A Portable C++ Library for Coroutine Sequencing

Keld Helsgaun
E-mail: keld@ruc.dk

Department of Computer Science
Roskilde University
DK-4000 Roskilde, Denmark

Abstract

This report describes a portable C++ library for coroutine se-
guencing. The facilities of the library are based on the corou-
tine primitives provided by the programming language
SIMULA. The implementation of the library is described and
examples of its use are given. One of the examplesis alibrary
for process-oriented discrete event simulation.

Keywords: coroutine, simulation, backtrack programming, C++,
SIMULA, control extension.

1. Introduction

Coroutines can be used to describe the solutions of agorithmic problems that
are otherwise hard to describe [1]. Coroutines provide the means to organize
the execution of a program as several sequential processes.

A coroutine is an object that has its own stack of procedure activations. A co-
routine may temporarily suspend its execution and another coroutine may be
executed. A suspended coroutine may later be resumed at the point where it
was suspended.

Thisform of sequencing is called alternation. Figure 1.1 shows a simple ex-
ample of aternation between two coroutines.

coroutine A coroutine B

Resu*e(B) /41}9(&

4—

*E /P
Resurre(B) —

4
[Resume(A

v

Figure 1.1 Alternation between two coroutines

Coroutines have demonstrated their usefulness through many years of usein
SIMULA, for example. An illustrative example is a syntax analyzer calling a
lexical analyzer for the next token. Here, the execution of the analyzers may
be interleaved by implementing each of them as a coroutine. Another example
is discrete event simulation. Here, coroutines can be used to model proc-
esses, i.e., objects that may undergo active and interactive phases during their
lifetimes.

This report describes alibrary for coroutine sequencing in C++. The imple-
mentation does not use any platform-specific features and will run unmodi-
fied on most platforms. The facilities of the library are based on the coroutine
primitives provided by the programming language SIMULA [2, 3]. Both
symmetric and semi-Symmetric sequencing is supported.

Therest of this paper is organized as follows. Section 2 gives an overview of
the library. Some examples of its use are given in Section 3. Itsimplementa-
tion is described in Section 4.

Section 5 describes alibrary for discrete event simulation. The library isan
implementation in C++ of SIMULA’s built-in facilities for process-oriented
discrete event simulation. An example of use of the library isgiven in Section
6.

The combination of coroutine sequencing and backtrack programming is ex-
plored in Section 7. Finally, some conclusions are made in Section 8.

2. The coroutine library

This section gives a brief description of the coroutine library from the user's
point of view.

A coroutine program is composed of a collection of coroutines, which runin
quasi-parallel with one another. Each coroutine is an object with its own exe-
cution-state, so that it may be suspended and resumed. A coroutine object
provides the execution context for a function, called Rout i ne, which de-
scribes the actions of the coroutine.

The library provides class Cor outi ne for writing coroutine programs.
Corouti ne is an abstract class. Objects can be created as instances of
Cor out i ne-derived classes that implement the pure virtual function
Rout i ne. As aconsequence of creation, the current execution location of
the coroutineisinitialized at the start point of Rout i ne.

The interface of the coroutinelibrary (cor out i ne. h) is sketched out be-
low.

#i f ndef Sequenci ng
#defi ne Sequencing(S) { ...; S; }

cl ass Coroutine {
pr ot ect ed:

virtual void Routine() = 0;
b

voi d Resunme(Coroutine *C)
void Call (Coroutine *C);
voi d Detach();

Coroutine *Current Coroutine();
Corouti ne *Mai nCoroutine();

#endi f

Control can be transferred to a coroutine C by one of two operations:

Resume(C)
Call (C)

Coroutine C resumes its execution from its current execution location, which
normally coincides with the point where it last left off. The current coroutine
is suspended within the Resune or Cal | operation, which isonly com-
pleted at the subsequent resumption.

TheCal | operation establishes the current coroutine as C's caller. A subor-
dinate relationship exists between caller and called coroutines. Cis said to be
attached to its caller.

The current coroutine can relinquish control to its caller by means of the op-
eration

Det ach()

The caller resumes its execution from the point where it last |eft off. The cur-
rent coroutine is suspended within the Det ach operation, which is only
completed at the subsequent resumption.

The function Cur r ent Cor out i ne may be used to get a pointer to the cur-
rently executing coroutine.

A coroutine corresponding to the main program exists at the beginning of
program execution. A pointer to this coroutine is provided through the func-
tionMai nCor out i ne.

Below is shown a complete coroutine program. The program shows the use
of theResume function for coroutine alternation asillustrated in Figure 1.1.
The macro Sequenci ng isused in the last line to make the main program
behave as a coroutine.

#i ncl ude "coroutine. h"
#i ncl ude <i ostream h>

Coroutine *A *B;

class CoA : public Coroutine {
voi d Routine() {
cout << "A1 ";
Resurne(B) ;
cout << "A2 "
Resune(B);
cout << "A3 ";

b
class CoB : public Coroutine {

voi d Routine() {
cout << "B1 ";

Resune(A);
cout << "B2 ";
Resure(A);
cout << "B3 "
}
b
voi d Mai nProgran() {
A = new CoA
B = new CoB;
Resune(A) ;
cout << "STOP ";
}

int main() Sequencing(Mi nProgran())

Execution of this program produces the following (correct) output:
Al Bl A2 B2 A3 STOP

A coroutine may be in one of four states of execution at any time: attached,
detached, resumed or terminated. Figure 2.1 shows the possible state tran-
sitions of a coroutine.

Resume
Det ach
Cal | Det ach end Rout i ne

end Rout i ne ,

Figure 2.1 Execution states of a coroutine

A coroutine program consists of components. Each component is a chain of
coroutines. The head of the component is a detached or resumed coroutine.
The other coroutines are attached to the head, either directly or through other
coroutines.

The main program corresponds to a detached coroutine, and as such it isthe
head of a component. This component is called the main component.

Exactly one component is operative at any time. Any non-operative compo-
nent has an associated reactivation point, which identifies the program point
where execution will continue if and when the component is activated (by
Resunme or Cal |).

When calling Det ach there are two cases:

1) The coroutineis attached. In this case, the coroutine is detached, its exe-
cution is suspended, and execution continues at the reactivation point of
the component to which the coroutine was attached.

2) The coroutineisresumed. In this case, its execution is suspended, and
execution continues at the reactivation point of the main component.

Termination of a coroutine's Rout i ne function has the same effect as a
Det ach cal, except that the coroutine is terminated, not detached. As a con-
sequence, it attains no reactivation point and it loses its status as a component
head.

A call Resume(C) causes the execution of the current operative component
to be suspended and execution to be continued at the reactivation point of C.
The call constitutes an error in the following cases.

CisNULL
Cisattached
Cisterminated

A call Cal | (C) causesthe execution of the current operative component to
be suspended and execution to be continued at the reactivation point of C. In
addition, C becomes attached to the calling component. The call congtitutes an
error in the following cases:

CisNULL
Cisattached
Cisresumed
Cisterminated

A coroutine program using only Resume and Det ach is said to use sym-
metric coroutine sequencing. If only Cal | and Det ach are used, the pro-
gram is said to use semi-symmetric coroutine sequencing. In the latter case,
the coroutines are called semi-coroutines.

3. Examples
3. 1 A simple dice game

The following program simulates four people playing a simple dice game.
The players, represented as coroutines, take turns at throwing a die. The first
player to accumulate 100 pips wins and prints his identification.

The Pl ayer -objects are kept in acircular list. When a Pl ayer -object be-
comes active, it throws the die by selecting a random integer between 1 and
6. If the Pl ayer -object has not won, it resumes the next Pl ayer -object in
the circle. Otherwise, it terminates, causing the main program to be resumed.

#i ncl ude "coroutine. h"
#i ncl ude <stdlib. h>
#i ncl ude <i ostream h>

class Player : public Coroutine {
publi c:

int Id;

Pl ayer *Next;

Player(int id) : Id(id) {}

voi d Routine() {
int Sum = 0;
while ((Sum += rand() %6+1) < 100)
Resure(Next) ;
cout << "The winner is player " << Id << endl;
}
b

voi d Di ceGane(int Players) {
Pl ayer *FirstPlayer = new Pl ayer (1),
*p = FirstPlayer;
for (int i = 2; i <= Players; i++, p = p->Next)
p- >Next = new Pl ayer (i);
p- >Next = FirstPlayer;
Resume(Fi rst Pl ayer);

}

int main() Sequenci ng(Di ceGane(4))

The program above uses symmetric coroutines. Alternatively, semi-corouti-
nes could have been used. In the program below, the main program acts as
master, while the players act as slaves. The main program uses the primitive
Cal | to make the players throw the die in turn. After throwing the die, a
player transfers control to the main program by calling Det ach.

#i ncl ude "coroutine. h"
#i ncl ude <stdlib. h>
#i ncl ude <i ostream h>

class Player : public Coroutine {
publi c:
int Sum |d;
Pl ayer *Next;
Player(int id) : 1Id(id) { Sum= 0; }

voi d Routine() {
for (5;) {
Sum += rand() %6+1;
Det ach() ;

b

voi d Di ceGane(int Players) {
Pl ayer *FirstPlayer = new Player(1),
*p = FirstPlayer;
for (int i = 2; i <= Players; i++, p = p->Next)
p- >Next = new Pl ayer(i);
p- >Next = FirstPlayer;
for (p = FirstPlayer; p->Sum < 100; p = p->Next)
Call(p);
cout << "The winner is player " << p->ld << endl;

}

int main() Sequencing(Di ceGane(4))

3.2 Generation of permutations

Class Per nmut er shown below can be used to generate all permutations of
integers between 1 and n, where n is a parameter to the constructor of the

class. An object of the

class acts as a semi-coroutine. Each time the object is

Cal | ed, it makes the next permutation available in the integer array p. The

edementsp[1], p[2],

..., p[n] containthe permutation. When al permu-

tations have been generated, the integer member Mor e (initially 1) is set to
zero. The permutations are generated using the recursive function Per nut e.

class Permuter : public Coroutine {
publi c:
int N, *p, Mre;
Permuter(int n) : N(n) { p = newint[N+1]; }
void Pernmute(int k) {
if (k == 1)
Det ach() ;
el se {
Per mut e(k-1);
for (int i =1; i <Kk; i++) {
int g =p[i]; p[i] = p[k]; p[k] = q;
Per mut e(k-1);
} a =npli]l; pli] = p[kl; p[k] = a;
}
}
voi d Routine() {
for (int i =1; i <= N, i++)
pli] =1;
More = 1,
Per mut e(N) ;
More = O;
}
1

The following program uses class Per nut er to print all permutations of the
integers between 1 and 5.

10

void PrintPernutations(int n) {
Permuter *P = new Pernuter(n);

Call (P);
while (P->Mre) {
for (int i =1; i <=n; i++)

cout << P->p[i] << " "
cout << endl;
Call (P);

}

int main() Sequencing(PrintPernutations(5))

11

3.3 Text transfor mation

Consider the following problem [4, 5]. A text is to be read from cards and
printed on aline printer. Each card contains 80 characters, but the line printer
prints 125 characters on each line. We want to pack as many characters as
possible on each output line, marking the transition from one card to the next
merely by the insertion of an extra space. In the text a consecutive pair of as-
terisksisto bereplaced by a‘~’. The end of the text is marked by the special
character ‘= .

The program given solves this problem by means of the following five co-
routines:

Reader fills, on each resumption the array Car d with 80
characters from the next card.

Di sassenbl er takesthe charactersfromthearray Car d and deliv-
ers them one by one to the squasher (through the
globd character variablec1).

Squasher performs the transformation on pairs of asterisks,
and outputs the characters one by one to the assem-
bler (through the global character variablec2).

Assenbl er groups the characters delivered by the squasher into
lines, and deliverseach lineinthe array Li ne to the
printer.

Printer will, on each resumption, print the characters from
thearray Li ne on the next line on paper.

In the present implementation the operations of Reader and Pri nt er are
simulated using the standard 1/0O streamsin C++, ci n andcout .

12

#i ncl ude "coroutine. h"
#i ncl ude <i ostream h>

const int CardLength = 80, LineLength = 125

char Card[CardLength], Line[LineLength], c1, c2

Coroutine *theReader, *theDi sassenbler, *theSqguasher
*t heAssenbl er, *thePrinter;

cl ass Reader : public Coroutine {
void Routine() {
for (;:) {
for (int i =0; i < CardLength; i++)
cin > Card[i];
Resune(t heDi sassenbl er) ;

b

cl ass Di sassenbler : public Coroutine {
voi d Routine() {

for (;;) {
Resune(t heReader) ;
for (int i = 0; i < CardLength; i++) {
cl = Card[i]; Resune(theSquasher);
}
Cl:l LI

Resune(theSquasher);

H

cl ass Squasher : public Coroutine {
void Routine() {

for (5:) {
if (cl =="*") {
Resune(t heDi sassenbl er) ;
if (cl =="'%*")
c2 = 'N'; Resune(theAssenbler);
el se {
c2 = '*'; Resune(theAssenbler);
c2 = cl,
}
}
el se
c2 = cl,

Resune(t heAssenbl er) ;
Resune(t heDi sassenbl er);

13

cl ass Assenbler : public Coroutine {
void Routine() {

for (55) {
for (int i =0; i < LineLength; i++) {
Line[i] = c2;
if (c2 =="+") {
whil e (++i < LineLength)
Line[i] =" ";

Resune(thePrinter);
Detach(); // back to main program

Resune(t heSquasher) ;

Resune(t hePrinter);

b

class Printer : public Coroutine {
void Routine() {
for (;:) {
for (int i = 0; i < LineLength; i++)
cout << Line[i];
cout << endl;
Resume(t heAssenbl er) ;

H

void Text Transformation() {
t heReader = new Reader();
t heDi sassenbl er = new Di sassenbl er();
t heSquasher = new Squasher();
t heAssenbl er = new Assenbl er();
thePrinter = new Printer();
Resure(t heDi sassenbl er);

}

int main() Sequencing(TextTransformation())

14

3.4 Two simple generators

A semi-coroutine may be employed when a generator is needed. The purpose
of agenerator isto produce a sequence of outputs. Each time the generator is
called, it produces the next outpui.

