceptualization of combined
systems.

GeneraZ2ty
Another important objective is generality.

DISCO permits general interaction between processes
and ensures their synchronous operation. In this

respect DISCO differs from a similar SIMULA-class
called CADSIM . 20

Model structures can be changed by the addition, sub-

stitution, or deletion of any type of process, thus

allowing simulation of systems with a variable
structure.

ExtendabiZ2ty
SIMULA’s class concept has been consistently exploit-
ed to facilitate construction of special and general-
purpose extensions of class DISCO. For example,
through class concatenation (that is, by defining
subclasses) the user can build a library of pre-
compiled processes.

Security
Protection against and detection of errors are built-
in. For example, attempts to interfere with process
synchronization are detected; that is, inappropriate
process activation and deactivation is discovered and

reported to the user.

Efficiency
Reasonable execution speed is important in the light
of the well-known fact that system simulation is a

notorious consumer of computer time.

Overall, attempts have been made to hold execution
time down. In particular, integration and interpola-
tion strategies are chosen with speed in mind.

SI~4ULA’s dynamic storage allocation helps keep
storage requirements down. Components enter and leave
the system; only those currently present need be
represented in the computer.

Portability
The last design objective is portability. Clasps
DISCO (about 2100 lines of SI14ULA 67 Common Base
Language5) is completely machine-independent.

DISCO may be obtained at a nominal cost by writing to:

Department of Computer Science
Roskilde University Center
4000 Roskilde, Denmark

Attention: Keld Helsgaun

REFERENCES

1 BIRTWITSLTE, G. DAHL, O.J. MYHRHAUG, B.

NYGAARD, K.

SIMULA BEGIN
Studentlitteratur Lund 1973

2 BLUNDEN, G.P. KRASNOW, H.S.
The Process Concept as a Basis for Simulation
Simulation vol. 9 no. 2 August 1967
pp. 89-93

3 CELLIER, C.F.
Combined Continuous Discrete Simulation by Use
of Digital Computers: Techniques and Tools
PhD thesis Swiss Federal Institute of Technology
Zurich 1979

4 CELLIER, C.F. BONGULIELr.4I, A.P.
The COSY Simulation Language
IMACS Congress on Simulation of Systems Sorrento

September 24-28, 1979 pp. 271-281

12

5 DAHL, O.J. MYHRHAUG, B. NYGAARD, K.

SIMULA 67 Common Base Language
Norwegian Computing Center Publication S-22
Oslo 1971

6 ENGLAND, R.

Error Estimates for Runge-Kutta Type Solutions
to Systems of Ordinary Differential Equations
Computer Journal vol. 12 May 1969 pp. 166-170

7 FAHRLAND, D.A.
Combined Discrete-Event/Continuous-Systems
Simulation
Simulation vol. 14 no. 2 February 1970
pp. 61-72

8 FRANTA, W.R.
The Process View of Simulation
North-Holland New York 1977

9 GOLDEN, D.G. SHOEFFLER, J.D.

GSL - a Combined Continuous and Discrete Simulation

Language
Simulation vol. 20 no. 1 January 1973
pp. 1-8

10 HELSGAUN, K.

COMBINEDSIMULATION - a SIMULA-Class for Combined
Continuous and Discrete Simulation
Proceedings Sixth SIMULA Users’ Conference
Lisbon 1978 pp. 30-35

11 HILLS, P.R.
An Introduction to Simulation Using SIMULA
Norwegian Computing Center Publication S-55
Oslo 1973

12 HOULE, P.A. FRANTA, W.R.
On the Structural Concepts of SIMULA and SimuZa-
tion Modelling
Proceedings 1974 Summer Computer Simulation
Conference Houston, Texas 1974 pp. 55-60

13 HURST, N.R. PRITSKER, A.A.B.
Simulation of a Chemical Reaction Process Using
GASP IV

Simulation vol. 21 no. 3 September 1973
pp. 71-75

14 KNUTH, D.E. McNELEY, J.L.
SOL - a Symbolic Language for General-Purpose
Systems Simulation
IEEE Transactions on Electronic Computation
vol. EC-13 no. 4 August 1964

15 MØLLER, O.

Quasi Double-Precision in Floating Point Addition
BIT vol. 5 pp. 17-50, 251-255

16 ÖREN, T.I.

Software for Simulation of Combined Continuous
and Discrete Systems: a State-of-the-Art Review
Simulation vol. 28 no. 2 February 1977
pp. 33-45

17 PRITSKER, A.A.B. YOUNG, R.E.
Simulation with GASP-PL/I
VJi 1 ey New York 1975

18 PRITSKER, A.A.B. HURST, N.R.

GASP IV: a Combined Continuous-Discrete FORTRAN-
Based Simulation Language
Simulation vol. 21 no. 3 September 1973
pp. 65-70

19 9 SIERENBERG, R.VJ.

Combined Discrete and Continuous Simulation with
PROSIM

Proceedings Simulation ’77 (M.H. Hamza, editor)

20 SIM, R.

CADSIP,L Users’ Guide and Reference Manual
Imperial College Publication no. 75/23 London

1975

21 SPECHART, F.H. GREEN, W.L.
A Guide to Using CSMP- the Continuous System
Modelling Program
Prentice Hall Englewood Cliffs, New Jersey
1976 pp. 35-39