3.4.1 A random number generator

Class Randomshown below can be used to generate a sequence of pseudo-
random integersin the interval from 0 to 32767. The generator produces the
same sequence of numbers asthe standard C library functionr and. The next
random number is obtained as a result of calling the public member function
Next . The generator seed may be given as a parameter to the constructor.

class Rand : public Coroutine {
publi c:
Rand(int Seed = 1) : U(Seed) {}
unsigned int Next() {
Cal | (this);
return (unsigned int) (U 65536) % 32768;
}
private:
void Routine() {
for (;;) {
U = U*1103515245 + 12345;
Det ach() ;

}

unsi gned | ong U,

s

A small test program that prints a sequence of 20 pseudo-random numbersis
shown below.

voi d RandTest () {
Rand *R = new Rand;
for (int i =1; i <= 20; i++)
cout << R->Next() << endl;

}
int main() Sequenci ng(RandTest ())

15

3.4.2 A Fibonacci number generator

The Fibonacci numbers are integers defined by the following recurrence rela-

tion

Fn = Fn—l + Fn_z, fOI’ ns3 2W|th FO: Fl =1.
This defines the sequence

1,1, 2,3,5,8, 13, 21, 34, 55, 89, 144, 233, 377, 610, ...

Class Fi bonacci shown below can be used as a generator for the Fibo-

nacci numbers.

cl ass Fi bonacci : public Coroutine {
publi c:
int Next() {
Cal | (this);
return F2;

}

private:
void Routine() {
F1 = 0; F2 =
for (5;) {
Det ach() ;
F2 += F1; F1 = F2 - FI1;

1,

}
}
int F1, F2;

}i

A small test program that prints the first 20 Fibonacci numbers is shown be-

low.

voi d Fi bonacci Test () {
Fi bonacci *F = new Fi bonacci ;
for (int i =1; i <= 20; i++)
cout << F->Next() << endl;

}

int main() Sequenci ng(Fi bonacci Test())

16

3.5 Merging two sorted arrays

The following program merges two sorted arrays, A and B, into a single
sorted array, C. A coroutine is associated with each of the two arrays to be
merged. At any moment the coroutine proceeds, which inspects the smallest
dataitem.

#i ncl ude "coroutine. h"
#i ncl ude <i ostream h>

int Al] = {1,5,6,8,10,12,15,17};
int B[] = {2, 4,7,9,11, 13, 14, 18, 20, 30} ;
int *C

int m=8, n 10, Cl ndex;
class Traverser : public Coroutine {
publi c:
Traverser(int Al], int L) :
Array(A), Limt(L), Index(0) {}
int *Array, Limt, |ndex;
Traverser *Partner;

void Routine() {
while (Index < Limt) {
i f (Partner->Array[Partner->lndex] <
Array[| ndex])
Resure(Part ner);
d G ndex++] = Array[|ndex++];

}
whil e (Clndex < mtn)
d Cl ndex++] =
Par t ner - >Array[Part ner - >l ndex++] ;

H

void MergeArrays() {
Traverser *X = new Traverser (A, n;
Traverser *Y = new Traverser (B, n);
X->Partner =Y; Y->Partner = X
C = new i nt[mtn];
Cl ndex = 0;
Resune(X) ;
for (int j =0;] < mn; j++)
cout << (j] << " "
cout << endl;

}

int main() Sequenci ng(MergeArrays())

17

3.6 Merging binary search trees

ClassTr aver ser shown below isintended to be used for scanning the val-
uesin abinary search tree of integersin ascending order.

This operation is implemented by a semi-coroutine, which on each call as-
signsitsinteger member Cur r ent the next higher value of the node of the
tree. When the whole tree has been traversed, Current is assigned the
maximum integer value (I NT_MAX).

The scanning is accomplished by a local recursive function, which calls
Det ach eachtimeanodeisvisited.

class Tree {
publi c:
Tree(int V, Tree *L, Tree *R) :
Val ue(V), Left(L), Right(R {}
i nt Val ue;
Tree *Left, *Right;
s

class Traverser : public Coroutine {
publi c:
Traverser(Tree *T) : MyTree(T) {}
int Current;
private:
Tree *MyTree;

void Routine() {
Traverse(MyTr ee) ;
Current = | NT_MAX;
}

void Traverse(Tree *T) {
if (T !'= NULL) {
Traverse(T->Left);
Current = T->Val ue;
Det ach() ;
Traverse(T->Ri ght);

18

An example of use is given in the test program below, which merges the val-
ues of two binary search trees and output the values in ascending order.

void MergeTrees() {
Tree *Treel =
new Tree(8,
new Tree(5,
new Tree(1, NULL, NULL),
new Tree(6, NULL, NULL)),
new Tree(10,
NULL,
new Tree(12,
NULL,
new Tree(15,
NULL,
new Tree(17, NULL, NULL)))));
Tree *Tree2 =
new Tree(13,
new Tree(4,
new Tree(2, NULL, NULL),
new Tree(9,
new Tree(7, NULL, NULL),
new Tree(11, NULL, NULL))),
new Tree(20,
new Tree(14,
NULL,
new Tree(18, NULL, NULL)),
new Tree(30, NULL, NULL)));
Traverser *T1 = new Traverser(Treel);
Traverser *T2 = new Traverser(Tree2);
Cal | (T1);
Cal |1 (T2);
for (;;) {
int mn = Tl1->Current;
if (T2->Current < nmin) {
mn = T2->Current;
Cal 1 (T2);
} else {
if (mn == |NT_MAX) break;
Call (T1);

cout << mn << :

}

cout << endl;

}
int main() Sequenci ng(MergeTrees())

19

3.7 Binary insertion sort

The coroutine Tr ee shown below may be used to sort integer values using
the binary insertion method. Sorting is accomplished by building a binary

search tree. Each node of the tree is a semi-coroutine [6].

If more than one integer isto be sorted, Tr ee sorts them by creating two
more Tr ee-objects, Lef t and Ri ght , and having each of them sort some

of the integers.

Lef t sortsintegers less than or equal to the value in the node, whereas

Ri ght sortsintegerslarger than the value in the node.

The end of the set of integersto be sorted is signaled with the value -1. When
acoroutine receives avalue of -1, it stops sorting and prepares to return the

sorted integers one at atime.

int V,

class Tree :
i nt Val ue;
Tree *Left, *Right;
voi d Routine() {
if (V 1) {
Det ach() ;
V = -1;
return;

}
Val ue V;

Tree *Left
for (5:) {
Det ach() ;
if (V==-1)
br eak;

new Tree,

public Coroutine {

*Ri ght

new Tree;

if (V <= Val ue)
Left->Send(V);
el se
Ri ght - >Send(V);

}
Left->Send(-1);
Det ach() ;

Ri ght->Send(-1);

20

for (;;) {
V = Left->Receive();

if (V==-1)
br eak;
Det ach() ;
}
V = Val ue;
Det ach() ;
for (;;) {
V = Ri ght->Receive();
if (V==-1)
br eak;
Det ach() ;
}
V = -1;
}
publi c:

void Send(int InputValue) {
V = | nput Val ue;

Call (this);

}

int Receive() {
Call (this);
return V;

}

}i

A simple program that uses class Tr ee to sort 100 random integers between
0 and 100 is shown below.

void BinarylnsertionSort() {

Tree *BST = new Tree;

for (int i =0; i < 100; i++)
BST- >Send(rand() %400) ;

BST- >Send(-1);

int i;

while ((i = BST->Receive()) !'= -1)
cout << i << " "

cout << endl

}

int main() Sequencing(BinarylnsertionSort())

21

3. 8 A cash dispenser

Coroutines may often be used to solve problems that are solvable by means
of backtracking. Each incarnation of arecursive solution of the problemis
replaced by a coroutine.

Consider the following problem [7]. A cash dispenser is able to make pay-
ments to a customer. Write a program that, given a wanted amount of money,
computes the number of coins and notesto be paid out.

Such a program is shown below. Each kind of coin (or note) is represented
as an instance of class Coi n. The integer members Denom nat i on and
Nunber denote the denomination of this kind of coin, and the number of
available coins of this denomination, respectively.

For each kind of coin the program computes the number of that coin to be
used in apayment. Theinteger member Used contains this number.

Each Coi n-object isacoroutine that is able to try al possible payments from
its stock of coins. The objects are held in atwo-way list in descending order
of coin denominations. Each time a coroutine becomes active, it tries the next
possible payment and resumes its successor (Suc). However, if it has no
successor, or all possible payments have been tried, it resumes its predeces-
sor (Pr ed). If it has no predecessor, i.e., it isthe first object in the list, all
possible combinations have been tried, and the given payment problem can-
not be solved.

The two-way list isimplemented by using the facilities of the library si nset
(described in Appendix D).

22

#i ncl ude "coroutine. h"

#i ncl ude "sinset. h"

#i ncl ude <i ostream h>

i nt Amount;

inline int min(int a, int b) { returna<b ?a: b; }

class Coin : public Link, public Coroutine {

publi c:
Coin(int d, int n) : Denom nation(d), Number(n) {}
i nt Denomi nation, Nunber, Used;

void PrintSolution() {

if (Pred() != NULL)
((Coin*) Pred())->PrintSolution();
if (Used > 0)
cout << Used << " of " << Denom nation
<< endl;
}
voi d Routine() {
for (;3) {
for (Used =
m n(Anount / Denoni nati on, Nunber);
Used >= 0;
Used--) {
Nurmber -= Used;
Anmpbunt -= Used*Denom nati on;
if (Amount == 0) {
Print Sol ution();
Det ach() ;
if (Suc() != NULL)
Resume((Coi n*) Suc());
Anpbunt += Used*Denom nati on;
Nunmber += Used;
}
if (Pred() == NULL) {
cout << "No solution" << endl;
Det ach() ;
}
Resune((Coi n*) Pred());
}

23

voi d ChangeDi spensor () {
cout << "Ampunt to be paid: "; cin >> Anmount;
Head *Li st = new Head;
(new Coi n(1000, 19))->I nto(List);
(new Coi n(500,9))->Into(List);
(new Coi n(100, 11))->Into(List);
(new Coi n(50, 10))->I nto(List);
(new Coi n(20,32))->Into(List);
(new Coin(10,0))->Into(List);
(new Coin(5,1))->Into(List);
(new Coin(1,7))->Into(List);
Resurme((Coin*) List->First());

}

int main() Sequenci ng(ChangeDi spensor())

24

3. 9 A filter for telegrams
This problem has been taken from [7].

A telegram is atext without any punctuation characters. The word STOP is
used instead of a period. A telegram ends with the word ZZZZ.

Assume we have afile consisting of a set of telegrams. The end of thefileis
signaled by two consecutive ZZZZ-words. Write a program that prints the
contents of the file such that

1) theword STOP isreplaced by a period

2) redundant spaces are removed

3) amaximum of 20 characters are printed on each line without hyphenation
of any word

4) theindividual telegrams are separated by two blank lines.

The program below solves this problem. The program contains the following
three coroutines

Lett er Producer readslettersfrom the file and delivers them one
by one to the word producer. Each new line
character is replaced by a space.

Wor dProducer assembles the letters into words. Extraneous
spaces are removed, and the word STOP isre-
placed by a period. The words are handed over
one-by-one to the printer.

Printer receives words from the word producer and

prints them on lines with a maximum of 20 char-
acters.

25

#i ncl ude "coroutine. h"
#i ncl ude <i ostream h>
#i ncl ude <fstream h>
#i ncl ude <string. h>

char Word[20], Letter

i fstream *Tel egrantil e;

Coroutine *thelLetterProducer,
*t heWor dPr oducer,
*thePrinter;

class LetterProducer : public Coroutine {
voi d Routine() {

for (5;) {
Tel egranfil e->get (Letter);
if (Letter == '\n")
Letter ="' ';

ResunE(theVbrdPrbducer);

H

cl ass WordProducer : public Coroutine {
voi d Routine() {
for (5;) {
while (Letter =="' ")
Resumre(t helLett er Producer);
char Next Wbrd[21] ;
Next Wrd[0] = "\0
do {
char NextLetter[1];
Next Letter[0] = Letter;
strncat (Next Wrd, NextLetter, 1);
Resumne(t heLet t er Producer);
} while (Letter =" ");
if (!strcnp(NextWord, "STOP"))
strcat(Wrd, ".");
el se {
if (strlen(Word))
Resune(t hePrinter);
if (!'strcnmp(Word, "ZzZzZzZzZ") &&
I'strcenp(NextWord, "ZzzzZ"))
Det ach() ;
strcpy(Word, NextWbrd);

26

class Printer : public Coroutine {

H

void Routine() {
int LineLength = 0;
for (;;) {
while (strecnp(Word, "zzzz")) {
if (LineLength + strlien(Wrd) > 20) {
cout << endl
Li neLength = O;
}
cout << Word << " ",
Li neLength += strlen(Wrd) + 1;
Resure(t heWbr dPr oducer) ;
}
cout << endl << endl
Li neLength = 0;
Resurne(t heWbr dPr oducer) ;

void TelegranFilter() {

}

do {
cout << "Enter file nanme: ";
char Fil eNane[80] ;
cin >> Fil eNane;
del ete Tel egrantil e;
TelegranFile = new ifstrean(Fil eNane,ios::in);
} while (!Tel egranfile->is_open());

t heLett er Producer = new LetterProducer
t heWbr dPr oducer = new Wor dPr oducer ;
thePrinter = new Printer;
Resune(t helLett er Producer);

int main() Sequencing(TelegranfFilter())

27

4. Implementation

A coroutine is characterized mainly by its execution state consisting of its cur-
rent execution location and a stack of activation records. The bottom element
of the stack isthe Rout i ne activation record. The remaining part of the
stack contains activation records corresponding to function activations trig-
gered by Rout i ne.

When control is transferred to a coroutine (by means of Resune, Cal | or
Det ach), the coroutine must be able to carry on where it |eft off. Thus, its
execution state must persist between successive occasions on which control
entersit. Its execution state must be "frozen", so to speak.

When a coroutine transfers from one execution state to another, itiscaled a
context switch. Thisimplies the saving of the execution state of the suspend-
ing coroutine and its replacement with the execution state of the other corou-
tine.

The central issue when implementing coroutines is how to achieve such con-
text switches. The goal isto implement the primitive Ent er (C) with the
following semantics[1]:

Enter (C) Theexecution point for the currently executing corou-
tine is set to the next statement to be executed, after
which this coroutine becomes suspended and the co-
routine C (re-)commences execution at its execution
point

Having implemented this primitive, it is easy to implement the primitives
Resune, Cal | andDet ach (or similar primitives).

In the following two implementations of Ent er are presented. The first im-
plementation is based on copying of stacks in and out of C++'s runtime
stack. In the second implementation all stacks reside in the runtime stack
(i.e., no stacks are copied).

Both implementations exploit the services of the C++ library functions
setjnpandl ongj np.

Each implementation has both advantages and drawbacks when compared
with the other one. For this reason, both implementations are made available
in two separate versions of the coroutine library.

No platform-specific features are used. Thus, both implementations will run
without modifications on most platforms.

28

4.1 The copy-stack implementation

Thisimplementation works in principle as follows.

At any time, the stack of the currently operating coroutineis held in

C++'s runtime stack.

When a coroutine suspends, the runtime stack and the current execu-

tion location are copied to two buffers (St ackBuffer
Envi r onnment) associated with the coroutine.

A coroutine is resumed by copying the contents of its stack buffer to
C++'sruntime stack and setting the program counter to the saved

execution location.

The standard C++ functions set j np and | ongj np are used to implement

the context switch.

setjnmp is used to save the current execution state in the buffer
Envi ronment . Envi r onment contains a snapshot of the proces-

sor state (register values, including the program counter).

| ongj np isused to make the processor return to a saved state.

set j np savesthe current state in the buffer and returns 0. | ongj np returns
the processor to a previous state, as though set j np had returned a value

other than 0.

The following code shows the interface of class Cor out i ne.

cl ass Coroutine {
friend void Resune(Coroutine *);
friend void Call (Coroutine *);
friend void Detach();
pr ot ect ed:
Coroutine();
~Coroutine();
virtual void Routine() = O;
private:
void Enter();
void StoreStack();
voi d RestoreStack();
char *StackBuffer, *High, *Low,
size_t BufferSize;
j mp_buf Environnent;
Coroutine *Caller, *Callee;

}s

29

The data members of the class have the following meaning.

St ackBuf f er pointer to a buffer containing a copy of the runtime
stack.

Hi gh, Low address bounds of the runtime stack.

Buf f er Si ze size (in bytes) of the stack buffer area.

Envi r onment array containing the information saved by set j np.

Cal l er, Callee atachmentlinks.

The meaning of St ackBuf f er, Low, Hi gh and Buf f er Si ze isillustrated in
Figure 4.1.

A

: ! Copy of . -
Buf ferSi ze . C++'S€>Lljnti me C++'s rulr(m me
i stack ft

e StackBuffer
Hi gh J
Coroutine Low <
ObJeCt Buf ferSi ze
-1 Cal | er
Cal | ee — P

Figure 4.1 Data structures (copy-stack implementation)

A context switch is made by the member function Enter. A cdl
C->Ent er (), where C pointsto a Cor out i ne object, suspends the cur-
rently operating coroutine, Cur r ent , and resumes coroutine C. The runtime
stack issaved in Cur r ent 's stack buffer, and C's stack buffer is copied to
the runtime stack.

30

The code of the function Ent er is shown below.

voi d Coroutine::Enter() {

if (!Term nated(Current)) {
Current->StoreStack();
if (setjnmp(Current->Environnment))

return;

}

Current = this;

if (StackBuffer) {
Rout i ne();
del ete Current->StackBuffer;
Current->StackBuffer = O;
Det ach() ;

}
Rest oreSt ack();

}

The auxiliary function St or eSt ack is used to save the run time stack. Its
implementation is shown below.

voi d Coroutine:: StoreStack() {
if (!Low {
if (!StackBotton
Error("StackBottomis not initialized");
Low = H gh = StackBottom

}
char X;
if (& > StackBotton)
H gh = &X;
el se
Low = &X;
if (Hgh - Low > BufferSize) {
del ete StackBuffer;
Buf ferSize = High - Low,
if (!'(StackBuffer = new char[BufferSize]))
Error("No nore space avail able");

mencpy(St ackBuf fer, Low, Hi gh - Low);

}

First, the function computes the boundaries of the runtime stack, Low and
Hi gh. It is assumed that the bottom of the runtime stack has already been
initialized (by the macro Sequenci ng). Next, if necessary, it allocates a
buffer, St ackBuf f er , to hold a copy of the run time stack. Finaly, the run
time stack is copied to this buffer.

Note that the function takes account of the fact that the runtime stack may
grow up on some platforms and down on others.

31

In order to restore the state of a coroutine, the auxiliary function
Rest or eSt ack isused. The code of this function is shown below.

voi d Coroutine::RestoreStack() {
char X;
if (&X >= Low && &X <= Hi gh)
Rest oreSt ack();
Current = this;
mencpy(Low, StackBuffer, High - Low);
| ongj mp(Current - >Envi ronnment, 1);

}

The function copies the contents of the stack buffer to the runtime stack, and
jumps to the execution location saved in the buffer Envi r onment . First,
however, the function callsitself recursively aslong as the current top ad-
dressis within the saved address bounds of the runtime stack. This prevents
the restored stack from being destroyed by the subsequent call of | ongj np.

Having implemented the function Ent er, it is easy to implement the user
functionsResume, Cal | and Det ach. Their implementation, excluding er-
ror handling, is shown below.

Resune(Cor outi ne *Next) {
whi | e (Next->Cal |l ee)
Next = Next->Call ee;
Next - >Ent er () ;
}

void Call (Coroutine *Next) {
Current->Cal | ee = Next;
Next ->Cal l er void = Current;
whi |l e (Next->Call ee)
Next = Next->Call ee;
Next - >Ent er () ;
}

void Detach() {

Coroutine *Next = Current->Caller;
i f (Next)

Current->Caller = Next->Callee = 0;
el se {

Next = &Mi n;

whi | e (Next->Call ee)

Next = Next->Call ee;

}
Next - >Ent er () ;

32

The complete program code of this version of the coroutine library may be
found in Appendix B.

The implementation is based on the same principles as was used by the author
in hisimplementation of alibrary for backtrack programming in C [8]. Actu-
aly, the latter library may easily be implemented by means of the coroutine
library (see Section 7). The same principles were used in [9] to extend C++
with control extensions similar to those described in this report.

33

4.2 The share-stack implementation

Thisimplementation is more complex than the previous one. The basic idea,
first time described by Kofoed [10], isto let all coroutine stacks share C++'s
runtime stack.

The runtime stack is divided into contiguous areas of varying size. An areais
elther unused or contains a coroutine stack. Recursive function calls are used
to wind down the stack and mark off allocated areas.

Each area contains a control block, called a task, which describes the prop-
erties of the area, for example its size and whether or not it isin use.

Class Cor out i ne hasthe following interface.

class Coroutine {
friend void Resune(Coroutine *);
friend void Call (Coroutine *);
friend void Detach();
friend void | nitSequencing(size t main_stack size
= DEFAULT_STACK_SI ZE);
pr ot ect ed:
Coroutine(size_t stack_size = DEFAULT_STACK_ Sl ZE);
virtual void Routine() = 0;
private:
void Enter();
void Eat();
Task *MWTask;
size_t StackSi ze;
i nt Ready, Term nat ed,
Coroutine *Caller, *Callee;

}s

The data members of the class have the following meanings.

My Task pointer to the control block.

St ackSi ze maximum area size (measured in bytes) for the
stack.

Ready signifies whether the coroutine is ready to run
itsRout i ne.

Ter mi nat ed signifies whether the coroutine has terminated
itsRout i ne.

Cal | er,Cal | ee atachment links.

34

The structure Task is shown below.

struct Task {
j mp_buf | npb;

i nt used;
size t size

}s

Corouti ne *MyCorouti ne;

struct Task *pred, *suc;
struct Task *prev, *next;

The members have the following meanings.

My Cor out i ne

j mpb
used
size

pr ed, suc

prev, next

pointer to the owner coroutine

the environment saved by set j np

signifies whether the task isin use

the size (measured in bytes) of the associated area

predecessor and successor in a doubly linked
list of unused tasks

pointers to the two adjacent tasks

Figure 4.2 illustrates the data structures.

35

W

| ¢ MyCorouti ne A
j mpb
> | Task
MyTask ° object T
. St ackSi ze used =
Cor outi ne
object Ready = 0 - pred
Termnated |=0 suc —tp . .
' StackSi ze
- . Cal | er —1e prev !
Cal | ee o——p next s
stack areafor :
MyCor out i ne .

Figure 4.2 Data structures (share-stack implementation)
A task isacontrol block allocated in C++'s runtime stack.

A program is initidized by caling the function | nit Sequenci ng. This
function saves the current state using setj np, and calls a function, Eat,
recursively until it has used enough of C++'s runtime stack to accommodate the
stack corresponding to the main program. After that, the function saves the
current state in alocal control block together with the size of the remaining free
area, marks the area as "free", and jumps to the previousy saved state using
| ongj mp. This control block serves as a potential starting point for allocating
space for new coroutine stacks.

All control blocks are linked together with pointers (pr ed and suc) in adoubly
linked list. When a new stack isto be alocated, the linked list is searched, using a
first-fit algorithm, for afree areathat islarge enough. If the requested stack sizeis
smaller than the area found, and the are is large enough to contain another stack of
a predefined minimum size, the area is split using the previously mentioned
recursive function Eat , creating anew free area. The original block is marked as
"used" and isready to be used for executing the actions of the coroutine in
guestion.

36

When a stack is no longer needed (because the corresponding coroutine termi-
nates), the control block is marked "free" and possibly merged with the preceding
or following free block (referenced by pr ev and next , respectively).

The implementation closely follows the task library implementation made by
Kofoed (see[10] for details). However, some adjustments have been made.

First, the coroutine library provides user-defined alternation between coroutines,
whereas the task library provides dternation as determined by a pre-defined
round-robin agorithm.

Second, in order to speed up the search for a possible merge of free blocks, the
singly linked list of adjacent blocks has been replaced by a doubly linked list.

Third, at program initialization the user does not need to provide the size of the
total stack area (only the size of the stack arearequired for the main program).

A complete listing of the share-stack implementation of the coroutine library may
be found in Appendix C.

37

4.3 Comparison of the two implementations

Which of the two implementations is to be preferred? This question has no
simple answer. Each implementation has both advantages and disadvantages.

Below the two implementations are evaluated in relation to a series of criteria
4.3.1 Ease of use
Both implementations appear to be very easy to use.

An advantage of the copy-stack implementation is that the user does not need
to bother about stack sizesfor coroutines.

In contrast, the share-stack implementation requires the maximum stack size
of each coroutine to be specified. This drawback has been somewhat reduced
in the actual implementation of the copy-stack method. A default size (10,000
bytes) isused if the user omits the specification.

4.3.2 Efficiency

For some applications the copy-stack implementation may cause extensive
copying.

In general, the time used for context switching is reduced when the copy-
stack version of the library is replaced by the share-stack version. Thisgain
in speed may be of importance in applications with many context switches
and/or large stacks.

In Section 6 the implementations are compared with respect to their efficiency
in asimulation application.

4.3.3 Restrictionsin use

The copy-stack implementation gives rise to backtracking. At resumption of a
coroutine, the stack is reestablished to its contents at the last time of suspen-
sion of the coroutine. This means that automatic variables (i.e., variables on
the stack) have their values restored. Any changes between suspension and
resumption are annulled. Furthermore, when an automatic object has been
moved due to a control switch, pointersto that object are no longer valid.

Thus, shared variables should not be automatic in the copy-stack implemen-
tation. They should be global or static.

Thisrestriction does not apply to the share-stack implementation.

38

However, the restriction is usually not important. Actually, aswill be shown
in Section 7 the backtracking property of the copy-stack implementation may
be exploited for writing applications that combine the use of coroutine se-
guencing with backtracking.

4.3.4 Robustness

The share-stack implementation has no check on stack overflows. If the user
has specified a stack size that istoo small, the program will crash, or even
worse, produce meaningless results without any notification.

4.3.5 Memory use

In the share-stack implementation the maximum stack size specified isallo-
cated when a coroutine starts. If this upper bound is much too large, alot of
unnecessary memory is used. Thisis especially of importance in simulation
applications where, usually, there are many simultaneous coroutines operat-
ing in quasi-parallel.

4.3.6 Maintenance

The copy-stack implementation seems to be the simplest to understand, and
therefore a so the ssimplest to maintain.

4.3.7 Portability
Both implementations are portable. At the time of writing, they have both

been installed and tested successfully with compilers on the following ma-
chines: Macintosh, IBM PC and Sun SPARC.

39

5. The simulation library

Discrete event simulation is an important application areafor coroutine se-
guencing.

Simulation is atechnique for representing a dynamic system with amodel and
experimenting with the model in order to gain information about the system.
The system could be a production line, atraffic system, a computer system, a
post office, etc.

The following notions are common to such systems:

Processesact in parallel, giving rise to discrete events
Queuing arises when processes have to wait

Processes may have active as well asinactive phases. A process may be sus-
pended temporarily and resumed later from where it left off. Thus, a process
has the properties of a coroutine.

The coroutine library described in this report can be used to implement ali-
brary for ssmulation. Such alibrary is described in this section. The design of
the library follows very closely the design of the built-in package for discrete
event simulation in SIMULA, class simulation [3].

A simulation program is composed of a collection of processes that undergo
scheduled and unscheduled phases. When a process is scheduled, it has an
event time associated with it. Thisisthe time at which its next active phaseis
scheduled to occur. When the active phase of a process ends, it may be re-
scheduled, or descheduled (either because all its actions have been executed,
or the time of its next active phase is not known). In either case, the sched-
uled process with the smallest event time is resumed.

The currently active process always has the smallest event time associated
with it. Thistime, the simulation time, moves in jumps to the event time of
the next scheduled process.

Scheduled processes are contained in an event list. The processes are ordered
in accordance with increasing event times. The process at the front of the
event list is always the one, which is active. Processes not in the event list are
either terminated or passive.

40

At any point in simulation time, a process can be in one (and only one) of the
following states:

active: the process is at the front of the event list. Its actions are being
executed

suspended: the processisin the event list, but not at the front

passive: the processis not in the event list and has further actions to exe-
cute

terminated: the processis not in the event list and has no further actions
to execute.

Theinterface of the smulation library (si mul ati on. h) is sketched below.

#i f ndef Sinul ation
#define Sinulation Sequencing

#i ncl ude "coroutine. h"
#i ncl ude "sinset. h"
#i ncl ude “random h”

class Process : public Link, public Coroutine {
publi c:

virtual void Actions() = O;

Process();

int Idle() const;

int Term nated() const;

doubl e EvTi ne() const;

Process *Next Ev() const;

H

Process *Mai n();
Process *Current();
doubl e Tine();

voi d Hol d(double T);

voi d Passivate();

void Wait (Head *Q;

voi d Cancel (Process *P);

enum Hast e {at = 1, delay = 2};
enum Ranki ng {before = 3, after = 4};
enum Pri or {prior = 5};
void Activate(Process *P);
void Activate(Process *P, Haste H, double T);
void Activate(Process *P, Haste H, double T,
Prior Prio);
void Activate(Process *Pl, Ranking Rank, Process *P2);

41

voi d Reactivate(Process *P)

voi d Reactivate(Process *P, Haste H, double T);

voi d Reactivate(Process *P, Haste H, double T,
Prior Prio);

voi d Reactivate(Process *P1l, Ranking Rank
Process *P2);

voi d Accum(doubl e &A, double &B, double &C, double D);

#endi f

Processes can be created as instances of Pr ocess-derived classes that im-
plement the pure virtual function Act i ons. The Act i ons function is used
to describe the life cycle of a process.

SinceclassPr ocess isasubclass of class Li nk, each process has the ca-
pability of being a member of atwo-way list (see Appendix D). Thisis use-
ful, for example, when processes must wait in a queue.
It is desirable to have the main program participating in the simulation as a
process. Thisis achieved by an impersonating Pr ocess-object that can be
manipulated like any other Pr ocess-object.

Mai n() returnsareferenceto this object.

Current () returnsareferenceto the Pr ocess-object at the front
of the event list (the currently active process).

Ti me() returnsthe current simulation time.

Hol d(doubl e T) schedulesCurr ent for reactivationat Ti me()
+ T.

Passi vat e() removes Cur r ent from the event list and resumes
the actions of thenew Current () .

Wai t (Head * Q) includes Curr ent into the two-way list Q, and
then callsPassi vat e.

Cancel (Process *X) removesthe process X from the event list.

If X iscurrently active or suspended, it becomes passive. If X is a
passive or terminated process or NULL, the call has no effect.

42

There are seven waysto activate a currently passive process:

Activate(Process *X) : activates process X at the current simu-
lation time.

Activate(Process *X, before, Process *Y):postions
process X in the event list beforeprocess Y, and gives it the same
eventtimeasy.

Activate(Process *Y, after, Process *X):positions
process Y in the event list after process X, and gives it the same event
timeasX.

Activate(Process *X, at, double T):theprocess Xis
inserted into the event list at the position corresponding to the event
time specified by T. The processisinserted after any processes with
the same event time which may already be present in thelist.

Activate(Process *X, at, double T, prior): the
process X isinserted into the event list at the position corresponding
to the event time specified by T. The processis inserted before any
processes with the same event time which may already be present in
thelist.

Activate(Process *X, delay, *T):theprocess Xis acti-
vated after a specified delay, T. The processis inserted in the event
list with the new event time, and after any processes with the same
simulation time which may already be present in the list.

Activate(Process *X, delay, *T, prior):theprocess
X isactivated after a specified delay, T. The processisinserted in the
event list with the new event time, and before any processes with the
same simulation time which may aready be present in the list.

Correspondingly, there are seven React i vat e functions, which work on

either active, suspended or passive processes. They have similar signatures to
their Act i vat e counterparts and work in the same way.

43

The following four public member functions are availablein class Pr ocess:

I dl e() returns1 if the processis not currently in the event list. Oth-
erwiseO0.

Ter mi nat ed() returns 1 if the process has executed all its actions.
Otherwise 0.

EvTi me() returnsthe time at which the processis scheduled for ac-
tivation.

Next Ev() returnsareference to the next process, if any, in the
event list.

In addition, the simulation library provides the function Accumthat can be
used to compute the time integral of avariable.

Accum(doubl e &A, double &B, double &C, double
D) accumulatesthe “timeintegral” of the variable C, interpreted as a
step function of the simulated time. The integral is accumulated in the
variable A. The variable B contains the event time at which the vari-
ables were last updated. The value of D is the current increment of the
step function. The codeis.

A += C(Tinme()-B);
B = Tinme();
C += D

A listing of the complete source code of the simulation library can be found in
Appendix E

Inasimulation, it is often necessary to specify the distribution functions of
various events (e.g., the time between car arrivals at atraffic light). For this
purpose, the smulation library provides functions for random drawing.
These functions, collected in a separate library described in Appendix F, have
the same functionality asin SIMULA.

6. A simulation example
This example has been taken from [2]

A garage owner hasinstalled an automatic car wash that servicescarsone at a
time. Each service takes 10 minutes. When a car arrives, it goes straight into
the car wash if thisisidle, otherwise it must wait in a queue. Aslong as cars
are waiting, the car wash isin continuous operation serving on afirst-come,
first-served basis. The average time between car arrivals has been estimated at
11 minutes.

The garage owner is interested in predicting the maximum queue length and
average waiting time if he installs one more car wash.

A simulation program that solves this problem is presented below.

It is assumed that each car wash is manned by a car washer, and that the car
washers start their day in atearoom and return there each time they have no
work to do. A car washer may described by the following subclass of
Process:

cl ass CarWasher : public Process {
void Actions() {
for (;;) {

Qt ();

while (!WaitingLine->Empty()) {
Car *Served =

(Car*) WAitingLine->First();

Served->Qut () ;
Hol d(10) ;
Acti vat e(Served) ;
del ete Served,;

}
Wi t (TeaRoon) ;

s

The actions of a car washer are contained in an infinite loop (the length of the
simulation is supposed to be determined by the main program). Each time a
car washer is activated, he leaves the tearoom (by calling Qut) and starts
serving the cars in the waiting line. He takes the first car out of the waiting
line, washes it for ten minutes (Hol d(10)). The car washer will continue
servicing, as long as there are cars waiting in the queue. If the waiting line
becomes empty, he returnsto the tearoom and waits.

45

A car may be described by the following subclass of Pr ocess:

class Car : public Process {
void Actions() {
doubl e EntryTinme = Time();
I nt o(Wai ti ngLi ne);
int Q.ength = Wi tingLine->Cardinal ();
i f (MaxLength < Q.ength)
MaxLengt h = QLengt h;
if (! TeaRoom >Enpty())
Activat e((Process*) TeaRoom >First());
Passi vate();
NoCf Cust oner s++;
ThroughTime += Time() - EntryTi ne;
}

}s

On arrival each car enters the waiting line and, if the tearoom is not empty, it
activates the idle car washer in the room. The car washer then washesiit. If,
however, the tearoom is empty, the car waits until a car washer can serviceit.

When a car has been washed (and activated by the car washer), it leaves the
garage.

The following subclass of Pr ocess isused to make cars arrive to the garage
with an inter-arrival time of P minutes:

class CarGen : public Process {
void Actions() {
while (Time() < SinPeriod) {
Acti vat e(new Car);
Hol d(Negexp(1.0/ P, U));

46

The main program, shown below, generates the two queues, TeaRoomand
Wai ti ngLi ne, and activates the two car washers and the car generator.

voi d CarWash() {
P=11.0; N=2; SinmPeriod = 200; U = 5;
TeaRoom = new Head,;
Wi ti ngLi ne = new Head;
for (int i =1; i <= N, i++)
(new Car Washer) - >l nt o(TeaRoon) ;
Acti vat e(new Car Gen);
Hol d(Si mPer i 0d+100000) ;
Report ();
}

int main() Sinmulation(CarWsh())

Si nper i od denotes the total opening time of the garage (200 minutes). All
cars that have arrived before the garage closes down are washed. When all
activity has stopped, function Repor t , shown below, prints the number of
cars washed, the average elapsed time (wait time plus service time), and the
maximum queue length.

void Report() {

cout << N << " Car washer sinulation\n";

cout << "No.of cars through the system="
<< NoOf Customers << endl;

cout << "Av.elapsed tine ="
<< Thr oughTi me/ NoOf Cust omers << endl ;

cout << "Maxi mum queue |l ength = " << MaxLength
<< endl ;

}
A complete listing of the program can be found in Appendix G.

This program was used with Si nperi od setto 1000000 to compare the
efficiency of the two versions of the coroutine library.

The CPU time used to run the program on a 300 MHz PowerPC Macintosh
was

copy-stack 1.9 seconds
share-stack 1.2 seconds
SIMULA 6.0 seconds

The last line shows the time needed to run a SIMULA version of the program
(Lund SIMULA 4.07).

47

The CPU-time used to run the program on a SUN SPARC server was
copy-stack 5.5 seconds
share-stack 3.4 seconds
SIMULA 6.2 seconds

Thelast line shows the time needed to run a SIMULA version of the program
(cim-2.8, aSIMULA compiler that produces C code).

As can be seen, the share-stack is more efficient than the copy-stack version.
Considering that both versions use a primitive implementation of the event

list, it isinteresting to note that they both result in a program that runs faster
than an equivalent SIMULA program.

48

7. Combining coroutines and backtracking

Backtrack programming is awell-known technique for solving combinatorial
search problems[11]. The search is organized as a multi-stage search process
where, at each stage, a choice among a number of aternatives has to be
made. Whenever it is found that the previous choices cannot possibly lead to
a solution, the algorithm backtracks, that is to say, re-establishes its state ex-
actly asiswas at the most recent choice point and chooses the next untried
alternative at this point. If all aternatives have been tried, the algorithm back-
tracks to the previous choice point.

Backtrack programming is often realized by recursion. A choice is made by
calling arecursive procedure. A backtrack is made by returning from the pro-
cedure. When areturn is made, the programmer must take care that the pro-
gram's variables are restored to their values at the time of the call.

However, writing programs that explicitly handle their own backtracking can
be difficult, tedious and error-prone. For this reason, a number of high-level
languages have been supplemented with special facilities for backtrack pro-
gramming.

A simple, but general tool for backtrack programming in C is described in
[8]. Thetool, caled CBack, implements the two functions Choi ce and
Backt r ack.

Choi ce isused when a choice is to be made among a number of alterna-
tives. Choi ce(N) , where Nisapositive integer denoting the number of al-
ternatives, returns successive integer. Choi ce first returns the value 1, and
the program continues. The values 2 to N are returned by Choi ce through
subsequent calls of Backt r ack.

A cal of Backt r ack causes the program to backtrack, that is to say, return
to the most recent call of Choi ce, which has not yet returned al its values.
The state of the program is re-established exactly as it was when Choi ce
was called, and the next untried value is returned. All automatic program
variables, i.e. local variables and register variables, will be re-established.
The remaining variables, the static variables, are not touched.

For amore comprehensive description of these facilities, see[8].

The implementation of CBack is based on the copy-stack method. At each
Choi ce-call, acopy of the C's runtime stack is saved. When Backt r ack
is called, the program state is re-established from the saved copy. The copies
arekept in astack. A call of Backt r ack re-establishes the state from the top
element of the stack. When aChoi ce-call returnsits last alternative, the cor-
responding copy is popped from the stack.

49

Given the copy-stack version of the coroutine library, it is a simple matter to
implement CBack. Appendix H contains the source code of such an imple-
mentation. It should be noted that only the most essentia parts of CBack have
been included in thisimplementation.

The program below solves the classicad 'eight-queens problem using the
CBack library. The task isto place eight queens on a chessboard so that no
gueen is under attack by another; that is, there is at most one queen on each
row, column and diagonal.

#i ncl ude " CBack. h"
#i ncl ude <i ostream h>

int go;

voi d Ei ght QueensProbl em() {
for (int r =1, r <= 8; r++) {
int ¢ = Choice(8);

for (int i =1; i <r; i++)
if (c ==di] || abs(c - qi]) =71 - 1)
Backtrack();
dr] =c;

for (int r =1;, r <= 8; r++)
cout << Jr] << " "
cout << endl;

}
i nt mai n() Backtracki ng(Ei ght QueensProbl en())

It isinteresting that the copy-stack technique allows for the combination of
coroutine control and backtracking. Coroutine control over severa back-
tracking subsystems can, for example, be used to achieve "planning” or co-
operative solutions (e.g. working from both ends to solve a maze problem).
Lindstrom [12] has shown that coroutines and backtracking can be combined
in a coherent manner; in fact, Lindstrom has used this combination to imple-
ment a “non-forgetful” form of backtracking, in which it its possible to re-
member previously searched subgoals and to re-use the results of these
searches.

Appendix | contains an implementation of CBack in which each coroutine
controls its own backtracking subsystem. In addition to being a full imple-
mentation of CBack, it adds coroutines and the possibility of having simul-
taneous backtracking systems (one for each coroutine).

50

Depth-first is the default search strategy. If required, the user may obtain
best-first strategy. In the present implementation the simple sorted list rep-
resentation of the priority queue of states has been replaced by a pairing heap
representation.

The conceptual and programmatic utility of the coroutine-backtracking control
combination is now illustrated through two examples. Both examples have
been taken from [12]. The description and the source code follow the paper
closdly.

7.1 Minimal node weight sum of two trees

Problem: Given two n-ary trees with non-negative integer node weights, de-
termine which tree has the root to terminal path with the smallest node weight
sum (if both trees possesses such a path, then either tree is an admissible an-
swer).

This problem may be solved by pursuing minimum path searches on both
trees at once, with control alternating between them on a"can you top this'
basis.

A program following this strategy is shown below. The program consists of

two independent search algorithms controlled as coroutines by the main pro-
gram.

51

#i ncl ude " CBack. h"
#i ncl ude <i ostream h>
#include <limts. h>

const int NodeMax = 100, DegreeMax = 5;

unsi gned i nt Deg[NodeMax] ; /1 degree of each node
unsi gned int W[NodeMax]; /'l weight of each node
unsi gned i nt Desc[NodeMax] [DegreeMax]; // imed. desc. of nodes
unsi gned | ong Best = ULONG NMAX; /1 current m nimm
class Shortest : public Coroutine {
public:

Shortest (unsigned int R} : Root(R) {}
private:

unsi gned i nt Root;

voi d Routine() {
unsi gned | ong Sum /1 current path sum
unsi gned int NodeNow, // current node pointer

Sum = W [NodeNow = Root] ;
while (Sum < Best) {
if (Deg[NodeNow] > 0) { // pick descendant node
NodeNow = Desc[NodeNow] [Choi ce(Deg[NodeNow])] ;
Sum += W [NodeNow] ;

el se { /1 this node is term nal
Best = Sum
Det ach() ; /1 let colleague try to beat it
Backtrack(); /'l 1ook for alternate path

}

Backtrack(); /1 current path already too |arge
b

void Treewal k() {
/1 assume Desc, Deg, W, Rootl and Root2 already read in
Shortest *T[] = {new Shortest(Root1l), new Shortest(Root2)};
unsi gned | ong 4 dBest;

int i =0; /[l let systemO try first

do {
O dBest = Best; // save current best path weight
Call (T[i]); /1 call current subsystem
i =21-1i; /] switch to other subsystem

} while (Best < O dBest);
cout << "Tree " << i << " has mnimumtermnal path"
<< endl;

}

int main() Backtracking(Treewal k())

52

7.2 Context-free language inter section

Problem: Given two context-free grammars G, and G,, find aminimal length
string on L(G,) C L(G,), i.e. the intersection of their languages. If no such
string exists of length less than or equal to lim, report that fact and stop; oth-
erwise, exhibit the string found and stop.

This problem may be solved by means of the following algorithm:

Setk=1.

Generate al length k strings of L(G,) via a backtracking system. As each
new character is produced (in left-to-right order) in a potential length k
member of L(G,), pass that character to a G, parser, operating as a back-
tracking subsystem of the L(G,) generator.

The G, parser attempts to accommodate the current string as extended by
the new character. If the G, parser failsin this attempt, it signals failure to
the G, generator, which then retracts that character. In either case, the G,
generator continues its generation process as described in step 2.

This process continues until either (a) an entire string of length k is pro-
duced and parsed as a member of L(G,), in which case a successis re-
ported and the program terminates after printing the string; or (b) the G,
generator has produced al length k members of L(G,).

In the latter case k isincremented and compared against lim. If k > lim, a
message is printed indicating the absence of the desired string and the
program halts. Otherwise, the process begins anew at step 2.

A program that implements this algorithm is shown below. For details see
[12].

53

#i ncl ude " CBack. h"
#i ncl ude <i ostream h>

const int strmax = 25;

enum type {alt, conc, ternt; /1 rule forns

type rul et ype[CHAR MAX+1]; /1 rule types

char rul e[CHAR_MAX+1][2]; /1 rules of grammars
char rootl, root?2; /1 granmar root symbols
char str[strmax]; /1 string buffer

int lim /1 length limt

int ok, strfound; /'l success signals

cl ass parseboss : public Coroutine {
friend cl ass genboss;
public:
par seboss(genboss *genref) : genref(genref) {}
voi d Routine();
voi d parse(char goal);
int parseptr; /] parser's string pointer
genboss *genr ef; /1l reference to generator

b

cl ass genboss : public Coroutine {

friend cl ass parseboss;

public:
genboss(int k) : k(k) { parseref = new parseboss(this); }
~genboss() { delete parseref; }

private:
voi d Routine();
voi d generate(char goal, int substrlength);
int k; /] string length
int genptr; /] generator's string pointer
par seboss *parseref; /'l reference to parser
b
voi d parseboss:: Routine() {
Noti fy(parseptr); /'l backtrace parseptr
parseptr = O; /] initialize string pointer
par se(root 2); /1 start up parser
if (parseptr < genref->genptr+1) // parsed only prefix of string
Backtrack(); /'l so backup
ok = 1; /1 signal success on |ast character
strfound = 1; /'l and overall|l success
Det ach() ; /] await generator's pleasure
strfound = O; /1 anot her character has arrived
Backtrack(); /'l so backup
}

voi d parseboss: : parse(char goal) {

/1 find string spanned by goal, starting at parseptr

switch(rul etype[goal]) {

case alt:
parse(rul e[goal][Choice(2)-1]);
br eak;

case conc:
parse(rul e[goal 1[0]);
parse(rul e[goal][1]);

br eak;
case term
if (parseptr > genref->genptr) { // need another character
ok = 1; /1l so far, so good
Det ach() ; [l if controls returns, we have it

if (str[parseptr] !=rule[goal][0])
Backtrack();
parseptr ++

}
voi d genboss:: Routine() {
Noti fy(genptr); /'l backtrace genptr
genptr = O, /1 initialize string pointer
generate(root1,k); /] start up generation
if (!strfound) /'l generator finished, but not parser
Backtrack(); /'l so back up
}
voi d genboss::generate(char goal, int k) {
swi tch(rul etype[goal]) {
case alt:
generate(rul e[goal][Choi ce(2)-1],k);
br eak;
case conc:
int j = Choice(k-1); // formall 2-partions of k
generate(rule[goal][0],]);
generate(rule[goalJ[1],k-j);
br eak;
case term
if (k > 1)
Backtrack();
str{genptr] = rule[goal][0];
ok = 0; /1 clear signal
Cal | (parseref); /1 give char. to parser
if (!'ok) /'l parser could not oblige
Backtrack(); /1l so back up
genpt r ++; /1 otherw se, onward
}
}

55

void G ammarl ntersection() {

}

/] assune rule, ruletype, rootl, root2 and [imalready read in

Breadt hFirst = 1; /'l use breadth-first search
strfound = 0O;
int k =0;

while (k < lim&& !'strfound) {
/1 see if a common string of length k+1 exists
k++;
genboss *g = new genboss(k);
Cal 1 (9);
del ete g;
ClearAl ();

}
if (strfound) {
cout << "Success, string = ";
for (int i =0; i < k; i++)
cout << str[i];
cout << endl;
}
el se
cout << "No common string of length | ess than or equal to
<< lim<< endl;

int main() Backtracking(G ammarlntersection())

56

8. Conclusions

This report describes a portable C++ library for coroutine sequencing. The
library has been implemented in two versions, the copy-stack version and the
share-stack version. Both versions show quite good performance. Their ade-
guacy has been demonstrated through the implementation of a library for
process-oriented discrete event smulation.

It is not clear-cut which version is to be preferred. Each version has draw-

backs that are not present in the other version. More user experience is re-
quired in other to judge which version should be recommended in general.

57

Refer ences

1. C.D.Malin,
Coroutines,
Lecture Notes in Computer Science (1980).

2. G. M. Birtwistle, O.-J. Dahl, B. Myhrhaug & K. Nygaard,
SIMULA BEGIN,
Studentlitteratur (1974).

3. Programsprak — SMULA,
SIS, Svensk Standard SS 63 61 14 (1987).

4. M. E. Conway,
Design of a Separable Transition-Diagram Compiler,
Comm, A.C.M., 6(7), pp. 396-408 (1963).

5. 0.-J.Dahl & C. A. R. Hoare,
Hierarchical Program Structures,
Sructured Programming, pp. 175-220,
eds. O.-J. Dahl, E. W. Dijkstra& C. A. R. Hoare,
Academic Press (1972).

6. P. A.Buhr, G. Ditchfield, A. Stroobosscher, B. M. Y ounger &

C. R. Zarnke,

nC++: Concurrency in the Object-oriented Language C++,
Softw. prac. exp., 22(2), pp. 137-172 (1992)

7. H.B. Hansen,
SMULA - et objektorienteret programmeringssprog,
Kompendium, Roskilde Universitetscenter (1990).

8. K. Helsgaun,
CBack: A Simple Tool for Backtrack Programming in C,
Softw. prac. exp., 25(8), pp. 905-934 (1995).

9. L. Nigro,

Control extensionsin C++,
Object Oriented Programming, 6(9), pp. 37-47 (1994)

58

10. S. Kofoed,
Portable Multitasking in C++,
Dr. Dobb’s Journal, November (1995)

11. R. W. Floyd,
Nondeterministic algorithms.
Journal ACM ,14(4), 636-644 (1967).

12. G. Lindstrom,
Backtracking in a Generalized Control Setting,
A.C.M. Trans. on Programming Languages and Systems, 1(1),
pp. 8-26 (1979).

59

I o nmmooO ® >

Appendices

Ingtallation of the coroutine library

Source code of the copy-stack version of the coroutine library
Source code of the share-stack version of the coroutine library
The simset library

Source code of the simulation library

The random drawing library

. Source code of the car wash simulation program

. A rudimentary implementation of CBack

A complete implementation of CBack (with coroutine sequencing)

60

A. Installation of the coroutine library

The source code of the coroutine library is provided in two files, aheader file
cdledcorouti ne. h,and asourcefilecaled cor out i ne. cpp. Two ver-
sions of the library are provided, the copy-stack version (described in Section
4.1) and the share-stack version (described in Section 4.2).

Both versions should run without modifications on most platforms. How-
ever, for the copy-stack version a small adjustment may be necessary. Some
C++ systems do not always keep the runtime stack up-to-date but keep some
of the variable valuesin registers. Thisis for example the case for C++ sys-
tems on Sun machines. If thisis the case, the macro Synchr oni ze must be
used. The comment characters are simply removed from the macro definition
(inthe beginning of cor out i ne. cpp of the copy-stack version).

The library may now be compiled and tested with the program shown on the
next page[7].

The program should produce the following output

mLalnm?blnBa2cla3b2c?
==>

and wait for input from the keyboard.

If the character r istyped, the program should print
b3a4mic3nb

and stop. If the character c istyped, the program should print
b3a4c3mic4nb

and stop. If any other character is typed, the program should print
mic3nb

and stop.

A-1

#i ncl ude "coroutine. h"
#i ncl ude <i ostream h>
#i ncl ude <stdlib. h>

class A : public Coroutine { void Routine(); };
class B : public Coroutine { void Routine(); };
class C: public Coroutine { void Routine(); };

Coroutine *al, *bl, *cl
void A::Routine() {
cout << "al"; Detach();
cout << "a2"; Call(cl = new O);
cout << "a3"; Call(bl);
cout << "a4"; Detach();
}
void B::Routine() {
cout << "bl"; Detach();
cout << "b2"; Resune(cl);
cout << "b3";
1
void C :Routine() {
cout << "cl"; Detach();
cout << "¢2" << endl << "==>"; flush(cout);
char conmand,;
cin >> commnd;
if (command == 'r")
Resune(al);
else if (command == 'c')
Call (al);
el se
Det ach();
cout << "c3"; Detach();
cout << "c4";
}
voi d Test Program() {
cout << "ml"; Call(al = new A);
cout << "nR"; Call (bl = new B)
cout << "nB"; Resune(al);
cout << "m4#"; Resune(cl);
cout << "mb" << endl
}
int main() Sequencing(TestProgram))

A-2

B. Source code of the copy-stack version of the
coroutine library

Header file: corouti ne. h

#i f ndef Sequenci ng

#def i ne Sequencing(S) {char Dummy; StackBottom = &Dumy; S;}
#i ncl ude <stddef. h>

#i ncl ude <setj nmp. h>

extern char *StackBottom

cl ass Coroutine {

friend void Resune(Coroutine *);
friend void Call(Coroutine *);
friend void Detach();

friend class Process;

friend unsigned | ong Choice(long);
friend voi d Backtrack();

pr ot ect ed:
Coroutine(size t Dumy = 0);
~Corouti ne();
virtual void Routine() = 0;
private:

void Enter();

void StoreStack();

voi d RestoreStack();

char *StackBuffer, *Low, *Hi gh
size_t BufferSize;

j mp_buf Environnent;

Coroutine *Caller, *Call ee;
static Coroutine *ToBeResuned;

b

voi d Resune(Coroutine *);
void Call (Coroutine *);
voi d Detach();

Coroutine *Current Coroutine();
Cor outi ne *Mai nCoroutine();

#defi ne DEFAULT_STACK_SI ZE 0

#endi f

B-1

Source file: coroutine. cpp

#defi ne Synchronize // {jnmp_buf E if (!setjnp(E))
| ongj mp(E, 1);}

#i ncl ude "coroutine. h"

#i ncl ude <i ostream h>

#i nclude <stdlib. h>

#i ncl ude <string. h>

char *St ackBottom

#define Ternminated(C) (!(C)->StackBuffer && (C)->BufferSize)
static Coroutine *Current = 0, *Next;

static void Error(const char *Message) {
cerr << "Error: " << Message << endl
exit(0);

Corouti ne *Coroutine:: ToBeResuned = O;

static class MainCoroutine : public Coroutine {
public:

Mai nCoroutine() { Current =this; }

void Routine() {}
} Main;

Coroutine:: Coroutine(size t Dumy = 0) {
char X;
if (StackBottom
if (&X < StackBottom ?
&X <= (char*) this & (char*) this <= SackBottom:
& >= (char*) this & (char*) this >= S ackBottomn)
Eror("Attenpt to allocate a Coroutine on the stack");
StackBuffer = 0; Low = High = 0; BufferSize = Dumy = O0;
Callee = Caller = 0;
}

Coroutine:: ~Coroutine() {
del ete StackBuffer; StackBuffer = 0;
}

inline void Coroutine::RestoreStack() {
Synchr oni ze;
char X;
if (&X >= Low && &X <= Hi gh) RestoreStack();
Current = this;
nmencpy(Low, StackBuffer, H gh - Low);
I ongj np(Current - >Envi ronment, 1);

B-2

inline void Coroutine::StoreStack() {
if ('Low) {
if (!StackBotton)
Error("StackBottomis not initialized");
Low = Hi gh = StackBottom

}

char X;

if (&K > StackBottom
H gh = &X;

el se
Low = &X;

if (Hgh - Low > BufferSize) {
del ete StackBuffer;
Buf ferSize = H gh - Low,
if (!(StackBuffer = new char[BufferSize]))
Error("No nore space avail able");
}
Synchr oni ze;
mencpy(St ackBuffer, Low, High - Low);

inline void Coroutine::Enter() {
if (!Term nated(Current)) {
Current->StoreStack();
if (setjnp(Current->Environment))
return;
}
Current = this;
if (!StackBuffer) {
Routi ne();
del ete Current->StackBuffer;
Current->StackBuffer = 0O;
i f (ToBeResuned) {
Next = ToBeResuned;
ToBeResunmed = 0;
Resume(Next) ;

}
Det ach() ;

Rest oreSt ack() ;

B-3

voi d Resume(Coroutine *Next) {

}

if (!Next)

Error("Attenpt to Resume a non-existing Coroutine");
if (Next == Current)

return,
i f (Term nated(Next))

Error("Attenpt to Resune a term nated Coroutine");
if (Next->Caller)

Error("Attenpt to Resune an attached Coroutine");
whi | e (Next->Call ee)

Next = Next->Call ee;
Next - >Ent er () ;

void Call (Coroutine *Next) {

}

if (!Next)

Error("Attenpt to Call a non-existing Coroutine");
i f (Term nated(Next))

Error("Attempt to Call a term nated Coroutine");
if (Next->Caller)

Error("Attenpt to Call an attached Coroutine");
Current->Call ee = Next;
Next->Cal l er = Current;
whil e (Next->Call ee)

Next = Next->Call ee;
if (Next == Current)

Error("Attenpt to Call an operating Coroutine");
Next - >Ent er () ;

voi d Detach() {

}

Next = Current->Call er;

i f (Next)

Current->Caller = Next->Callee = 0;
el se {

Next = &Mni n;

whi | e (Next->Call ee)
Next = Next->Call ee;

}
Next - >Ent er () ;

Coroutine *CurrentCoroutine() { return Current; }

Coroutine *Mai nCoroutine() { return ∈ }

B-4

C. Source code of the share-stack version of the
coroutine library

Header file: corouti ne. h

#i f ndef Sequenci ng

#i ncl ude <stddef. h>

#i ncl ude <setj np. h>

#def i ne DEFAULT_STACK SI ZE 10000

#def i ne Sequenci ng(S) { I nitSequenci ng(DEFAULT _STAXK SIZE); S; }
cl ass Task;

cl ass Coroutine {
friend void Resune(Coroutine *);
friend void Call(Coroutine *);
friend void Detach();
friend class Process;
friend void InitSequencing(size_t main_StackSize);
pr ot ect ed:
Coroutine(size t StackSize = DEFAULT_STACK Sl ZE)
virtual void Routine() = 0;
private:
void Enter();
void Eat();
Task *MTask;
size_t StackSize
i nt Ready, Ternminated,
Coroutine *Caller, *Call ee;
static Coroutine *ToBeResumned;

b

voi d Resune(Coroutine *);
voi d Call (Coroutine *);
voi d Detach();

Coroutine *Current Coroutine();
Cor outi ne *Mai nCoroutine();

voi d I nitSequencing(size_ t main_StackSize);

C-1

struct Task {
Cor outi ne *MyCorouti ne;
j mp_buf j npb;
int used;
size t size
struct Task *pred, *suc;
struct Task *prev, *next

b

#endi f

C-2

Source file: coroutine. cpp

#i ncl ude "coroutine. h"
#i ncl ude <i ostream h>
#i ncl ude <stdlib. h>
#include <limts. h>

#define M N_STACK_SI ZE 500 /1 mnimum stack size
static Task nmi n_task; /1l the main task

static jnmp_buf tnp_jnpb; /1 tenporary junp buffer
static Coroutine *Current = 0; /'l current coroutine

static void Error(const char *Msg) ({
cerr << Msg << endl; exit(0);

}

Coroutine *Coroutine:: ToBeResunmed = 0;

class Main_Coroutine : public Coroutine {
friend class Process;

publi c:
void Routine() {}
} Main;

Coroutine:: Coroutine(size_t s = DEFAULT_STACK SI ZE) ({
Caller = Callee = 0; Ready = 1; Term nated = O;
St ackSi ze = s;

C-3

void Coroutine::Enter() {

if (!Current)
Error ("I nitSequenci ng has not been called");

i f (Ready) { /1 find free bl ock
for (MyTask mai n_t ask. suc;

MyTask != &mai n_t ask;
MyTask = MyTask->suc)
if (MyTask->size >= StackSize + M N_STACK Sl ZE)
br eak;
if (MyTask == &nmai n_t ask)
Error("No nore space avail able\n");
MyTask- >MyCorouti ne = this;
if (!setjnp(tnp_jnpb))
| ongj np(MyTask- >j npb, 1);
Ready = O0;

}
if (!setjmp(Current->WTask->jnmpb)) { // activate control bl ock
Current = this;

| ongj np(MyTask- >j npb, 1);
}

void Coroutine:: Eat() {
static size_t d;
static Task *p;
Task t;

/1 eat stack
if ((d = labs((char *) & - (char *) MTask)) <
St ackSi ze)
Eat () ;
t.size = MyTask->size - d; //set size
MyTask- >si ze = d;
t.used = O;
t.suc = main_task. suc;
t.pred = &min_task;
t.suc->pred = main_task.suc = &t;
if (MyTask->next != &) {
t.next = MyTask->next; /1 set link pointers
MyTask- >next = &t;
t.prev = MyTask;
if (t.next)
t.next->prev = &t;

}
if (!setjnmp(t.jnpb)) [l wait
| ongj np(MWy Task->j npb, 1);

C-4

for (;;) {

/] test size
if (StackSize + M N_STACK SIZE < t.size &&

I'setjmp(t.jnpb))

t. MCoroutine->Eat(); // split block
t.used = 1; /'l mark as used
t.pred->suc = t.suc;
t.suc->pred = t.pred;

if (!setjnmp(t.jnpb)) [l wait
| ongj mp(t mp_j npb, 1);
t. MyCorouti ne->Routine(); // execute Routine
t. MyCoroutine->Termnated = 1;
t.used = 0; /'l mark as free
p = t.next;
[

f (p & !p->used) { // nerge with foll ow ng bl ock
t.size += p->size;
t.next = p->next;
if (t.next)
t.next->prev = &t;
p- >pred- >suc = p->suc;
p- >suc->pred = p->pred;

}
p =t.prev;
if (!p->used) { /1 merge with precedi ng bl ock
p->size += t.size;
p- >next = t.next;
if (t.next)
t.next->prev = p;

el se {
t.suc = nmain_task. suc;
t.pred = &main_t ask;
t.suc->pred = main_task.suc = &t;

}
if (!setjmp(t.jnpb)) { /]l save state
i f (ToBeResumned) {
static Coroutine *Next;
Next = ToBeResuned;
ToBeResuned = O0;
Resume(Next);
}
el se
Det ach() ;

C-5

voi d Resume(Coroutine *Next) {

if (!Next)

Error("Attenpt to Resume a non-existing Coroutine");
if (Next == Current)

return,
i f (Next->Terni nated)

Error("Attenpt to Resune a term nated Coroutine");
if (Next->Caller)

Error("Attenpt to Resune an attached Coroutine");
whi | e (Next->Call ee)

Next = Next->Call ee;
Next - >Ent er () ;

}

void Call (Coroutine *Next) {

if (!Next)

Error("Attenpt to Call a nonexisting Coroutine");
i f (Next->Terni nated)

Error("Attempt to Call a term nated Coroutine");
if (Next->Caller)

Error("Attenpt to Call an attached Coroutine");
Current->Call ee = Next;
Next->Cal l er = Current;
whil e (Next->Call ee)

Next = Next->Call ee;
if (Next == Current)

Error("Attenpt to Call an operating Coroutine");
Next - >Ent er () ;

}

voi d Detach() {
Coroutine *Next = Current->Caller;

i f (Next)

Current->Caller = Next->Callee = 0;
el se {

Next = &Mni n;

whi | e (Next->Call ee)
Next = Next->Call ee;

}
Next - >Ent er () ;
}

Coroutine *CurrentCoroutine() { return Current; }

Coroutine *Mai nCoroutine() { return ∈ }

C-6

void I nitSequencing(size_t main_StackSi ze) ({
Task tnp;
tnp. size = ULONG_MAX;
Mai n. St ackSi ze = mai n_St ackSi ze;
tmp. next = 0O;
Mai n. MyTask = &t np;
mai n_t ask. pred = mai n_task. suc = &mai n_t ask;
t np. MyCoroutine = Current = &M\ai n;
if (!setjnp(tnp.]jnpb))
Mai n. Eat () ;
tnp. pred = mai n_t ask. pred;
t np. suc = mai n_t ask. suc;
mai n_task = tnp;
mai n_t ask. next - >prev = &mai n_t ask;
Mai n. M\yTask = &nmai n_t ask;
mai n_t ask. used = 1;
Mai n. Ready = O;

C-7

D. The simset library

Thislibrary contains facilities for the manipulation of two-way linked lists. Its func-
tionality corresponds closely to SIMULA's built-in classs nset .

List members are objects of subclasses of the classLi nk.

An object of the classHead isused to represent alist.

TheclassLi nkage isacommon base class for list heads and list members.
The three classes are described below by means of the following variables:

Head * HD;
Li nk *LK
Li nkage *LG

Class Li nkage

cl ass Linkage {
publi c:

Li nk *Pred();

Li nk *Suc();

Li nkage *Prev();
b

LK. Suc() returns areference to the list member that is the successor
of LK if LK isalist member and is not the last member of
the list; otherwise 0.

HD. Suc() returns areference to the fist member of thelist HD, if the
list is not empty; otherwise 0.

LK. Pred() returns areference to the list element that is the predeces-
sor of LK if LK isalist member and is not the first mem-
ber of thelist; otherwise 0.

HD. Pred() returns areference to the last member of thelist HD, if the
list is not empty; otherwise 0.

LK. Prev() returns O if LK is not alist member, areference to the list
head, if LK isthe first member of alist; otherwise arefer-
enceto LK's predecessor in the list.

HD. Prev() returns areference to HD if HD is empty; otherwise aref-
erence to the last member of thelist.

D-1

Class Head

class Head : public Linkage {
public:
Link *First();
Li nk *Last();
int Enpty(void) const;
i nt Cardinal (void) const;
void d ear(void);

}
HD. Fi rst () returns areference to the first member of thelist (O, if the
list is empty).
HD. Last () returns a reference to the last member of thelist (0, if the
list is empty).

HD. Car di nal () returnsthe number of membersinthelist (O, if thelistis
empty).

HD. Enpt y() returns 1 if the list HD has no members; otherwise 0.

HD. Cl ear () removes all membersfrom thelist.

D-2

Class Li nk

class Link :

public:

publ i c Linkage {

void Qut(void);

void Into(Head *H);

voi d Precede(Li nkage *L);
voi d Fol | owm Li nkage *L);

b
LK. Qut ()
LK. I nt o(HD)

LK. Precede(LG

LK. Fol owm(LG)

removesLK from thelist (if any) of which it isamem-
ber. The call has no effect if LK has no membership.

removesLK from thelist (if any) of which it isamem-
ber and insertsLK asthe last member of thelist HD.

removesLK from thelist (if any) of which it isamem-
ber and insertsLK before LG. The effect is the same as
LK. Qut () IfLGIisO, or it has no membership and is
not alist head.

removesLK from thelist (if any) of which it isamem-
ber and inserts LK after LG. The effect is the same as
LK. Qut () IfLGIisO, or it has no membership and is
not alist head.

D-3

Header file: si mset. h

#i f ndef SI MSET_H
#defi ne SI MBET_H

cl ass Linkage {
friend class Link;
friend cl ass Head;
publi c:
Li nkage() ;
Link *Pred() const;
Li nk *Suc() const;
Li nkage *Prev() const;
private:
Li nkage *PRED, *SUC
virtual Link *LINK() = 0;

1
class Head : public Linkage {
publi c:
Head() ;
Link *First() const;
Link *Last() const;
int Enpty(void) const;
i nt Cardinal (void) const;
void C ear(void);
private:
Li nk *LINK();
1
class Link : public Linkage {
publi c:
void Qut(void);
void Into(Head *H)
voi d Precede(Li nkage *L);
voi d Fol | oM Li nkage *L);
private:
Li nk *LINK();
1
#endi f

D-4

Source file: si mset . cpp
#i ncl ude "sinset. h"
Li nkage: : Li nkage() { SUC = PRED = 0; }
Li nk* Li nkage::Pred() const { return PRED ? PRED->LINK() : O; }
Li nk* Li nkage:: Suc() const { return SUC ? SUC->LINK() : O; }
Li nkage* Linkage::Prev() const { return PRED; }
Head: : Head() { SUC = PRED = this; }
Li nk* Head::First() const { return Suc(); }
Li nk* Head::Last() const { return Pred(); }
int Head::Enmpty() const { return SUC == (*Linkage) this; }
i nt kbad;:cardinal() const {

int i = 0;

for (Link *L = First(); L; L = L->Suc())

i ++;

return i;

}
void Head::Clear() { while (First()) First()->Qut(); }
Li nk* Head::LINK() { return O; }
void Link::0Qut() {

if (SUCQ { SUC->PRED = PRED, PRED->SUC = SUC, PRED = SUC = 0; }
void Link::Into(Head *H { Precede(H); }
voi d Link:: Precede(Li nkage *L) {

Qut () ;

if (L & L->SUC)

{ SUC = L; PRED = L->PRED; L->PRED = PRED->SUC = this; }

}

voi d Link::FollowLinkage *L) { if (L) Precede(L->SUC); else Qut();
}

Li nk* Link::LINK() { return this; }

D-5

E. Source code of the simulation library

Header file: si mul ati on. h

#i f ndef

Si mul ati on

#define Sinmul ati on Sequenci ng

#i ncl ude "coroutine. h"
#i ncl ude "sinset. h"
#i ncl ude "random h"

class Process : public Link, public Coroutine {

friend
friend
friend

friend
friend
friend
friend
friend
friend
public:

Process *Current();
doubl e Tine();

void Activat (int Reac, Process *X,
Process *Y, int Prio);

voi d Hol d(double T);
voi d Passivate();

void Wait (Head *Q;
voi d Cancel (Process *P)
cl ass Mai n_Program

cl ass SQ@S Process;
public:

virtual void Actions() = 0;

Process(size_t stack_size = DEFAULT_STACK Sl ZE)

i nt
i nt

Idl e() const;
Term nated() const;

doubl e EvTi me() const;
Process *Next Ev() const;
private:

voi
i nt

d Routine();
TERM NATED

Process *PRED, *SUC
doubl e EVTI ME

}s

Process *Main();
Process *Current();

doubl e

Time();

voi d Hol d(double T);
voi d Passivate();

void Wait (Head *Q;
voi d Cancel (Process *P)

enum Haste {at = 1, delay = 2};
enum Ranki ng {before = 3, after =
enum Prior {prior = 5};

E-1

4};

i nt Code

double T,

voi d Activate(Process *P);

void Activate(Process *P, Haste H, double T);

void Activate(Process *P, Haste H, double T, Prior Prio);
void Activate(Process *Pl, Ranki ng Rank, Process *P2);

voi d Reactivate(Process *P)

voi d Reactivate(Process *P, Haste H, double T);

voi d Reactivate(Process *P, Haste H, double T, Prior Prio);
voi d Reactivate(Process *P1, Ranki ng Rank, Process *P2);
voi d Accun{doubl e &\, double &B, double &C, double D);

#endi f

E-2

Source file: si mul ati on. cpp

#i ncl ude "sinul ati on. h"
#i ncl ude <i ostream h>

static void Error(const char *Msg) {

cerr << "Error: " << Msg << endl;
exit(0);
}
class SQ@S Process : public Process {
public:
SQS_Process() { EVIIME = -1; PRED = SUC = this; }
void Actions() {}
inline static void SCHEDULE(Process *Q Process *P) {
Q@ >PRED = P; Q>SUC = P->SUC;
P->SUC = @ Q >SUC->PRED = Q
}
inline static void UNSCHEDULE(Process *P) {
P- >PRED- >SUC = P->SUC;
P- >SUC- >PRED = P->PRED;
P->PRED = P->SUC = 0;
}
} SQs;
class Main_Program: public Process {
publi c:

Mai n_Program() { EVTIME = 0; SQS. SCHEDULE(t hi s, &QS); }
void Actions() { while (1) Detach(); }
} Mai nProgram

Process: : Process(size_t stack_size = DEFAULT_STACK SI ZE)
Cor out i ne(stack_si ze)
{ TERM NATED = 0; PRED = SUC = 0; }

voi d Process:: Routine() {
Actions();
TERM NATED = 1;
SQS. UNSCHEDULE(t hi s) ;
if (S@S. SUC == &SQS)
Error("SQ@S is enpty");
ToBeResuned = SQS. SUC;
}
int Process::1dle() const { return SUC == 0; }
int Process::Term nated() const { return TERM NATED; }
doubl e Process::EvTine() const {
if (SUC == 0)
Error("No EvTinme for ldle Process");
return EVTI ME;

E-3

Process* Process:: NextEv() const

{ return SUC == &SQ5 ? 0 : SUC, }
Process *Main() { return &Wai nProgran }
Process *Current() { return SQ@S. SUC, }
double Tine() { return SQS. SUC >EVTI ME; }

voi d Hol d(double T) {

Process *Q = SQS. SUC,

if (T >0)
Q >EVTIME += T;

T = Q >EVTI Mg

if (@>SUC != &SQS && Q >SUC->EVTIME <= T) {
SQS. UNSCHEDULE(Q) ;
Process *P = S@S. PRED;
while (P->EVTIME > T)

P = P->PRED;

SQS. SCHEDULE(Q P) ;
Resume(S@S. SUC) ;

}

voi d Passivate() {
Process *CURRENT = S(S. SUC,
SQS. UNSCHEDUL E(CURRENT) ;
if (S@S.SUC == &SQS)
Error("SQS is enpty");
Resume(S@S. SUC) ;
}

void Wait(Head *Q {
Process *CURRENT = S(S. SUC,
CURRENT->I nto(Q ;
SQS. UNSCHEDUL E(CURRENT) ;
if (S@S. SUC == &SQS)

Error("SQ@S is enpty");

Resume(S@S. SUC) ;

}

voi d Cancel (Process *P) {

if (!P|] !'P->SUC
return,

Process *CURRENT = S(S. SUC,

SQS. UNSCHEDULE(P) ;

if (S@S. SUC ! = CURRENT)
return;

if (S@S. SUC == &SQS)
Error("SQ@S is enpty");

Resume(S@S. SUC) ;

E-4

enum {direct = 0};

void Activat (int Reac, Process *X, int Code,
double T, Process *Y, int Prio) {
if (!X || X>TERM NATED || (!Reac && X->SUC))
return;
Process *CURRENT = S@S. SUC, *P = 0;
doubl e NOW = CURRENT- >EVTI ME;
swi t ch(Code) {
case direct:
i f (X == CURRENT)
return;
T = NONW P = &SQS;
br eak;
case del ay:
T += NOW
case at:
if (T <= NOW {
if (Prio & X == CURRENT)
return;
T = NOW
}
br eak;
case before:
case after:
if ('Y] 'Y->SUC) {
SQS. UNSCHEDULE(X) ;
if (S@S. SUC == &SQS)
Error("SQ@S is enpty");
return;

}
if (X ==
return;
T = Y->EVTI VE;
P = Code == before ? Y->PRED : Y,

}
if (X >SUQ)
SQS. UNSCHEDULE(X) ;
if (1P) {
for (P = SQS.PRED, P->EVTIME > T, P = P->PRED)

if (Prio)
while (P->EVTIME == T)
P = P->PRED;
}
X->EVTIME = T,
SQS. SCHEDULE(X, P) ;
if (SQ@S. SUC ! = CURRENT)
Resume(SQ@S. SUC) ;

E-5

void Activate(Process *P)
{ Activat(0,P,direct,0,0,0); }
void Activate(Process *P, Haste H, double T)
{ Activat(0,P,H T,0,0); }
voi d Activate(Process *P, Haste H, double T, Prior Pri)
{ Activat(O0,P,H T,0,Pri); }
void Activate(Process *Pl, Ranki ng Rank, Process *P2)
{ Activat(0, P1, Rank, 0,P2,0); }

voi d Reactivate(Process *P)
{ Activat(1,P,direct,0,0,0); }
voi d Reactivate(Process *P, Haste H, double T)
{ Activat(1,P,H T,0,0); }
voi d Reactivate(Process *P, Haste H, double T, Prior Pri)
{ Activat(1,P,H T,0,Pri); }
voi d Reactivate(Process *P1l, Ranking Rank, Process *P2)
{ Activat (1, P1, Rank, 0,P2,0); }

voi d Accum(doubl e &A, double &B, double &C, double D) {
A += C(Tine() - B); B=Tine(); C+= D
}

E-6

F. Therandom drawing library

Each of the functionsin this library performs arandom drawing of some
kind. Their semanticsisthe sameasin SIMULA.

The last parameter to the functions, U, is an integer variable specifying a
pseudo-random number stream (seed).

int Draw(double A, long &U);

The valueis 1 with the probability A, O with probability 1-A. Itisal-
ways1lif A3 1, and alwaysOif A£ 0.

Il ong Randint(long A, long B, long &U);

Thevaueisoneof theintegers A, A+1, ..., B-1, B with equal prob-
ability. If B < A, the call constitutes an error.

doubl e Uni f ormdoubl e A, double B, long &U);

Thevaueisuniformly distributed intheinterval A£ X < B. If B < A,
the call constitutes an error.

doubl e Nor mal (doubl e A, double B, |ong &U)

The vaueisnormally distributed with mean A and standard deviation
B

doubl e Negexp(double A, |ong &U);

The value is a drawing form the negative exponential distribution with
mean V/A. If A isnon-positive, aruntime error occurs.

| ong Poi sson(double A |ong &U);

The value is a drawing form the Poisson distribution with parameter
A.

doubl e Erl ang(doubl e A, double B, |ong &U)

The value is a drawing form the Erlang distribution with mean 1/A
and standard deviation 1/(A* (B) . Both A and B must be positive.

l ong Discrete(double A[], long N, long &U);

The one-dimensional array A of N elements of type doubl e, aug-
mented by the element 1 to the right, isinterpreted as a step function
of the subscript, defining a discrete (cumulative) distribution function.

The function value satisfies
Of£Discrete(A, U £N

Itisdefined asthesmallesti suchthatAli] >r, wherer isarandom
number in theinterval [0;1] and A[N] = 1.

doubl e Li near(double A[], double B[], long N, long &U);

The value is adrawing from a (cumulative) distribution function f,
which is obtained by linear interpolation in a non-equidistant table de-
fined by A and B, such that A[i] = f(BJ[i]).

It isassumed that A and B are one-dimensional arrays of the same
length, N, that the first and last elements of A are equal to 0 and 1, re-
spectively, and that A[i] 3 A[j] and B[i] > B[j] for i >].

| ong Hi std(double A[], long N, long &U);
The valueis an integer in the range [O;N-1] where N is the number of

elementsin the one-dimensiona array A. The latter isinterpreted asa
histogram defining the relative frequencies of the values.

Header file: random h

#i f ndef RANDOM H
#def i ne RANDOM H

int Draw(double A, 1ong &U);

l ong Randint(long A long B, |ong &U)

doubl e Uni form(double A, double B, |ong &U)

doubl e Normal (doubl e A, double B, |ong &U)

doubl e Negexp(double A 1ong &U)

| ong Poi sson(double A, |ong &U)

doubl e Erl ang(double A, double B, |ong &U)

l ong Discrete(double Al], long N, long &U)

doubl e Li near (double Al], double B[], long N, long &U)
l ong Histd(double A[], long N, long &U)

#endi f

Source file: random cpp

#i ncl ude "random h"

#i ncl ude <i ostream h>
#include <limts. h>
#i ncl ude <mat h. h>

#defi ne RAN 1220703125

#defi ne MAXU | NT_MAX

#define NextU (((unsigned long) (U = (URAN)| 1)) >>1)
#def i ne Random ((NextU + 0.5) / (MAXU + 1.0))

static void Error(const char *Message) {
cerr << "Error: " << Message << endl;
exit(0);

int Draw(double A, 1long &) {
return Random < A;
}

Il ong Randint(long A long B, long &) {

if (B <A

Error("Randint: Second paranmeter is |ower than first

paranmeter");

long u = NextU;

doubl e R

u=(long) (R=u*(B- A+ 1.0)/(MAXU + 1.0) + A;

return u >R ? u-1: u

}

doubl e Uni form double A, double B, long &U) {
if (B< A
Error("Uni form Second paraneter is |ower than first
paranmeter");
return Randont(B-A) + A

}

#define p0O (-0.322232431088)
#define pl (-1)

#define p2 (-0.342242088547)
#define p3 (-0.0204231210245)
#define p4 (-0.0000453642210148)
#define g0 0.099348462606
#define gl 0.588581570495
#define g2 0.531103462366
#define g3 0.10353775285
#define g4 0.0038560700634

F-4

doubl e Normal (doubl e A, double B, long &U) {
double y, x, p, R = Random

p=R>05?10-R: R
y =sqrt (-log (p * p));
x =y + ((((y *p4d +p3) *y +p2) *y+pl) *y+ p0)/
((((y * 94 +9g3) *y +092) *y +ql) *y + q0);
if (R<0.5)
X = -X;
return B* x + A
}
doubl e Negexp(double A, long &U) {
if (A<=0)
Error (" Negexp: First paraneter is |ower than zero");
return -1 og(Random /A,
}

| ong Poi sson(double A |ong &U)
double Limt = exp(-A), Prod = Nexty,
| ong n;
for (n = 0; Prod >= Limt; n++)
Prod *= Random

return n;
}
doubl e Erl ang(double A, double B, long &) {
if (A<=0)
Error("Erlang: First parameter is not greater than
zero");
if (B <=0)
Error("Erlang: Second paraneter is not greater than zero");
long Bi = (long) B, G;
if (Bi == B)
Bi--;
doubl e Sum = 0;
for (G =1; G <= Bi; G ++)
Sum += | og(Random ;
return (-(Sum+ (B - (G -1))*l og(Random)/ (A*B));
}

long Discrete(long A[], long N, long &) {
doubl e Basi ¢ = Random
long i;
for (i =0; i <N i++4)
if (Ali] > Basic)
br eak;
return i;

doubl e Li near(double Al], long B[], long N, long &) {

}

if (AJO] '=0.0] AIN1] !'=1.0)
Error("Linear: Illegal value in first array");
doubl e Basi ¢ = Random
long i;
for (i =1; i <N i++)
if (A[i] >= Basic)

br eak;
double D= Ali] - Ali-1];
if (D==0.0)

return B[i-1];
return B[i-1] + (B[i]-B[i-1])*(Basic-Ali-1])/D,

| ong Histd(double Al], long N, long &) ({

doubl e Sum = 0. 0;

long i;
for (i =0; i <N i++)
Sum += A[i];
doubl e Wi ght = Random * Sum
Sum = 0. 0;
for (i =0; i <N- 1; i++) {
Sum += A[i];
if (Sum>= Wi ght)
br eak;
} .
return i;

G. Source code of the car wash simulation program

#i ncl ude "sinul ati on. h"
#i ncl ude <i ostream h>

Head * TeaRoom *Witi ngLi ne;
doubl e ThroughTi e, SinPeriod, P
| ong NoOF Customers, MaxLength, N, U

class Car : public Process {
void Actions() {

doubl e EntryTime = Tinme();

I nt o(Wi ti ngLi ne);

l ong Q.ength = WAitingLine->Cardinal ();

i f (MaxLength < Q.engt h)
MaxLengt h = QLengt h;

if (!TeaRoom >Enpty())
Activate((Process*) TeaRoom >First());

Passi vate();

NoCOf Cust omer s++;

ThroughTine += Tine() - EntryTi nme;

s

cl ass CarWasher : public Process {
void Actions() {
for (;;) {

Qut ();

whil e (!WitingLine->Enpty())
Car *Served = (Car*) Wit
Served->Qut () ;
Hol d(10);
Acti vat e(Served) ;
del et e Served

{
ngLi ne->First();

}
Wi t (TeaRoon) ;

b

class CarGen : public Process {
void Actions() {
while (Tinme() <= SinPeriod) {
Acti vat e(new Car);
Hol d(Negexp(1/ P, U));

void Report() {

}

cout << N << " Car washer simulation\n";
cout << "No.of cars through the system="
<< NoOr Cust omers << endl ;

cout << "Av.elapsed tinme =" << ThroughTi ne/ NoOf Cust oner s
<< endl;
cout << "Maxi mum queue length = " << MaxLength << endl;

voi d CarWash() {

}

i nt

P=11; N=2; SinPeriod = 200; U = 5;
TeaRoom = new Head,;
Wi ti ngLi ne = new Head;
for (int i =1; i <= N i++)
(new Car Washer) - >I nt o(TeaRoonj ;
Act i vat e(new Car Gen) ;
Hol d(Si nPeri od + 10000000);
Report ();

mai n() Si nul ati on(Car Wash())

G-2

H. A rudimentary implementation of CBack

Header file: CBack. h

#i f ndef Backtracki ng
#defi ne Backtracki ng Sequencing

#i ncl ude "coroutine. h"

unsi gned | ong Choi ce(l ong);
voi d Backtrack();

extern void (*Fiasco)();

#endi f

H-1

Source file: CBack. cpp

#i ncl ude " CBack. h"

#i ncl ude <stdlib. h>

#i ncl ude <i ostream h>
#i ncl ude <setj nmp. h>
void (*Fiasco) () = 0;

static void Error(const char *Msg) {
cerr << "Error: " << Msg << endl;
exit(0);

class State : public Coroutine {
publi c:
unsi gned | ong Last Choi ce;
State *Previous;
private:
voi d Routine() {};
1

static State *TopState = 0, *Previous;

unsi gned | ong Choice(long N) {
if (N <= 0) Backtrack();
if (N==1) return 1;
Previ ous = TopSt at e;
TopState = new St at e;
if (!TopState)

Error("No nore space for choice\n");
TopSt at e- >Previ ous = Previ ous;
TopSt at e- >Last Choi ce = 0;

TopSt at e- >St or eSt ack() ;

setj np(TopSt at e- >Envi ronnent) ;

if (++TopState->LastChoice < N)
return TopSt at e- >Last Choi ce;

Previ ous = TopSt at e- >Pr evi ous;

del ete TopSt at e;

TopState = Previous;

return N,

}

voi d Backtrack() {
if (!TopState) {
if (Fiasco)
Fi asco();
exit(0);

TopSt at e- >Rest or eSt ack() ;

H-2

I. A complete implementation of CBack (with corou-
tine sequencing)

Header file: Corouti ne. h

#i f ndef Sequenci ng

#def i ne Sequencing(S) {char Dummy; StackBottom = &Dumy; S;}
#i ncl ude <stddef. h>

#i ncl ude <setj nmp. h>

extern char *StackBottom

extern void (*C eanUp) ();

cl ass Coroutine {

friend void Resune(Coroutine *);
friend void Call(Coroutine *);
friend void Detach();

friend unsigned | ong Choice(long);
friend voi d Backtrack();

friend unsigned | ong Next Choice();
friend class Process;

friend class State;

friend class Notification;

friend void O ean();

pr ot ect ed:

Coroutine();

~Corouti ne();

virtual void Routine() = 0;
private:

void Enter();
void StoreStack();
voi d RestoreStack();
char *StackBuffer, *Low, *Hi gh
size_t BuffersSize;
j mp_buf Environnent;
Coroutine *Caller, *Callee;
static Coroutine *ToBeResuned
State *TopState
unsi gned | ong Last Choi ce, Alternatives;
long Merit;

b

voi d Resume(Coroutine *);

void Call (Coroutine *);

voi d Detach();

Coroutine *Current Coroutine();
Cor outi ne *Mai nCoroutine();

#endi f

Header file: CBack. h

#i f ndef Backtracki ng
#def i ne Backtracki ng Sequenci ng

#i ncl ude "coroutine. h"
#i ncl ude <stddef. h>

#define Notify(V) NotifyStorage(&V, sizeof(V))
#define Nmall oc(Size) NotifyStorage(malloc(Size), Size)
#define Ncall oc(N, Size) NotifyStorage(calloc(N, Size),
(N) *Si ze)
#defi ne Nrealloc(P, Size)\
(RermoveNot i fication(P),\

Noti fyStorage(realloc(P, Size), Size))
#define Nfree(P) (RenmoveNotification(P), free(P))
#define CearAl () (CearChoices(), CearNotifications())

unsi gned | ong Choi ce(l ong);
voi d Backtrack();

unsi gned | ong Next Choi ce(voi d);
void Cut(void);

voi d d ear Choi ces(void);

void *NotifyStorage(void *Base, size t Size);
voi d RenoveNotification(void *Base);
void C earNotifications(void);

extern void (*Fiasco)();
extern long Merit;
extern int BreadthFirst;

#endi f

Source file: Corouti ne. cpp

#def!ne Synchronize // {jnp_buf E if (!setjnp(E))
I'ongj mp(E, 1) ;}

#i ncl ude "coroutine. h"
#i ncl ude <i ostream h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>

char *St ackBottom

void Nod ean() {}
void (*C eanUp) () = Nod ean

class State;
class Notification;

State *TopState

size_t NotifiedSpace;

Notification *FirstNotification, *N,
unsi gned | ong Last Choice, Alternatives;
long Merit;

#define Ternmi nated(C) (!(C)->StackBuffer && (C)->BufferSize)
static Coroutine *Current = 0, *Next;

static void Error(const char *Message) {
cerr << "Error: " << Message << endl
exit(0);

}

Corouti ne *Coroutine:: ToBeResuned = 0;

static class MainCoroutine : public Coroutine {
public:

Mai nCoroutine() { Current =this; }

void Routine() {}
} Main;

Coroutine:: Coroutine() {
char X;
if (StackBottom
if (&X < StackBottom ?
& <= (char*) this & (char*) this <= SackBottom:
& >= (char*) this & (char*) this >= S ackBottomn)
Eror("Attenpt to allocate a Gorouti ne on the stack");
StackBuffer = 0; Low = High = 0; BufferSize = 0;
Callee = Caller = 0; TopState = O;
Last Choice = Alternatives = 0;

Merit = O;

}

Coroutine:: ~Coroutine() {
d eanUp();
del et e StackBuffer;
St ackBuf fer = 0O;

}

inline void Coroutine::RestoreStack() {
Synchr oni ze;
char X;
if (&X >= Low && &X <= Hi gh)
Rest or eSt ack() ;
mencpy(Low, StackBuffer, High - Low);
[ongj np(Envi ronnment, 1);

inline void Coroutine::StoreStack() {
if (!'Low) {
if (!StackBotton
Error("StackBottomis not initialized");
Low = Hi gh = StackBottom

char X;
if (& > StackBottom
H gh = &X;
el se
Low = &X;
if (High - Low > BufferSize) {
del ete StackBuffer;
Buf ferSize = H gh - Low,
if (!(StackBuffer = new char[BufferSize]))
Error("No nore space avail able");
}
Synchr oni ze;
mencpy(St ackBuffer, Low, High - Low);

inline void Coroutine::Enter() {
if (!Term nated(Current)) {
Current->StoreStack();
if (setjnp(Current->Environnent))

return,
}
Current->TopState = :: TopState;
Current ->Last Choi ce = ::Last Choi ce;
Current->Alternatives = ::Alternatives;
Current->Merit = ::Merit;

.. TopState = TopState;
.. Last Choi ce = Last Choi ce;
::Alternatives = Alternatives;
o Merit = Merit;
Current = this;
if (!StackBuffer) {
Routi ne();
C eanUp();
del ete Current->StackBuffer;
Current->StackBuffer = 0;
i f (ToBeResuned) {
Next = ToBeResuned;
ToBeResuned = 0;
Resume(Next) ;

}
Det ach();

}
Rest oreSt ack() ;

}

voi d Resume(Coroutine *Next) {

if (!Next)

Error("Attenpt to Resume a non-existing Coroutine");
if (Next == Current)

return,
i f (Term nated(Next))

Error("Attenpt to Resune a term nated Coroutine");
i f (Next->Caller)

Error("Attenpt to Resune an attached Coroutine");
whi | e (Next->Call ee)

Next = Next->Call ee;
Next - >Ent er () ;

void Call (Coroutine *Next) {

i f (!Next)

Error("Attenpt to Call a non-existing Coroutine");
if (Term nated(Next))

Error("Attenpt to Call a term nated Coroutine");
if (Next->Caller)

Error("Attenmpt to Call an attached Coroutine");
Current->Cal | ee = Next;
Next - >Cal | er = Current;
whi | e (Next->Call ee)

Next = Next->Call ee;
if (Next == Current)

Error("Attenmpt to Call an operating Coroutine");
Next - >Ent er () ;

}

voi d Detach() {

Next = Current->Caller;
i f (Next)

Current->Caller = Next->Callee = 0O;
el se {

Next = &Mai n;

whi | e (Next->Cal | ee)

Next = Next->Call ee;

}
Next - >Ent er () ;
}

Coroutine *CurrentCoroutine() { return Current; }

Coroutine *Mai nCoroutine() { return &hin; }

Source file: CBack. cpp

#i ncl ude " CBack. h"
#i ncl ude <i ostream h>
#i ncl ude <setj np. h>

void (*Fiasco) () = 0;
int BreadthFirst = 0;

static void Error(const char *Message)
{ cerr << "Error: " << Message << endl; exit(0); }

class State; class Notification;

extern State *TopState, *FirstFree = 0;
extern unsigned | ong Last Choice, Alternatives;
extern size t NotifiedSpace;

extern Notification *FirstNotification, *N,

void dean() {
State *A dTopState = TopSt at e;
TopState = Current Coroutine()->TopSt at e;
Cl ear Choi ces();
if (CurrentCoroutine() !'= MainCoroutine())
TopState = O dTopSt at e;
Current Coroutine()->TopState = O;

}

class State : public Coroutine {
voi d Routine() {};
public:
State() { CeanUp = Cean; }
State *Link(State *B) {
B- >Next = Son;
B- >Previ ous = this;
if (Son) Son->Previous
Son = B;
return this;

I
m

}
State *Merge(State *B) {
i f (!BreadthFirst)
return Merit >= B->Merit ? Link(B) : B->Link(this);
return Merit > B->Merit ? Link(B) : B->Link(this);

void Insert() {

Previous = Next = Son = 0;

.. TopState = !:: TopState ? this : Merge(:: TopState);
}

State *Previous, *Next, *Son;

class Notification {
publi c:
voi d *Base;
size t Size;
Notification *Next;

inline void Del eteMax() {

State *Max = TopState, *Prev, *A, *B, *C

if (!Max)
return,

Prev = TopState = O;

for (A = Max->Son; A && (B = A->Next); A= 0O {
C = B->Next;
A->Next = B->Next = A->Previous = B->Previous = 0;
TopState = B->Merge(A);
TopSt at e- >Previ ous = Prev;
Prev = TopSt at e;

}

if (A {
A- >Pr evi ous = Prev;
TopState = A

}
if (TopState) {
for (A = TopState->Previous; A, A= B) {
B = A->Previous;
TopState = A->Merge(TopState);

}

TopSt at e- >Previ ous = 0O;
}
Max- >Next = FirstFree;
FirstFree = Max;

}
void PopState() { DeleteMax(); }

unsi gned | ong Choice(long N) {

}

if (N <= 0) Backtrack();

if (N==1 && (! TopState || TopState->Merit <= Merit))
return (LastChoice = Alternatives = 1);

State *NewSt at e;

if (FirstFree) ({
NewSt at e = First Free;
First Free = NewSt at e- >Next ;

}
else if (I(NewState = new State))
Error("No nore space for Choice\n");
NewSt at e- >Last Choi ce = NewSt at e->Al ternatives = 0;
NewSt at e- >Merit = Merit;
NewSt at e- >Pr evi ous = NewSt at e- >Next = NewSt at e- >Son =
static Notification *Ntf;
static char *B;
for (Ntf = FirstNotification,
B = (char *) NotifiedSpace; Ntf;
B += Ntf->Size, Ntf = Ntf->Next)
mencpy(B, Ntf->Base, Ntf->Size);
NewSt at e- >St or eSt ack() ;
setj np(NewSt at e- >Envi ronnent) ;
if (!NewState->Alternatives) {
NewSt at e->Al t ernatives = N,
NewSt at e- >l nsert () ;
TopSt at e- >Rest or eSt ack() ;

el se {
for (Ntf = FirstNotification,
B = (char*) NotifiedSpace; Nf;
B += Ntf->Size, Ntf = Ntf->Next)
mencpy(Nt f - >Base, B, Ntf->Size);

Al ternatives = TopState->Alternatives;
Merit = TopState->Merit;
Last Choi ce = ++TopSt at e- >Last Choi ce;
i f (LastChoice == Alternatives)
PopSt at e() ;
return Last Choi ce;

voi d Backtrack() {

if (!TopState) {
if (Fiasco)
Fi asco();
Det ach();

TopSt at e- >Rest or eSt ack() ;

unsi gned | ong Next Choi ce() {

if (++LastChoice > Alternatives)
Backtrack();

i f (LastChoice == Alternatives)
PopSt ate();

el se
TopSt at e- >Last Choi ce = Last Choi ce;

return Last Choi ce;

}
void Cut() {
if (LastChoice < Alternatives)
PopSt ate() ;
Backtrack();
}

voi d *NotifyStorage(voi d *Base, size_t Size) {
if (TopState)
Error("Notification (unfinished Choice calls)");
for (Notification *N = FirstNotification; N, N = N >Next)
if (N->Base == Base)
return O;
N = new Notification;
if (I'N
Error("No nore space for notification");
N >Base = Base; N->Size = Size;
Noti fi edSpace += Si ze;
N->Next = FirstNotification;
FirstNotification = N,
C eanUp = d ean;
return Base;

}

voi d RenoveNotification(void *Base) {
if (TopState)
Error("RenoveNotification (unfinished Choice calls)");
for (Notification *N = FirstNotification, *Prev = O;
N
Prev = N, N = N>Next) {
if (N->Base == Base) {
Noti fi edSpace -= N >Sj ze;

if (!Prev)

FirstNotification = N >Next;
el se

Prev->Next = N->Next;
delete N;
return,

[-10

voi d O ear Choi ces() {
whil e (TopState)
PopSt ate();
Last Choice = Alternatives = 0;

}

void CearNotifications() {
while (FirstNotification)
RenoveNotification(FirstNotification->Base);

-11

	 1. Introduction
	2. The coroutine library
	3. Examples
	3.1 A simple dice game
	3.2 Generation of permutations
	3.3 Text transformation
	3.4 Two simple generators
	3.4.1 A random number generator
	3.4.2 A Fibonacci number generator

	3.5 Merging two sorted arrays
	3.6 Merging binary search trees
	3.7 Binary insertion sort
	3.8 A cash dispenser
	3.9 A filter for telegrams

	4. Implementation
	4.1 The copy-stack implementation
	4.2 The share-stack implementation
	4.3 Comparison of the two implementations
	4.3.1 Ease of use
	4.3.2 Effieciency
	4.3.3 Restrictions in use
	4.3.4 Robustness
	4.3.5 Memory use
	4.3.6 Maintenance
	4.3.7 Portability

	5. The simulation library
	6. A simulation example
	7. Combining coroutines and backtracking
	7.1 Minimal node weight sum of two trees
	7.2 Context-free language intersection

	8. Conclusions
	References
	Appendices
	A. Installation of the corouitine library
	B. Source code of the copy-stack version of the coroutine library
	C. Source code of the share-stack version of the coroutine library
	D. The simset library
	E. Source code of the simulation library
	F. The random drawing library
	G. Source code of the car wash simulation program
	H. A rudimentary implementation of CBack
	I. A complete implementation of CBack (with coroutine sequencing)

